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ABSTRACT
Challenging computational problems arising in the practical world
are frequently tackled by heuristic algorithms. Small universal quan-
tum computers will emerge in the next year or two, enabling a sub-
stantial broadening of the types of quantum heuristics that can be
investigated beyond quantum annealing. The immediate question
is “What experiments should we prioritize that will give us insight
into quantum heuristics?" One leading candidate is the quantum
approximate optimization algorithm (QAOA) metaheuristic. Here,
we provide a framework for designing QAOA circuits for a variety
of combinatorial optimization problems with both hard constraints
that must be met and soft constraints whose violation we wish to
minimize. We work through a number of examples, and discuss
design principles and implementation considerations.
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1 INTRODUCTION
Over the last few decades, researchers have discovered several
stunning instances [18] of quantum algorithms that provably out-
perform the best existing classical algorithms and, in some cases,
the best possible classical algorithm. For most problems, however,
it is currently unknown whether quantum computing can provide
an advantage, and if so, how to design quantum algorithms that re-
alize such advantages. Today, challenging computational problems
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arising in the practical world are frequently tackled by heuristic
algorithms, which by definition have not been analytically proven
to be the best approach, or even proven to outperform the best
approach of the previous year. Rather, these algorithms are em-
pirically shown to be effective, by running them on characteristic
sets of problems. Only now that prototype quantum hardware is
becoming available is this approach to algorithm design open for
quantum algorithms.

Previously, the only quantum hardware available was special-
purpose quantum hardware, specifically quantum annealers target-
ing combinatorial optimization problems. The emerging gate-model
processors, currently in prototype phase, are universal in that, once
scaled up, they can run any quantum algorithm.Within the last year,
IBM has made available publicly through the cloud a 5-qubit gate-
model chip [11], and announced recently an upgrade to a 17-qubit
chip. Other groups, such as Google [3], Rigetti Computing [20], TU
Delft, and UC Berkeley,with Google and Rigetti anticipate providing
processors with 40-100 qubits within a year or two.[16] Gate-model
computing expands the potential applications beyond optimiza-
tion, as well as enabling a broader array of quantum approaches to
optimization.

While limited exploration of quantum heuristics beyond quan-
tum annealing (QA) has been possible through small-scale classi-
cal simulation, the exponential overhead in such simulations has
limited their usefulness. The next decade will see a blossoming of
quantum heuristics as a broader and more flexible array of quantum
computational hardware comes into being. The immediate question
is “What experiments should we prioritize that will give us insight
into quantum heuristics?" One leading candidate is QAOA circuits.

QAOA circuits were first proposed by Farhi et al. [6] as the basis
for a quantum approximate optimization algorithm (QAOA), and
a number of tantalizing results have been obtained since [12, 21–
23]. QAOA circuits have a particularly simple form, alternating
between cost-function based operations and mixing operations.
Prior work focused almost exclusively on cases in which there are
no hard constraints and the mixing term takes an exceptionally
simple form, though the initial paper [6] included a section on a
variant of the algorithm that provides an example that suggests
how the algorithm can be generalized to more complex situations,
particularly ones in which not all bit strings are feasible solutions.

Here, we further develop generalizations of the algorithm to
combinatorial optimization problems with both hard constraints,
which must be satisfied, and soft constraints, to which we want to
maximize compliance. One appealing aspect of the QAOA approach
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is that, like quantum annealing, it is relatively easy for a computer
scientist with little knowledge of quantum computing to design a
QAOA circuit for a given approximate optimization problem that
could be run on near-term hardware. After reviewing the QAOA
algorithm, we describe a framework for designing cost functions
incorporating the soft constraints and mixing operators enforcing
the hard constraints. The design criteria aim to provide efficient
schemes by using mixing terms that are restricted to the feasible
subspace and thus do not spend time exploring infeasible solu-
tions. We provide analytical and numerical results that support the
choice to use the mixing operations to enforce the hard constraints
rather than incorporating them into the cost function. We then pro-
vide detailed examples, focusing on various optimization versions
of scheduling problems, followed by a brief discussion of other
problems. We conclude with suggestions for next steps, including
the potential for realizing some of these algorithms on near-term
hardware, with an eye to estimating their ultimate impact.

