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INTERPLANETARY LOW-THRUST DESIGN USING PROXIMAL
POLICY OPTIMIZATION

Daniel Miller ∗, Jacob A. Englander†, and Richard Linares‡

This paper aims to demonstrate a reinforcement learning technique for developing
complex, decision-making policies capable of planning interplanetary transfers.
Using Proximal Policy Optimization (PPO), a neural network agent is trained to
produce a closed-loop controller capable of mass-optimal transfers between Earth
and Mars. The agent is trained in an environment that utilizes a real ephemeris
model of the Earth and Mars. Multiple scenarios are presented with both fixed
and variable time steps. The results are compared against those generated by the
Evolutionary Mission Trajectory Generator (EMTG) tool.

INTRODUCTION

The use of solar electric propulsion (SEP) in interplanetary missions has become increasingly im-
portant in recent years with its application on the BepiColombo, Dawn, Hayabusa, and Hayabusa2
missions. With an Isp up to ten times greater than that of chemical propulsion, spacecraft utilizing
SEP can reserve more payload for scientific equipment or cargo.1

Due to the low-thrust nature of SEP, burns are measured in several days or weeks, rather than the
minutes and seconds of chemical propulsion. Determining the optimal sequence of thrust levels and
directions over such a long, continuous period has proven challenging for traditional optimization
techniques, as the curse of dimensionality can quickly take effect. Optimization methods can be
broadly categorized as indirect or direct. Older, indirect methods numerically solve a two-bound
boundary value problem, but their solutions may contain discontinuities in their control solution and
are sensitive to initial conditions. Due to these limitations, direct methods have been extensively
developed in the last twenty years. These approximate an optimal control problem as a nonlinear
programming problem and were first applied to the design of low-thrust trajectories by Enright and
Conway2 and Sims and Flanagan.3 Direct methods were later used to create software tools such
as the Gravity-Assist Low-thrust Local Optimization Program (GALLOP)4 and Mission Analysis
Low Thrust Optimization (MALTO).5 These optimizers utilize gradient-based methods that start
from a user provided initial guess and, consequently, can fall victim to local minima in the region
of the guess, rather than finding the true global minimum. Global search heuristics exist and may
be paired with direct methods, but they can be expensive to operate.6 Furthermore, direct methods
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are computationally expensive, which places limitations on the ability of the mission design to
thoroughly search the solution space.

Another method for finding optimal solutions to low-thrust trajectory problems is Differential
Dynamic Programming (DDP). Aziz, Scheeres, and Lantoine have used DDP to optimize low-
thrust trajectories in the Earth-Moon circular restricted three-body problem7 and trajectories for
spacecraft propelled by SEP with power constraints due to solar eclipses.8 Similar methods have
also been used to optimize many-revolution transfers using DDP and a Sundman transformation.9

As with the aforementioned direct methods, DDP is also computationally expensive and may require
an initial guess.

Machine learning offers an alternative to these more conventional approaches to trajectory opti-
mization. This broad field can be split into multiple categories including supervised learning and
reinforcement learning (RL).10 Supervised learning is the most familiar of these and is used for
tasks such as image classification. In such a problem, an AI agent learns to pair training examples
with their corresponding labels, all of which is provided by the researcher. In contrast, reinforce-
ment learning involves an agent interacting with a researcher-designed environment to learn how to
best maximize a reward signal. The use of multilayer Neural Networks (NNs) in machine learning,
otherwise known as deep learning, is an area of intense study that has delivered advances in fields
as divergent as image recognition and the board game Go.11, 12

While the use of NNs in astrodynamics research is not necessarily new – Dachwald applied a shal-
low NN of only a single hidden layer to the low-thrust trajectory optimization problem in 200413

– it has become more prevalent in recent years. Recent applications include the determination of
interplanetary trajectories with the assistance of genetic algorithms,14 the identification of hetero-
clinic connections in the Circular Restricted Three Body Problem using NNs,15 and planning a safe
path through a cluster of satellites using the deep Q-learning RL algorithm.16 Furfaro, Linares, and
Gaudet explored the use of the RL algorithm Proximal Policy Optimization (PPO) for six degree-
of-freedom Mars landing guidance,17 while Broida and Linares used it to solve docking problems.18

Furfaro et al. have also applied deep learning to determine fuel-optimal control solutions to lunar
landing problems via simulated onboard lunar imaging.19

