

USRA

Evaluation of MERRA-2-based Ozone Profile Simulations with the Global Ozonesonde Network

Ryan M. Stauffer¹, Anne M. Thompson², Luke D. Oman², Susan E. Strahan¹

¹Universities Space Research Association; ²NASA/Goddard Space Flight Center (Author email: <u>ryan.m.stauffer@nasa.gov</u>)

O₃ Hindcasts Using MERRA-2 (1980-2016)

We use ozonesonde data from global networks to evaluate the O₃ profiles in two model simulations (1980-2016) that use NASA's Modern-Era Retrospective Analysis for Research Applications, Version 2 (MERRA-2; Gelaro et al., 2017; J. Climate) meteorology and Global Modeling Initiative (GMI) chemical mechanisms:

M2 GMI Replay (Orbe et al., 2017)

0.625°x0.5°horizontal resolution, 72 vertical levels Uses Replay technique to recalculate u, v, T, and p from 3hr average MERRA-2 fields (two forecasts per time step)

Fig. 1: Example comparisons of median, 10th, and 90th percentile O₃

profiles at four sites for M2 GMI Replay (top, a) and GMI CTM (bottom, b).

Sonde O₃ is in blue, with coincident model O₃ output in red. Sites shown

here represent four latitude regions: Polar (Resolute), Midlatitude

(Wallops Island), Subtropical (Hilo), and Tropical (Ascension).

Assimilation Changes (ATOVS Transition)

Profile comparisons of M2 GMI Replay and GMI CTM with ozonesondes show changes from 1980-2016 (**Fig. 5**, right)

 In general, tropospheric biases compared to ozonesondes are getting smaller, but a LS shift is evident in 1998

Starting in 1998, the MERRA-2 assimilation system incorporates data from a new generation of satellite sounders, known as **ATOVS** (Advanced TIROS Operational Vertical Sounder; first on NOAA-15)

The change from TOVS to ATOVS introduced a step change in O₃, particularly in GMI CTM (Fig. 5, circle on bottom)

GMI CTM (Strahan et al., 2016)

- 1°x1.25° horizontal resolution, 72 vertical levels
 Driven by 3hr average MERRA-2 meteorology fields in a traditional offline CTM
- Uses a newer version of the GMI chemical mechanism
- 1) How well do models driven by MERRA-2 meteorology simulate historical O₃ (1980-2016) from the surface to the lower stratosphere (LS)?
- 2) Are there major differences in how Replay and CTM simulate O₃? How do differing GMI chemical mechanisms in the models affect comparisons with ozonesonde data?

Model/Ozonesonde Comparisons

- Fig. 2 shows the median differences between modeled and ozonesonde O₃ at 38 sites from surface-8 km (~50,000 total profiles) for M2 GMI Replay (top) and GMI CTM (bottom)
- M2 GMI Replay (top) shows an average lower
 -tropospheric O₃ bias of +10 ppbv. GMI CTM
 (bottom) surface O₃ biases are small
- . Both models show much lower O_3 in the tropical

The shift in LS O₃ in GMI CTM leads to a ~10 Dobson Unit (DU) increase in midlatitude total O₃, worsening the agreement among models, and sondes/satellites

Fig. 6 (below) shows total column O₃ comparisons with the satellite-based Merged Ozone Dataset (MOD). M2 GMI Replay shows a relatively stable O₃ record; GMI CTM shows a large jump in total O₃ after 1998

- Comparisons of the tracer "ST80_25" (**Fig. 7**, top panel) shows that GMI CTM is transporting more air from the mid-stratosphere to the lower stratosphere than M2 GMI Replay
- The tracer differences have a distinct periodicity that follows the Quasi-Biennial Oscillation (QBO; **Fig 7**, bottom panel). This is the same pattern observed in the total O₃ differences between GMI CTM and satellites in **Fig. 6**
- It appears that GMI CTM transports too much O3 to the

Fig. 5: Median percent O₃ differences with altitude for M2 GMI Replay (top) GMI CTM (bottom) by year from 1980 to 2016 (colors). A black circle highlights the step change in GMI CTM lower stratosphere O₃. Comparison is composited from 19 midlatitude ozonesonde sites.

Fig. 6 (Top): 12-month zonal means of differences between modeled and SBUV MOD total O₃ columns. Panel (a) shows GMI CTM, and panel (b) shows M2 GMI Replay.