2 BACKGROUND ON QAOA
QAOA circuits iteratively alternate between a step dependent on
the optimization cost function and a mixing term. Level p QAOA
circuits, QAOAp , iterate p times. We will refer to circuits with
the above structure as QAOA circuits whether they are used for
approximate optimization or for some other purpose. We define
QAOA circuits formally in Sec. 3.2. Here, we motivate this work by
giving an an overview of prior results on QAOA.

Farhi et al. [6] proposed the quantum approximate optimization
algorithm (QAOA) as a metaheuristic with the potential to improve
on classical approximation algorithms by providing better approxi-
mation ratios or by finding solutions achieving those ratios more
efficiently than classical algorithms. Indeed, Farhi et al. [7] were
able to obtain bounds for a simple QAOA algorithm that beat the
best approximation ratio for all known efficient classical algorithms
for the problem E3Lin2, only to inspire a better classical algorithm
[1] that narrowly beats the approximation ratio for the QAOA1
algorithm by a log factor. More advanced QAOA algorithms, with
more repetitions, could potentially beat the approximation ratio of
this classical algorithm, but such an analysis is challenging.

Since Farhi et al.’s original work, QAOA circuits have also been
applied for exact optimization [12, 23] and sampling [8]. Wecker
et al. [23] explores learning parameters for QAOA circuits on in-
stances of MAX-2-SAT that result in high overlap with the optimal
state. Jiang et al. [12] demonstrates that the class of QAOA circuits
is powerful enough to obtain the Θ(

√
2n ) query complexity on

Grover’s problem, and also provides the first algorithm within the
QAOA framework to show a quantum advantage for a number of
iterations p in the intermediate range between p = 1 and p → ∞.
Farhi and Harrow [8] proved that, under reasonable complexity
theoretic assumptions, it is not possible for any classical algorithm
to produce samples according to the output distribution of QAOA
circuits, with those with just a single iteration (p = 1). Their results
suggest that QAOA circuits applied to sampling are among the
most promising candidates for early demonstrations of “quantum
supremacy” [2, 17]. It remains an open question whether QAOA
circuits provide a quantum advantage for approximate optimiza-
tion.

Because these circuits have uses beyond approximate optimiza-
tion, and people tend to refer to the QAOA algorithm, even though
the final A stands for “algorithm," we propose that the acronym be
reworked so as to describe the structure of these circuits: the Quan-
tum Alternating Operator with adjusting Angles (QAOA) circuits.

3 QAOA FRAMEWORK
Combinatorial optimization problems are often represented in a
form in which, in addition to a cost function to be maximized, there
are hard constraintswhich must be satisfied in order for the solution
to be valid. We consider only representations in which the variables
are binary; the cost function is a map C : {0, 1}n → R. Let n be
the number of variables. We use search space to refer to the full set
of n-bit strings. Any bit string that satisfies all hard constraints is
called a feasible solution, and the set of such bit strings is the feasible
subset of the search space. In an exact optimization problem, the
goal is to find a bit string that maximizes the cost function. In an
r -approximate optimization problem, the goal is to find a bit string
x, such that C (x) is within a factor of r of the maximum:

C (x)
Cmax

≥ r . (1)

An algorithm is an r -approximation algorithm for problem, if for
every instance of the problem, the algorithm finds a bit string with
cost function within a factor of r of the maximum.

The most explored general-purpose quantum algorithms for op-
timization, adiabatic quantum optimization (AQO),quantum anneal-
ing,and the quantum approximate optimization algorithm (QAOA),
are expressed in terms of two Hamiltonians applied to an n-qubit
quantum register. We briefly review key concepts in quantum com-
puting that we will use in this paper. Please see a standard textbook,
or review article, such as [18], for an introduction to this topic.

3.1 A brief review of quantum computing
A qubit takes values in a 2-dimensional complex vector space, with
vectors that are equivalent up to scaling by a complex number con-
sidered the same state. (The zero vector is not a legitimate qubit
value.) In quantum mechanics, Dirac’s bra/ket notation is used,
where |v⟩ is notation for a column vector, and ⟨v |, its Hermitian
conjugate, a row vector. Two orthogonal vectors, the computational
basis states |0⟩ and |1⟩ of the qubit, are chosen to represent classical

bit values. We use the convention |0⟩ =
(

1
0

)
, and |1⟩ =

(
0
1

)
.