The research presented in this paper seeks to address the limitations of current low-thrust tra-
jectory optimization methods through the use of the PPO reinforcement learning algorithm. First
applied to low-thrust trajectory optimization by Miller and Linares,20 PPO is a modern RL algo-
rithm capable of training the complex policies necessary for neural network controllers. The trained
agent will be used to solve a low-thrust Earth-Mars transfer and will be benchmarked against results
provided by the Evolutionary Mission Trajectory Generator (EMTG), an interplanetary trajectory
optimization tool provided by Goddard Space Flight Center. EMTG version 9 is a modular, scalable-
fidelity trajectory optimization tool capable of both low fidelity global search and trade studies and
high fidelity solution optimization.6, 21, 22 The transfer used for comparison will be provided by
EMTG’s high-fidelity Parallel Shooting with Finite Burn (PSFB) optimization transcription.

Three training scenarios will be demonstrated. The first will be a 302 day transfer from the Earth
to Mars split into 22 states separated by a consistent timestep. The second case will allow the agent
to also control the integration time between each state, thus creating a variable time-step optimizer.
Finally, the agent will also be trained on a variety of initial conditions representing launch conditions
over a period of 2 weeks. This will gauge the ability of the agent to learn the underlying dynamics
of the problem and its ability to generalize.
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Figure 1: Simplified RL Process

REINFORCEMENT LEARNING

Preliminaries

Reinforcement learning is the training of an artificially intelligent agent to complete a task by
allowing it to repeatedly attempt the problem and learn from feedback provided to it based on each
decision it makes. This creates an elegant means of teaching an agent that does not require any
previous knowledge of the problem. By freeing the training process of preexisting solutions, truly
unique solutions may be found.12

The general process of RL is shown in Figure 1. An agent’s actions are dictated by a policy
function that provides the probability of action at given a state st. While some older RL algorithms
utilize a table for this function, most methods now approximate it using a neural network composed
of weights and biases, known collectively as the parameters, θ, of the NN. This is the πθ(at|st)
shown above. At a given time step, t, the agent will take an action at that is passed to the black-box
problem environment. In the case of this research, this contains an orbital mechanics propagator
and a reward calculator. From the environment, the agent then receives a reward based on its action
and a state for the subsequent time step. This continues until some end conditions are met, such as
leaving the bounds of the problem or exceeding a maximum number of time steps. Each sequence
of states, actions, and rewards starting from an initial condition and terminating upon satisfying a
predetermined end conditions composes a single episode of training. Having completed an episode,
the agent can use this history of states, actions, and rewards to update the parameters of its policy to
improve its performance.

Within RL, there is a subclass of algorithms known as actor-critic methods that utilize two neural
networks: a policy network known as an actor and a second network called a critic that estimates
the value of each state. Value, V π(st), is a measure of the quality of a given state and is an estimate
of the future discounted rewards expected from the remaining states of the trajectory. A parameter
γ is defined that discounts future rewards and controls how far into the future the agent will learn to
consider when choosing an action.

V π(st) = rt + γrt+1 + γ2rt+2 + . . .+ γT−trT (1)
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Using values from the critic, the advantage of one action over another can be calculated. This is
an estimate of the change in the value of a given state V (st) as a result of the reward rt provided in
return for action at.

Ât = rt + γV (st+1)− V (st). (2)

Policy Gradient and Trust Region Methods

Policy gradient methods are a large subcategory of RL algorithms that learn a policy function,
π(at|st), that yields the optimal action for a given state. In such a method, this policy is updated by
using a gradient estimator, such as

ĝ = Ê[∇θ log πθ(at|st)Ât] (3)

This corresponds to the loss function

LPG(θ) = Êt[log πθ(at|st)Ât] (4)

According to Schulman, Wolsky, Dhariwal, Radford, and Klimov, repeatedly optimizing Eq. 4 using
the same set of state, action, and reward tuples will often lead to destructively large policy updates.23

This led to the creation of Trust Region Policy Optimization.24 After collecting a trajectory of
state, action, and reward tuples under the policy πθold , the parameters of a second policy πθ is
optimized using Eq. 5. To do so, the ratio of the probability of each action under the second
policy is maximized with respect to the probability of the action as it occurred under the old policy,
weighted by the advantages of each action, from Eq. 2. To counter the issue of large policy updates,
a means of constraining the change in policy is required. By reason of the policy being a measure
of the probability of an action given a state, the Kullback-Leibler divergence (KL) – a measure of
the difference between two distributions – can be used to serve this purpose by limiting it to a value
δ in Eq. 6.

max
θ

Êt[
πθ(at|st)
πθold(at|st)

Ât] (5)

subject to Êt [KL [πθold (·|st) , πθ (·|st)]] ≤ δ (6)

Proximal Policy Optimization

According to Schulman et al., while effective, TRPO is a complicated algorithm with limitations
on its neural network architecture. In response to these issues, Proximal Policy Optimization (PPO)
was designed to have the same state-of-the-art performance without the aforementioned disadvan-
tages.23 In order to achieve this, Eqs. 5 and 6 are replaced by a single loss function with a clipping
factor instead of the KL-divergence constraint. Pseudocode for PPO can be found in Algorithms 1
and 2.