Fig. 7 (Bottom): 12-month zonal mean differences in the GMI CTM and M2 GMI Replay ST80_25 stratospheric tracer at the 139 hPa model level. Bottom Panel: The U30 QBO Index colored by positive (red; westerly phase) and negative (blue; easterly phase). Arrows on the Figure indicate the alignment of peak westerly phase values with maximum differences in ST80_25 tracers.

troposphere compared to ozonesondes (>25% low at Atlantic sites like Ascension and Natal)

Site Latitude (°) Fig. 3: Latitude-height curtain of median O₃ mixing ratio differences between GMI CTM and M2 GMI Replay O₃ profiles. Blue colors indicate that the GMI CTM O₃ is on average lower than M2 GMI Replay throughout the low-to-mid troposphere for all latitudes. **Fig. 2**: Latitude-height curtains of median O₃ mixing ratio differences between all ozonesonde profiles and coincident M2 GMI Replay (top) and GMI CTM (bottom) O₃ profiles. Blue colors indicate that the modeled O₃ is biased low, and red colors indicate that the model is biased high.

- [GMI CTM M2 GMI Replay] O₃ shows that GMI
 CTM tropospheric O₃ is lower at all latitudes (Fig. 3, right)
- This appears to be a consequence of a newer
 GMI chemical mechanism, which reduces
 surface O₃ biases to near-zero

The "Tropical Wave-One" O₃ Feature

The wave-one is a persistent, longitudinal feature in tropical tropospheric O₃ (**Fig. 4**, top) that results from the ascending branch of the Walker Circulation (low O₃) in the western Pacific, and seasonal biomass burning and descending

midlatitude LS, particularly during the westerly phase of the QBO (see arrows on **Fig. 7**)

 M2 GMI Replay LS and total O₃ is mostly unaffected by the ATOVS transition in 1998, at least compared to GMI CTM

Summary/Future Approaches

Compared to ozonesonde data (1980-2016), both M2 GMI Replay and GMI CTM show strong negative O₃ biases in tropical tropospheric O₃, though the modeled O₃ is highly correlated with sonde data (not shown here). Model biases with ozonesondes generally become smaller in recent years in the model simulations

M2 GMI Replay near-surface O₃ is biased high by 10-30% at all latitudes. An updated GMI chemical mechanism in the GMI CTM reduces the high O₃ bias to near-zero. A new Replay model run using the updated mechanism will be completed soon to isolate the effects of CTM vs. Replay

The incorporation of ATOVS satellite data into MERRA-2 starting in 1998 causes a large step change in LS O₃. This is most prevalent in the GMI CTM, which transports too much O₃ to the midlatitude LS. We will investigate potential changes to the model stratospheric circulation, and investigate why M2 GMI Replay appears to be less affected by the assimilation change than GMI CTM

air (high O₃) over the Atlantic

Both models reproduce the longitudinal O₃ pattern (**Fig. 4**, middle), but model biases are larger than -15 ppbv (-25%; **Fig. 4**, bottom) in the tropical Atlantic midtroposphere, where biomass burning effects are common

This likely indicates that the model transport of O₃ associated with the Walker Circulation is accurate, but that both models greatly underestimate biomass burningproduced O₃. These low biases are unchanged over the last 20 years

Fig. 4: Longitude-height cross sections of the "Tropical Wave-One" O₃ feature. The top panel shows the ozonesonde measurements at several Tropical (and one Subtropical; Fiji) locations. Column (a) shows the coincident M2 GMI Replay Wave-One Feature, and the median O₃ mixing ratio bias. Column (b) is the same as (a), but for GMI CTM. The site locations are listed on each panel.

Acknowledgments

NASA NPP Program Administered by Universities Space Research Association (USRA)
 NDACC, WOUDC, and SHADOZ ozonesonde data repositories, ozonesonde station PIs and operators

Select References:

- <u>Ozonesonde Data Sets</u>: Stauffer, R. M., A. M. Thompson, and J. C. Witte (2018), Characterizing global ozonesonde profile variability from surface to the UT/LS with a clustering technique and MERRA-2 reanalysis, *J. Geophys. Res. Atmos.*
- <u>**M2 GMI Replay:**</u> Orbe, C., L. D. Oman, S. E. Strahan, et al. (2017), Large-scale atmospheric transport in GEOS replay simulations, *J. Advances in Modeling Earth Systems.*
- <u>GMI CTM</u>: Strahan, S. E., A. R. Douglass, and S. D. Steenrod (2016), Chemical and dynamical impacts
 of stratospheric sudden warmings on Arctic ozone variability, *J. Geophys. Res. Atmos.*