Multiple qubit spaces combine via the tensor product. States of
multiple qubits are non-zero vectors in this tensor product space,
up to scaling by a complex number. One basis for the states in a
n qubit system, the computational basis, is made up of the states
that are tensor products of the single-qubit computational basis
states, |bn−1bn−2 . . .b0⟩ = |bn−1⟩ ⊗ · · · ⊗ |b0⟩, where bi ∈ {0, 1}. For
convenience we will also use the label |x⟩, for x a non-negative
integer, to refer to the state vector labeled with the binary string
corresponding to x . All n-qubit states can be written as a superposi-
tion of such states computational basis states.

∑N−1
x=0 ax |x⟩, where

N = 2n is the number of n-bit strings, and the ax are referred to
as amplitudes. Each amplitude is a complex number ax = |ax |eiθ ,
with real magnitude |ax | and phase eiθ .
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Operations on n-qubit registers are represented as unitary trans-
formations on the 2n -dimensional state space. Any unitary transfor-
mation U can be written asU = eiH for some Hermitian operator
H called the Hamiltonian. Some useful single qubit operators in-

clude the Pauli operators X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, and

Z =

(
1 0
0 −1

)
, which together with the identity transformation

I , form a basis for linear operators on a 2-dimensional complex
vector space. The X operator corresponds the the classical NOT
operator, while the other two operators are quantum operators that
affect the relative phase of the |0⟩ and |1⟩ components of a qubit’s
state, which can be useful for setting up quantum interference
effects in the subsequent computation. We will make use of the
Pauli communtation relations [X ,Y ] = −[Y ,X ], [Y ,Z ] = −[Z ,Y ],
and [Z ,X ] = −[X ,Z ], where [A,B] = AB − BA is the commutator.
Since the Pauli operators are both Hermitian and unitary, they can
be used as Hamiltonians or as unitary operators directly. Tensor
products of Pauli operators act as unitary operators on a multiqubit
system. Because the eigenvectors of Z are |0⟩ and |1⟩, Hamiltonians
made up of of Z operators are considered “classical” Hamiltonians.
For example, Z1X3 applies Z to the first qubit and X to the third
qubit. Sums of Pauli operators are not unitary, in general, but are
Hermitian so may be used as Hamiltonians for unitary operators.
A useful property of Hamiltonians H that are both unitary and
Hermitian is that eiθH = cos(θ )I + i sinθH , where for θ = π/2, we
have H up to an irrelevant global phase of i .

3.2 A brief review of QAOA circuits
Let C : {0, 1}n → R be a cost function. To represent the cost
function as a problem Hamiltonian HC , we follow the standard
practice of substituting 1

2 (I + Z ) for each binary variable. Since
such a Hamiltonian contains only Z terms, problem Hamiltonians
are “classical” Hamiltonians, and the computational basis vectors
are eigenvectors of HC . Since |0⟩ is a 1-eigenvector for Z , and |1⟩ is
a −1-eigenvalue for Z , the eigenvalue of HC for eigenvector |x⟩ is
the value of the cost function on the bitstring x,C (x). We will refer
to the subspace spanned by |x⟩, where x lies in the feasible subset,
as the feasible subspace.

A QAOAp circuit loops p times, and on iteration i applies two
Hamiltonians in turn,

• a cost-function-based Hamiltonian HC , for time βi , and
• mixing Hamiltonian HM , for time γi .

The first achieves phase separation, with computational basis states
|x⟩ receiving a phase depending on the associated cost C (x). The
second mixes amplitude between computation basis states. When
used for optimization, the idea is to choose βi and γi such that
quantum interference results in a concentration of amplitude in
computational basis states with high cost. At the end of the algo-
rithm, a quantum measurement is done in the computational basis,
resulting in a single bit string as output, depending probabilistically
on amplitudes in the final quantum state. Specifically, x is obtained
with probability |ax |2, the square of its magnitude in the final state.
As we discuss below, the choice of initial state is also important.