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât] (7)
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Algorithm 1 Proximal Policy Optimization (PPO) with continuous actions

1: Initialize actor neural network πθ with parameters (weights and biases) θ
2: Initialize actor neural network πθold with parameters θold
3: Initialize critic neural network V
4: Initialize LIFO queue of length T
5: for episode = 1,2,... do
6: while not Done do
7: at ∼ πθold(at|st) . Sample distribution for action
8: st+1, rt, Done← Env(st, at) . Take action at
9: if t ≤ T then

10: Record st and at in queue
11: end if
12: end while
13: targets← TargetCalculation(s1:T , a1:T )
14: advantaget ← targett − V (st)∀t . Calculate Advantages
15: Optimize L with respect to θ . Update Actor
16: Optimize Critic Network
17: θold ← θ
18: end for

Algorithm 2 Target Calculation
1: procedure TARGETCALCULATION(s1:T , a1:T )
2: Initialize TargetV alues list
3: target← 0
4: while queue1 not empty do
5: targett ← rt + γ ∗ targett
6: TargetV alues.append(targett)
7: end while
8: TargetV alues.reverse()
9: return TargetV alues

10: end procedure

rt =
πθ(at|st)
πθold(at|st)

(8)

TRAJECTORY OBJECTIVE

To test the ability of the agent to learn a trajectory and its corresponding control solution, it was
tasked with finding a 302-day fixed-length Earth to Mars transfer composed of 22 individual states.
The first 21 of these states had corresponding actions and rewards that were used to train the agent.
Since a reward is calculated based on the subsequent state that results from a given action, the final
state would not be used. For initial conditions, a post-launch vector was provided by EMTG. The
simulated spacecraft had an initial mass of 325.2 kg and used a 0.1N thruster rated at an Isp of
3000 s. The action space for both the throttle position and the thrust direction were completely
continuous.
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µ Lsc Vsc Tsc

1.327 124 401 8× 1020 m3 s−2 149 597 870 691m
√

µ
Lsc

Lsc
Vsc

Table 1: Dynamics Constants and Scaling Factors

DYNAMICS MODEL

The dynamics were modelled as a 2 body problem with continuous thrust and integrated forward
using SciPy’s odeint function. A sun-centered inertial frame was used to define the coordinate
system and all units were nondimensionalized using the scaling factors shown in Table 1. Note that
the length scaling factor, Lsc, is equivalent to 1AU. The control input from the agent was provided
in units of kg, since mass, unlike the length and time scaling factors, is a function of time and the
control trajectory. The thrust was therefore nondimensionalized during the integration step in the
equations of motion. These are shown in Equation 9, while the mass flow rate is shown in Equation
10.

ẍ = − x
r3

+
ux

525.2 kg ·m
ÿ = − y

r3
+

uy
525.2 kg ·m

z̈ = − z

r3
+

uz
525.2 kg ·m

(9)

ṁ = −

√
u2x + u2y + u2x

525.2 kg ·m
· 9.806 65m s−2 · T 2

sc

Lsc
· 3000 s
Tsc

(10)

IMPLEMENTATION

In any RL problem, the observation variables – the input to both the policy and value NNs –
and the reward function are of critical importance. The former needs to fully encapsulate all of the
information that the agent requires in order to make a decision. For the observation, the agent was
provided with the position and velocity of the agent, its position and velocity error with respect to
Mars, its mass, and current time step. In cases two and three, the current mission time was also
provided.

st = {x, y, z, ẋ, ẏ, ż,m, xerr, yerr, zerr, ẋerr, ẏerr, żerr, t, tstep} (11)

All observation variables were nondimensionalized so as to have similarly scaled maximum val-
ues. Distances, velocity, and time were nondimensionalized using the scaling factors found in Table
1. The initial mass was scaled to a value of 1. The final two observation variables – mission elapsed
time and the current time step – were also scaled such that their maximum values achieved at the
end of the trajectory would also be 1.

