Design and modeling of the off-axis parabolic deformable (OPD) mirror laboratory

Hari Subedi*
Roser Juanola-Parramon*,1
Tyler Groff*
*NASA GSFC
1 UMBC
Coronagraph Optical Train (LUVOIR)

- Need 2 deformable mirrors (DMs) for wavefront sensing and control
- Long separation between DMs for amplitude and phase mixing
- High actuator count DMs

Issues:
- Packaging issues
- Higher risk of actuator failure
Low Actuator Count Parabolic DMs

Groff et al. 2016
Comparing Broadband Performance

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Center Contrast</th>
<th>10% Average</th>
<th>20% Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM at Plane C</td>
<td>4.974×10^{-7}</td>
<td>5.033×10^{-7}</td>
<td>5.178×10^{-7}</td>
</tr>
<tr>
<td>DMs at A1,A2,B1,B2, Aberr. at C</td>
<td>1.374×10^{-7}</td>
<td>1.609×10^{-7}</td>
<td>2.636×10^{-7}</td>
</tr>
<tr>
<td>DMs at A1,A2,B1,B2, No Aberr. at C</td>
<td>8.30×10^{-8}</td>
<td>9.92×10^{-8}</td>
<td>1.634×10^{-7}</td>
</tr>
</tbody>
</table>

Groff et al. 2016
Advantages of Parabolic DMs

• Simplifies the packaging issue for space missions
• Reduces both cost and risk of having the entire coronagraph instrument’s performance depending on one or two high-actuator count DMs
• Increase in achievable bandwidth correction
 - Controllable surfaces are in conjugate planes to the sources of aberrations.
Lab layout NASA Goddard
Instrument Details

- Coronagraph

PSF

Focal Plane/ Zernike Mask

To Science path

To LOWFS

Phase Dimple
Instrument Details

• Flat Pupil DM
 - BMC 32 x 32 DM
• Parabolic DM
 - Modified ALPAO 11 x11 DM
DM simulations

• Actuator resolution
 - Round up to nearest 10 pm or 100 pm

• Stability
 - Percent stability of the voltage/amplitude applied
 - 0.5%, 1%, and 2%

• Bandwidth 20%

• Assumptions:
 - Perfect Estimation
 - No amplitude aberrations
Error Maps Used for Simulation

a) Pupil Error Map (nm)
b) Parabolic DM Surface Errors (nm)
c) Flat DM Surface Errors (nm)
Selected Design Requirements and Result

- Stability of 0.5% and actuator resolution of 0.1 nm
Other Experiments

• The lab is multipurpose and following experiments to be carried out
 - Non-linear dark hole digging
 - Adaptive estimation of line-of-sight jitter (LOS)
 - Machine learning for LOWFS
Linear vs Non-linear Control

Linear Estimation and Control

Non-linear control

\[
\begin{align*}
W_k &= (G_k u_k - \delta E_k)^T (G_k u_k - \delta E_k) + \alpha_k^2 u_k^T u_k \\
u_{w,k} &= (G_k^T G_k + \alpha_k^2 I)^{-1} G_k^T \delta E_k.
\end{align*}
\]

\[
\begin{align*}
z &= H x + n \\
\hat{x} &= (H^T H)^{-1} H^T z
\end{align*}
\]

\[
\begin{align*}
W &= \sum_{DH} I, \text{where} \\
I &= f(A_{abb}, \Phi_{abb}, V_{DM}) \\
&= |A_{im} e^{\Phi_{im}}|^2 \\
W &= \sum_{DH} |A_{im} e^{\Phi_{im}}|^2 \\
&= \sum_{DH} A_{im}^2 \\
\text{Estimation : } A_{abb}, \Phi_{abb} \\
\text{Control : Just need a single DM?}
\end{align*}
\]
Non-linear Control

• DM voltage calculated by non-linear optimization
 - Python L-BFGS-B (quasi-Newton method)
 - Minimize cost function, provide the gradient

• Cost Function
 - Obtained by forward model of the system

• Gradient
 - Obtained by algorithmic differentiation* of each step of the forward model

* Jurling et al.
Simulation Results

• Three different coronagraphs
• Different combination of phase and amplitude error

1) Ripple 3 SPC
2) Lab coronagraph with segments errors
3) LUVOIR B Coronagraph
Adaptive Estimation of LOS

In Simulation, we have shown that residual after correction 0.4 mas.
Assumptions:
- Reaction wheel speed changing over time
- 2.4 telescope observing a star of magnitude 4.83
LOWFS - Machine Learning

![Diagram of a neural network with an input layer, hidden layer, and output layer. The data includes LOWFS image pixels and Zernike Coefficients.](image-url)
Conclusion

• Making OAPs deformable is advantageous
 • Improvement control bandwidth
 • Better for packaging
 • Less risk and cost

• At NASA GSFC we are designing a multipurpose testbed
 • To test parabolic DM architecture
 • Different control algorithms
 - Non-linear dark hole digging, line-of-sight and LOWFS estimation and control