3.3 Framework for mapping combinatorial
optimization problems to QAOA

All problem information must be encapsulated in some way in the
Hamiltonians. For the hard constraints, we have a choice between
incorporating them in the cost Hamiltonian or the mixing Hamil-
tonian. Because current quantum annealers have a fixed driver (the
mixing Hamiltonian in the quantum annealing (QA) setting), all
problem dependence must be captured in the cost Hamiltonian. The
general strategy is to incorporate the hard constraints as penalty
terms in the cost function, and then convert the cost function to a
cost Hamiltonian. This approach generates mappings for an opti-
mization problem that works with any mixing Hamiltonian, hence
a uniformmixing Hamiltonian can be implemented (as is on current
quantum annealers) universally for all problems. It has a number of
disadvantages even in that setting,one major one being that search
takes place over the full search space rather than being restricted
to the feasible subset.

In this paper we take a different approach, incorporating the
hard constraints into the mixing Hamiltonian so as to constrain the
search to the feasible subspace. Specific examples will be discussed
in Sec. 4. Here, we provide a general framework, taking inspiration
from the example developed in Sec. VII of Farhi et al. [6], and build
on a theory developed by Hen & Spedalieri [10] and Hen & Sarandy
[9] for use in the AQO setting. Because in AQO the ground subspace
in preferred, most problems are phrased as minimization problems,
whereas in the QAOA setting, most problems are phrased in terms
of maximization problems, since the initial examples were all cases
in which the cost function was simply a sum of constraints to be
satisfied. As a result, the cost functions, and resulting Hamiltonians,
differ by a sign between the two settings.

The mixing Hamiltonian should both restrict exploration to the
feasible subspace and promote exploration of that subspace. Fol-
lowing [9], a mixing Hamiltonian must
• preserve the feasible subspace, so that the resulting unitary
takes states in the feasible subspace to states in the feasible
subspace, and
• provide a mixing (or hopping) mechanism, that enables full
exploration of the feasible subspace from any starting state
in the feasible subspace.

In the QAOA circuit setting, some of the design criteria for AQO
(not listed) in [10] are not needed, enabling us to have greater
flexibility in the design of the mixing Hamiltonian. 1

For the design of the problem and mixing Hamiltonians, it is
sometimes useful to define a Hamiltonian encapsulating the hard
constraints, HA, with the feasible subspace as its ground subspace.
Any Hamiltonian that commutes withHA will preserve the feasible
subspace. A mixing Hamiltonian should not commute with the
cost function Hamiltonian HC , since it must mix between states
with different eigenvalues to move amplitude into subspaces of the
feasible space corresponding to high values of C . Thus, as design
criteria for the mixing Hamiltonian HM , we have [HM ,HA] = 0
and [HM ,HC ] , 0. Further, we need to ensure that HM contains
mechanisms for exploring the entire space.

1 Because high weight operators translate to unitaries that are implementable in the
circuit model setting, we do not have to restrict ourselves to low weight Hamiltonians.
Nor does it need to be gapped.
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In Sec. 4, we introduce mixing Hamiltonians for a variety of
problems. Here, we describe one tool that will be useful, in various
forms, for constructing such Hamiltonians. Hen et al. [10] explore,
in the AQO setting, terms of the form SWAPi j =

1
2 (I + XiX j +

YiYj +ZiZ j ). When applied to two-qubit computational basis states
on qubits i and j, it takes |0i1j ⟩ to |1i0j ⟩ and vice versa, while
leaving |0i0j ⟩ and |1i1j ⟩ unchanged. Thus, the operation swaps the
bit values of the two qubits in the computational basis, generalizing
the classical SWAP operation. Since SWAPi j is Hermitian as well as
unitary, it can also be used as a Hamiltonian, and with eiθSWAPi j =

cos(θ )I+i sinθSWAPi j , which applies the SWAPi j to the two qubits
for θ = π/2, and is a combination of the identity and the SWAPi j
for other values of θ . The SWAP operation preserves the Hamming
weight of bit strings. We will see that it will be used to incorporate
various hard constraints, such as exactly one of a set of binary
variables can take value 1, into mixing Hamiltonians. Because, the
I and ZiZ j terms commute with any classical Hamiltonian, and
thus with all cost function Hamiltonians HC , we will often just use
terms of the form 1

2 (XiX j + YiYj ), which happens to be relatively
easy to implement on superconducting quantum hardware.