An agent will always try to learn how to best exploit the feedback signal provided by its en-
vironment. As a result, this signal, the reward function, must be carefully designed; if it does not
accurately reward or punish actions, a suboptimal policy will surely result. This complicates the im-
plementation of hard constraints, such as a required flight time. Due to the use of a single objective
that must contain both the function to be optimized and any constraints, it is possible that the agent
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Case c1 c2 c3 c4 c5 c6
Case 1 0.5 -500 -0.05 -500 0.25 0
Cases 2 0.5 -250 -0.05 -250 0.025 0.25
Cases 3 0.5 -500 -0.05 -500 0.025 0.1

Table 2: Reward Function Coefficients

may enforce a constraint at the expense of the task itself. As a result, all of the terms in the reward
must be carefully balanced to ensure that the agent optimizes for all of the desired objectives.

A general framework of linear and exponential terms was formed with experimentally determined
coefficients to weight each component. These coefficients are shown in Table 2. The first two terms
are negative linear terms which encourage the agent to minimize the position and velocity error
with respect to Mars. The third and fourth terms are positive exponential terms that provide a steep
positive signal for minimizing the position and velocity errors when the error is small. This ensures
that the fine policy improvements late in training have a clear reward. The fifth term is the fuel
optimality penalty and tasks the agent with minimizing the change in spacecraft mass. The sixth
term is to ensure that the agent meets the 302-day fixed time requirement for the mission and is a
function of elapsed mission time measured in days. It is only activated when calculated the reward
for the final state-action pair of the trajectory, since a time penalty for undershooting 302 days
cannot be calculated until the final time is determined. The seventh and final term, pt, is used as
an additional penalty to constrain the region of space in which the agent can explore. If any are
activated, the episode immediately ends by activating the Done boolean in PPO Algorithm 1 and
the agent is penalized. Please note that multiple penalties could be incurred simultaneously.

rt =−
∥∥stpos. error∥∥− ‖stvel. error‖+ c1 e

c2‖stpos. error‖ + c3 e
‖c4stvel. error‖

− c5(1−m)− c6ptimet + pt
(12)

ptimet =

{
|302− tdays| if ‖x, y, z‖ < 0.25

0 otherwise
(13)

pt =


−20 & done if ‖x, y, z‖ < 0.25

−20 & done if ‖x, y, z‖ > 1.75

−20 & done if ‖z‖ > 0.75

0 otherwise

(14)

A simple neural network architecture of 3 fully connected layers was chosen for both the policy
and value NNs. The network size and activation functions can be found in Table 3. The architecture
for Cases 1 and 2 were based on the previous work of Miller and Linares.20 For Case 3, a larger
network based on the work of Gaudet, Linares, and Furfaro17 was found to be more effective. The
optimization step was completed using Adam optimizer25 using the learning rates found in Table
4. The learning rate is another name for the step size of a gradient descent optimizer. These values
were kept high early in training to allow for larger upates to the NNs and then decreased later for
finer tuning. The code was written in Python 3.7 using the popular Tensorboard-GPU library and
run on a Lenovo ThinkPad P51 with an Intel Xeon E3-1505M V6 CPU and an Nvidia Quadro
M2200 GPU.
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Cases 1 & 2 Case 3
Width Activation Width Activation

Layer 1
Policy

32 ReLU 150 ReLU
Value

Layer 2
Policy

32 ReLU
87

ReLU
Value 27

Layer 3
Policy

32 ReLU
50

ReLU
Value 5

Output
Policy 4 tanh 5 tanh
Value 1 linear 1 linear

Table 3: Neural Network Architectures

Case 1 Case 2
Episodes

(thousands)
Actor
LR

Critic
LR

Episodes
(thousands)

Actor
LR

Critic
LR

0-25 0.0001 0.0005 0-25 0.0001 0.0005
25-45 0.00005 0.00025 25-35 0.00005 0.00025
45-60 0.000025 0.000125 35-45 0.000025 0.000125
60-100 0.00001 0.00005 45-75 0.00001 0.00005

75-125 0.000005 0.000025

Case 3
Episodes

(thousands)
Actor
LR

Critic
LR

0-50 0.0001 0.0005
50-100 0.00005 0.00025

100-125 0.000025 0.000125
125-150 0.00001 0.00005

Table 4: Adam Optimizer Learning Rate Schedule

Dimensionalized Non-dimensionalized
x 130 325 632.242 480 67 km 0.8711730430419905
y 66 016 869.369 941 33 km 0.4412955148693369
z 28 620 014.942 336 10 km 0.19131298333418004
ẋ −11.891 569 20 km s−1 -0.3992510403276126
ẏ 27.870 097 74 km s−1 0.9357188550630681
ż 13.484 934 82 km s−1 0.45274716608763854
m0 525.2 kg 1
t 2 454 396.306 623 12 days 0

tstep 0 0

Table 5: Initial Conditions

8



RESULTS

Case 1: Single Initial Condition, Fixed Time Step

As an initial baseline demonstration, the agent was trained from a single initial condition (Table
5) on a trajectory composed of 22 states with equal time spacing between them of approximately
14.38 days each. Any action taken at an individual state would be held constant as the spacecraft
was propagated over the length of the timestep. The post-launch initial condition was provided by
EMTG and is used for a comparison of the delivered mass to Mars.

Table 6 shows the error between the Mars and the spacecraft’s final state. The agent was able to
achieve errors on the order of at least 10−3, however, due to the scaling length of 1AU, this is still
substantial value. It is interesting to note that as a result of the scaling, the position and velocity had
errors of the same order of magnitude, even though their dimensionalized values are some seven
orders of magnitude apart. This suggests that the accuracy achieved by the agent is related to the
learning process itself – the NNs, the reward function, and the PPO algorithm – rather than the
physics of the environment. Shown in Fig. 4, the agent delivered 479.4616 kg to Mars, compared to
the optimal final mass of 481.0995 kg. In nondimensionalized units, this is an error of 3.1186e− 3,
which is consistent with the order of magnitude of the total position and velocity errors.
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Figure 2: Case 1 Trajectory
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Figure 3: Case 1 Position and Velocity Error

Position Error Velocity Error

Components
[nd] 5.7019e-04 -1.0363e-03 -2.7277e-04 5.3032e-04 -7.6738e-04 4.9067e-04
[km] 8.5299e+04 -1.5503e+05 -4.0806e+04 1.5795e-02 -2.2856e-02 1.4614e-02

Total
[nd] 1.2138e-03 1.0540e-03
[km/s] 1.8159e+05 3.1392e-02

Table 6: Case 1 Final State Error

Case 2: Single Initial Condition, Variable Time Step

Case 2 introduced a new variable for the agent to control: time step length. Along with a thrust
magnitude and direction, the agent could now also select a length of time between 5% and 100%
of the maximum allowable value of 2 544 047.999 997 586 s, or approximately 29.4 days. The total
mission time was still constrained to 302 days by the 6th term in equation 12 and the trajectory was
still composed of 22 states. The purpose of this test was to determine if the agent could intelligently
time its actions and, if so, whether this would improve its performance.

As shown in Fig. 5, the agent chose to spread out its actions during the coast phase at the start
of the transfer and to place them increasingly close together as it approached Mars. This was the
expected behavior, for it allowed the agent to change its actions at more advantageous points in the
state space. An alternative explanation is that the agent was also taking advantage of the rewards
being higher at the end of the transfer when it would be in close proximity to Mars.

The constraint on elapsed time proved effective, with the agent undershooting the desired 302
day transfer by approximately 1 h and 21min. Regarding the final error, the use of variable time
steps had a minimal impact, with the final errors in Table 7 being similar to those of Case 1. At
1.2386 kg above the EMTG value, the delivered mass error was likewise close to that of the fixed
time step trajectory.
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Figure 4: Case 1 Spacecraft Mass
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Figure 5: Case 2 Trajectory
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Figure 6: Case 2 Position and Velocity Error
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Figure 7: Case 2 Spacecraft Mass

Position Error Velocity Error

Components
[nd] 6.0574e-04 -9.4371e-04 -2.3980e-04 4.3802e-03 -6.9200-03 -7.7607e-04
[km] 9.0617e+04 -1.4118e+05 3.5874e+04 1.3046e-1 -2.0610e-1 -2.3115e-02

Total
[nd] 1.1467e-03 8.2263e-03
[km/s] 1.7155e+05 2.4502e-01

Table 7: Case 2 Final State Error
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Julian Launch
Date [Days] x [km] y [km] z [km] ẋ [km/s] ẏ [km/s] ż [km/s]
2454390.5 137126535.2 53754294.13 23304277.85 -9.50459523 28.63515046 13.87306768
2454391.5 136051906.9 55908732.72 24238248.17 -9.92156424 28.51356321 13.81377522
2454392.5 134936629 58046250.44 25164863.76 -10.33609713 28.38747457 13.75173512
2454393.5 133781050.6 60166198.71 26083846.18 -10.74837088 28.25804376 13.68503293
2454394.5 132585533.5 62267942.93 26994924.01 -11.1581895 28.12369961 13.616511
2454395.5 131350450 64350863.89 27897833.52 -11.56531132 27.985202 13.54464304