4 MAPPING GRAPH COLORING
OPTIMIZATION PROBLEMS TO THE QAOA
FORMALISM

Graph-k-Coloring is an important NP-complete (for k ≥ 3) problem
with many applications, such as scheduling [14, 19] and memory
allocation [4] problems. Given a (undirected) graph G = (V ,E),
Graph-k−Coloring asks whether there exists an assignment of one
of k colors to each vertex such that every edge is properly colored
(connects two vertices of different color). If such an assignment
exists, the graphs is said to be k-colorable.

Several optimization variants of Graph-k-Coloring are known:

• Maximize properly colored edges. Given a graph, find a
color assignment such that the number of properly colored
edges is maximized.
• Maximal Properly-Colorable Induced Subgraph.Given
a graph, determine the maximum number of vertices for
which all edges in the graph can be properly colored.
• Chromatic number. Given a graph, determine its chro-
matic number, the minimum number of colors required to
properly color the graph.

The first is a generalization of MaxCut, the second of Independent
Set. As we will see, there exists a mixing Hamiltonian for the first
that has a relatively simple form, and is independent of the problem
instance (other than size). Mixing Hamiltonians for the second
must be more complicated, and while their general form is problem
instance dependent, each problem instance has a specific mixing
Hamiltonian.

4.1 Maximizing the properly colored edges
Problem:Given a graphG = (V ,E) withn vertices andm edges, we
seek a k-color assignment that maximizes the number of properly
colored edges.

There are many ways to represent this problem on a quantum
computer, with various trade-offs. We employ a reasonable compro-
mise, a unary representation which uses k qubits per vertex, as has
been used in quantum annealing [9, 10, 15, 19]. Color assignments
are encoded using kn binary variable xv,i , with xv,i = 1 indicating
that vertex v has been assigned color i . For each vertex, a hard con-
straint is that the vertex be assigned exactly one color. Feasible bit
strings, satisfying these n constraints, correspond to kn-bit strings
in which, for each vertex v , exactly one of its k variables xv,i is set
to one. The cost function is

m −
∑

<uv>∈E

k∑
i=1

xu,ixv,i , (2)

which penalizes every improperly colored edge. Substituting 1
2 (I +

Z ) for each binary variable, we obtain

HC =mI −
km

4
I +

1
4

∑
<uv>

k∑
i=1

(Zu,iZv,i − Zu,i − Zv,i ). (3)

Feasible bit strings satisfy the n constraints
∑k
i=1 xv,i = 0 , one

for each vertex v . We rewrite them into

(1 −
k∑
i=1

xv,i )
2 = 0,

so that the translated Hamiltonian

HA = −
1
2

∑
v

*.
,
(k − 2)

k∑
i=1

Zv,i −
k∑
i,j

Zv,iZv, j
+/
-

(4)

admits the feasible subspace as its ground subspace.
We seek a mixing Hamiltonian HM , that meets the criteria laid

out in Sec. 3.3, keeping the evolution within the feasible subspace.
For each vertex v , we include a term of the form

Bv =
1
k

k∑
i=1

Xv,iXv,i+1 + Yv,iYv,i+1, (5)

known in physics as the XY Model on a ring. The entire mixing
Hamiltonian is HM =

∑
v Bv . From the Pauli commutation rela-

tions, we have [HM ,HA] = 0 and [HM ,HC ] , 0 as desired. Using
the intuition from Sec.3.3, each term generates transitions between
colors on vertex v through its connection with the SWAP operator,
and thus, starting from any feasible state, all feasible states are
reachable after sufficient repetitions p.

We have a choice in starting state. While any feasible state will
do, we expect the algorithm to be more efficient if we start with a
superposition of all feasible states, in which a vertex is assigned
all colors with equally probablility. This hypothesis will be tested
in future research, and tradeoffs between ease of implementation
of a starting state and its effectiveness as a starting point will be
evaluated.