2454396.315 130314470.6 66034720.44 28627753.04 -11.89525083 27.86877604 13.48448934
2454396.5 130076172.4 66414370.03 28792323.91 -11.96980794 27.84203116 13.47055617
2454397.5 128763103.3 68457841.11 29678132.67 -12.37158976 27.6944174 13.3937673
2454398.5 127411589.6 70480754.6 30555039.94 -12.77036637 27.54219196 13.31482943
2454399.5 126022041.3 72482491.02 31422783.47 -13.16622655 27.38554858 13.23341032
2454400.5 124594788.5 74462539.62 32281147.08 -13.55746085 27.22465757 13.14950161
2454401.5 123130195 76420324.5 33129884.58 -13.94579305 27.05945782 13.06342681
2454402.5 121628611.3 78355276.58 33968750.63 -14.32995975 26.8899035 12.97538455
2454403.5 120090392.073 80266814.9579 34797492.5776 -14.71027669 26.71603922 12.88529796

Table 8: Case 3 Initial Conditions

Case 3: Multiple Initial Conditions

In Case 3, the ability of the agent to generalize and complete the transfer from a range of initial
conditions was analyzed. Each Earth-Mars transfer would still be composed of 22 states over an
intended 302 day transfer, but the initial state would by randomly selected from a set of 15 post-
launch vectors provided by EMTG spread over 13 days. See Table 8 for the list of initial conditions.

The results are shown in Figure 8. In Subfigure (a), the final position and velocity error is shown.
It can be seen that the position error varies between 4.5755e−3 and 1.7233e−2, while the velocity
error varies from 1.4293e − 2 and 2.6669e − 2. This is a degradation of 1-2 orders of magnitude
from the results of Case 2. Subfigure (b) shows that the agent delivered between 4.9410 kg and
7.3841 kg less mass to Mars, as compared to the corresponding EMTG solutions. In Subfigure (c),
it can be seen that the agent struggled with meeting the 302 day mission time constraint. Finally,
Subfigure (d) shows the sum of rewards over each transfer and provides a measurement of how
successful each transfer was. The greater the reward, the closer it came to optimizing the position,
time, and mass requirements. Interestingly, while Subfigures (a), (b), and (c) each had its own
trend lines, they broadly did not match that of (d). The exception to this is the position error of
(a). Based on these similar trends, it can be concluded that the position error in the third term of
Eq. 12 largely dominated the performance of the agent. Further experimentation with the reward
function coefficients would be beneficial for better balancing the position, velocity, mass, and time
performance of the agent across all of the trajectories.

CONCLUSION

This paper demonstrates the application of the Proximal Policy Optimizer RL algorithm to a
mass-optimal low-thrust transfer between the Earth and Mars. Without any prior knowledge of the
problem and only being provided with information regarding its position and velocity relative to
Mars, the agent was successfully able to learn a closed-loop guidance policy that could accomplish
this task. When trained on a single trajectory, the agent was able to achieve position and velocity
errors on the order of 105 km and 10−1 km s−1, respectively. Compared to an optimal trajectory
provided by EMTG, the delivered mass error was under 2 kg. The agent also demonstrated the
ability to vary the integration time between states in order to apply higher fidelity control where it
was required. When trained on a range of initial conditions corresponding to a 15 day period of
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Figure 8: Case 3 Results

launch dates, the agent demonstrated that it could still complete the transfer, although with some
degraded performance.

In the future, further research will be required in both reducing the final errors and in improving
the ability of the agent to generalize across numerous trajectories. Based on the similar orders of
magnitude of the various nondimensionalized errors in Cases 1 and 2, the large final errors may
relate to the scaling of the environment or could be a limitation of the either the algorithm or the
neural network architecture. To improve the agents ability to generalize, the use of batching multiple
trajectories may be beneficial. In this implementation of PPO, each update to the network param-
eters is calculated using gradients based upon a single trajectory. However, if multiple trajectories
starting from different initial conditions but under the same policy and value networks were to be
collected, the quality of each gradient update may be improved. Different network architectures,
observation variables, and, if necessary, RL algorithms should also be investigated.
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