We could also have used a mixing term in which Bv contains
more connections, so that the colors for each vertex are not just
connected to adjacent colors in the indexing, but to more colors as
well. This provides more channels for colors to propagate, we hence
expect it to lead to better performance of the algorithm. But more
connections require more couplings between qubits, and poses a
higher resource requirement to implement on the hardware. For
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example, with a fully connected graph for each vertex, the number
of connections per qubit scales with the number of colors instead
of being constant as is the case for the ring.

Directly extending the MaxCut application of [6], the color of
each vertex could be encoded with ⌈log2 k⌉ qubits. While such an
encoding efficiently represents the required states, the problem
Hamiltonian would be much more complicated, requiring many
way couplings to penalize adjacent vertices colored with the same
color. Since usually k ≪ n, our approach does not add unreasonable
overhead to the problem representation, and we expect it to be
significantly easier to implement in practice.

4.2 Finding a Maximal Properly-Colorable
Induced Subgraph

The induced subgraph of a graph G = (V ,E) for a subset of vertices
W ⊂ V is the graphH = (W ,EW ), where the edge between vertices
wi andw j inW is included in EW if and only if that edge is in E.

Problem: Given a graphG = (V ,E) with n vertices andm edges,
find the largest induced subgraph that can be properly k-colored.

We represent colorings as in Sec.4.1, with variables xv1, . . . ,xvk ,
but with one additional variable xv0 per vertex to represent an
“uncolored” vertex, indicating that the vertex will not be part of the
induced subgraph.

In this case, feasible strings, in addition to having each vertex
uniquely colored (or assigned as uncolored), must correspond to
proper colorings on the induced graph on the colored vertices. Thus,
the mixing term will be more complicated than for the previous
problem, essentially incorporating information that was in the cost
function. The cost function now takes a simple form:

C =
∑
v

k∑
i=1

xvi , (6)

the number of colored nodes. The variables xv0 are not included
in the sum since they correspond to uncolored nodes that are not
part of the induced subgraph. The corresponding Hamiltonian is

C =
1
2
mI −

1
2

∑
u

k∑
i=1

Zui . (7)

To design the mixing term, consider the transitions between
feasible states. A given vertex can be feasibly colored i only if none
of its adjacent vertices are also colored i . Thus, the transition rule at
each vertex must depend on the local graph topology and colorings.
Consider the controlled operation

(x̄v1i x̄v2i . . . x̄vℓ i ) · SWAP (xu0,xui ), (8)

where v1, . . . ,vℓ are neighbors of vertex u in graph G. This op-
eration changes the color of vertex u from uncolored to colored
with color i (or vice versa), if and only if none of its neighbors are
colored with color i . The corresponding Hamiltonian term (after
dropping the terms for the SWAP that have no effect), is

Bui =
1

2ℓ+1 (Xu0Xu1 + Yu0Yu1)
ℓ∏
j=1

(I + Zvj i ). (9)

The overall mixing Hamiltonian is B =
∑
u
∑
i Bui . Since B contains

the means to color a vertex with color i if none of its neighbors are
colored with color i , and a means to uncolor a vertex (as long as

none of its neighbors share its current color, which is always the
case in the feasible subspace), the mixing term enables exploration
of the full feasible subspace starting from any state in that subspace.

4.3 Finding a Graph’s Chromatic Number
The chromatic number of a graphG = (V ,E) is the minumum num-
ber k∗ of colors that can properly color a graph. Problem: Given a
graph G = (V ,E), minimize the number of colors to properly color
it.

Any n-vertex graph may be trivially n-colored. Thus, without
loss of generality assume we know a quantity ℓ, with k∗ ≤ ℓ ≤ n,
such that an explicit ℓ-coloring of G is known (found e.g. by some
classical algorithm). We then represent our problem using ℓ qubits
per vertex, with the Hamming weight 1 subspace for each vertex
encoding its possible color assignments.

We define the feasible states to be those encoding proper ℓ-
colorings, many of which will use less than ℓ colors. Assume we
have restricted to the feasible subspace.

For the mixing term, we use a controlled operation similar to
Eq. (8) in Sec. 4.2 only now supporting re-coloring a vertex v with
color i when no neighboring vertices are assigned color i .

For a given state, the function
∏

u ∈V x̄u, j gives 1 only if no vertex
is colored j . Thus, we seek to maximize the number of unused colors,
encoded by the n-local objective Hamiltonian

C =
ℓ∑
j=1

∏
u ∈V

x̄u, j =
1

2n
ℓ∑
j=1

∏
u ∈V

(I + Zu, j ).

4.4 Traveling Salesman Problem (TSP)
A vertex tour of a complete graph G = (V ,E) is a subset E ′ ⊂ E
such that every vertex in G ′ = (V ,E ′) has degree 2 (i.e. gives a
route for the salesman to visit each vertex exactly once). Problem:
Given a complete graphG = (V ,E) and distances duv ∈ R, find the
minimial tour length.

We represent vertex tours with n2 binary variables {xv j } indicat-
ingwhether vertexv is visited at the jth stop of the tour, j = 1, . . . ,n.
Feasible strings are those representing valid tours, i.e. for each v
have

∑n
j=1 xv j = 1 (each v visited exactly once), and for each posi-

tion j have
∑
v ∈V xv j = 1 (a single vertex visited at each stop). The

objective Hamiltonian gives the tour length and on feasible states
reduces to

C = ℓI +
∑

(uv )∈E

n∑
j=1

duv (ZujZv (j+1) + Zu (j+1)Zv j ),

where ℓ = (2 − n/2)
∑

(uv )∈E duv .
As feasible states can be seen as n ×n matrices with a single 1 in

every column or row, a mixing Hamiltonian may be constructed as
a sum of row swaps B =

∑
u<v Buv ,

Buv =
n∏
j=1

(XujXv j + YujYv j )
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which clearly preserves feasibility. Alternatively, we can reduce to
4-local terms

B′ =
∑
i,j

∑
u,v
|0ui1uj1vi0v j ⟩⟨1ui0uj0vi1v j | + h.c . (10)

=
∑
i,j

∑
u,v

S−u,iS
−
v, jS

+
u, jS

+
v,i + h.c . . (11)

where in the second line we introduced the creation and annihi-
lation operators S+ = X + iY = |1⟩⟨0| and S− = X − iY = |0⟩⟨1|.

4.5 Single Machine Scheduling (SMS)
We consider the SMS problem to minimize the total tardiness,
(1| |

∑
Tj ), which is NP-hard.[5, 13] Problem: Given n jobs, each

with a running time pj and deadline dj , to run on a single machine
that takes one job at a time, find a schedule that minimizes the total
tardinessT =

∑n
j=1Tj , where Tj ≥ 0 gives the amount of time job j

is late. All parameters are taken to be integers.
For each job j, we use a binary variable x j,t to denote whether

job j starts at time t , where t = 0, . . . ,T , and T =
∑
j pj −minj {pj }.

Feasible strings are those for which each job is assigned a single
start time, i.e.

∑
t x j,t = 1. The cost function, i.e., the total tardiness

becomes

C =
∑
j

∑
t> (dj−pj )

x j,t (t + pj − dj ), (12)

where the sum over t is taken over only times later than the latest
time that the job can start without being late, dj − pj . As a result,
whenever x j,t = 1 for such a t , the lateness of job j is added into
the sum. Any permutation of (1, 2, · · · ,n) as the order of jobs maps
to a feasible initial state.

We now design a mixing Hamiltonian in the flavor of the “bubble
sort”: we allow the swapping of the order of any two neighboring
jobs. This guarantees a path to any ordering, hence the accessibility
to the whole feasible subspace. Consider job j starting at t and the
next job j ′ would start at t + pj , swapping these two jobs would
lead to job j ′ starting at time t and job j starting at t + pj′ . This
can be realized by the Hamiltonian term S−j,tS

−
j′,t+pj

S+j,t+pj′
S+j′,t .

Therefore the mixing Hamiltonian is

HB =
∑
j,j′

T∑
t=0

S−j,tS
−
j′,t+pj S

+
j,t+pj′S

+
j′,t + h.c . . (13)

5 EMPIRICAL CONFIRMATION FOR MIXING
TERMS ENFORCING HARD CONSTRAINTS

To further support our analytical reasons for prefering mixing
terms enforcing hard constraints, we explored different approaches
to QAOA on a simple problem, the ring of disagrees, which can
be viewed as 2-coloring on a circular graph with n vertices. For
this problem, numerical results for small p were obtained in [6],
with Wang et al. [22] advancing both the numerical results and the
analytical understanding of the problem through a fermionic point
of view.

A binary encoding with one binary indicating whether the vertex
is colored one way or the other is natural in this case. Using the
unary encoding as we did in Sec. 4.1 introduces “one vertex is

colored exactly one color" as hard constraints, and thus supports a
study of different ways of handling those constraints in a simple
setting.

We compared three mappings

(1) Binary encoding and
∑
i Xi as mixing Hamiltonian

(2) Mapping described in .4.1: unary encoding, Eq. (2) as the
cost function and Eq. (5) as the mixing term;

(3) Unary encoding, a cost function incorporating penalty terms,
C = m

2 I+
1
4
∑n
i=1

∑1
c,c ′ (Zi,c+Zi+1,c ′−Zi,cZi+1,c ′ )+cpen

∑n
i=1

∑
c Zi,cZi+1,c ,

and the simple mixing Hamiltonian
∑
i Xi .

(The vertices in the ring are numbered 1, . . . ,n and we use mod-
ulo n arithmetic on the indices.)

We confirmed analytically for p = 1 and numerically for small p
that the same approximation ratio can be obtained using Mapping-
(1) and Mapping-(2), while Mapping-(3) yields much poorer results.

For Mapping-(3), we consider two initial states, a simple form
|s⟩ = |+⟩⊗n and |s ′⟩ = ( |01 > +|10)⊗n in the feasible subspace.

For QAOA1, starting with the initial state |s ′⟩ in the feasible
subspace, one gets no improvement than the initial state. The ex-
pectation value for the approximation ratio of the initial state is
1/2 (equivalent to randomly guessing a feasible bit string), and
remains 1/2 for QAOA1 with any parameter setting. For higher p,
the algorithm can give better approximation ratios than 1/2, but
for the cases we tried, the ratio was worse than for the approach
III.

For the initial state |s⟩ = |+⟩⊗n , simply measuring the initial
state results in states which do not correspond to valid colorings
(some vertices are colored with two colors or with none at all), so
that the expectation value is much less than 1/2 (but depends on the
penalty weigh in the cost function), and while a QAOA1 algorithm
with the right parameters improves the expectation value, it is still
worse that randomly guessing a feasible bit string. The ratio gets
worse with size since the feasible subspace grows as 2n , but the
whole Hilbert space as 4n , where n is the number of vertices. So the
approach starting in the feasible superposition |s ′⟩ performs better
than the one starting in the standard initial state |s⟩, though both
substantially underperform the approach we recommend here, that
of incorporating the hard constraints into the mixing operator.

6 CONCLUSIONS
We are preparing a longer version of this paper, detailing map-
pings for other problems with both hard and soft constraints. Some
are straightforward generalizations of the mappings given above.
For example, constructions for graph coloring with weights, and
graph coloring with different color sets, are easy generalizations
of the construction we give above for maximizing the number of
propertly colored edges, and make use of theXY Hamiltonian. Con-
structions for graph partitioning, maximum vertex k-cover, and
maximal bisection. As mentioned above, finding the maximally
colorable induced subgraph is equivalent to max independent set.
This construction easily generalizes to other problems such as max
clique and minimum vertex cover, which make use of the controlled-
SWAP Hamiltonian.

Future directions include:
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• Investigating the performance of QAOA under drivers with
more or less connectivity with the aim of understanding
tradeoff in terms of algorithmic efficiency and ease of imple-
mentability.
• Investigating how different initial states contribute to the
efficiency of the algorithm.
• Development of parameter setting strategies, and investigat-
ing how different formulations of the same problem affect
the ease with which good parameters can be found.
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