Conjunction Assessment Risk Analysis

NASA Conjunction Assessment Risk Analysis (CARA) Updated Requirements Architecture

L.K. Newman*, A.K. Mashiku*, M.D. Hejduk ‡, M.R. Johnson† and J.D. Rosa¥

* NASA Goddard Space Flight Center
‡ The Aerospace Corporation
† a.i. solutions
¥ Omitron, Inc.

The 2019 AAS/AIAA Astrodynamics Specialist Conference
Portland, Maine
August 13th 2019
Agenda and Overview

• Introduction
 – Background, motivation and objectives

• Current CARA operations process
 – Current CARA operations process
 – Automated and Manual tools
 – CAS System

• Process Updates and Supporting Analysis

• Operations Devolution

• Conclusions
Background, Motivation and Objectives

Background: CARA History
- Initiated in January 2005 to protect the Agency’s unmanned spacecraft from collision with on-orbit objects
- Currently, supports about 70 operational Agency’s assets
- Located at the NASA Goddard Space Flight Center in Greenbelt, MD

Motivation for an updated requirements architecture:
- Recent developments in SSA and Commercial Space
 - Constellations launches: 100s to 1000s per constellation
 - Space Fence Radar: Sensitivity increase of the Space Surveillance Network (SSN) from current detection of 10cm in Low-Earth Orbit (LEO) to 5cm

Objectives
- Improvements to existing process
- An extensive evaluation initiative to re-examine
 - risk assessment algorithms and techniques,
 - develop needed improvements and
 - assemble analysis-based operational requirements
- Summarize the technical challenges encountered

Detailed process updates to some of the technical challenges will be presented in this CARA special session
Agenda and Overview

• Introduction
 – Background, Motivation and objectives

• Current CARA operations process
 – Current CARA operations process
 – Automated and Manual process
 – CAS System

• Process Updates and Supporting Analysis

• Operations Devolution

• Conclusions
CARA Operations Process Overview

CARA Process Workflow

Conjunction Identification

Analysis, Risk Characterization, HIE Identification & Notification

HIE Analysis & Maneuver Planning

Maneuver Screening

Maneuver Execution

Decision Point: Begin Maneuver Planning

Decision Point: Maneuver Go / No-Go

TCA - 7 Days

TCA - 5.5 Days

TCA - 3 Days

TCA - 2 Days

TCA - 1 Days

TCA

Routine

High-Interest Event / Non-Routine

Conjunction Assessment (CA) is the process of identifying close approaches between two orbiting objects; sometimes called conjunction “screening”

The 18th Space Control Squadron at Vandenberg AFB, maintains the high accuracy catalog of space objects, screens CARA-supported assets against the catalog, performs OD/tasking, and generates close approach data

CA Risk Analysis (CARA) is the process of assessing collision risk and assisting satellites plan maneuvers to mitigate that risk, if warranted

The CARA Team at NASA GSFC serves all NASA operational uncrewed satellites, and is a service provider for some other external agencies/organizations

Collision Avoidance (COLA) is the process of executing mitigative action, typically in the form of an orbital maneuver, to reduce collision risk

Each satellite Owner/Operator (O/O) – mission management, flight dynamics, and flight operations – are responsible for making maneuver decisions and executing the maneuvers
The CARA workflow has both automated and manual components that:

- ingest inputs
- processes data: parsing and algorithmic implementation
- provides output: numeric data, plots, and reports
CAS Automation Process Flow

• Conjunction Assessment System (CAS) processes:
 – the Conjunction Data Messages (CDMs) and
 – the Sensor Tasking Files (STF) files

• CAS contains 4 main parts:
 – Data parser, Automation Manager, a Messaging Queue, and Application Engines

• Services from Automation Manager:
 – Covariance Processing
 – OD quality
 – Probability of Collision (Pc)
 – State Compare
 – Risk Characterization
 – Report Generation and
 – Report Distribution
The improvements to the existing risk assessment algorithms and techniques are addressed:

- throughout the conjunction assessment & risk analysis of CAS and
- the manual processing of CAS’ output data for decision making
Agenda and Overview

• Introduction
 – Background, Motivation and objectives

• Current CARA operations process
 – Current CARA operations process
 – Automated and Manual process
 – CAS System

• Process Updates and Supporting Analysis

• Operations Devolution

• Conclusions
Process Updates and Supporting Analysis

- HIE Briefing

PowerPoint
- Additional plots and data

Process Update:
- (1) Accurate approaches for setting HBR

Pc vs HBR Tool:
- Varying HBR significantly varies the Pc

PowerPoint presentation sample deck of an HIE Briefing that provides technical input for decision making.

HIE Briefing

Agenda
- Executive Summary
- Primary Object Information
- Secondary Object Information
- Conjunction Geometry
- Conjunction Event History
- Space Weather
- Sensor Coverage
- Maneuver Planning
- Summary & Recommendations
- Backup

Summary
- Secondary is poorly tracked
- Low probability of detection for opportunities prior to TCA
- Due to uncertainties large maneuver is required to mitigate risk
- CARA Team Recommends
 - Monitor event
Process Updates and Supporting Analysis

- MSA and BFMC

Process Update:

(2) Using BFMC to accurately assess Repeating Conjunctions

Two output plots are shown here using different numbers of trials. The left plot used 3.4×10^6 trials compared to 1.01×10^6 trials on the right. The increased number of trials reduced the 99% confidence interval. Both show the nominal 2D Pc within the confidence interval.

This strain of Monte Carlo calculation, which works with the TCA states and covariances but with the state uncertainty sampling performed in equinoctial elements, is being integrated with the NASA automated conjunction assessment system so that it can be automatically invoked in those situations in which the 2-D Pc is judged to be inadequate and for which Monte Carlo from epoch is not necessary.
Process Updates and Supporting Analysis

• HIE Briefings

HIE Briefing

PowerPoint
Additional plots and data

The use of P_c and other event data as a basis for CA recommendations.

PowerPoint presentation sample deck of an HIE Briefing that provides technical input for decision making.
Process Updates and Supporting Analysis

- HIE Briefing

HIE Briefing

PowerPoint

Additional plots and data

Fragmentation algorithms developed by the NASA ODPO to assess the debris production potential of any given conjunction.

PowerPoint presentation sample deck of an HIE Briefing that provides technical input for decision making.

Process Update:
(4) Collision Consequence for \(P_c \) threshold recommendations
Process Updates and Supporting Analysis

- HIE Briefing

Conjunction Assessment Risk Analysis

Primary vs. Secondary HIE Briefing
TCA: 11 Nov 2016 14:21 UTC
Briefing number 1

Executive Summary

Event Summary

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Primary vs. Secondary</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCA</td>
<td>11 Nov 2016 14:21 UTC</td>
</tr>
<tr>
<td>AEP</td>
<td>11 Nov 2016 14:21 UTC</td>
</tr>
<tr>
<td>GNC</td>
<td>11 Nov 2016 14:21 UTC</td>
</tr>
<tr>
<td>Last TCA</td>
<td>15 Nov 2016 14:21 UTC</td>
</tr>
<tr>
<td>Next TCA</td>
<td>16 Nov 2016 14:21 UTC</td>
</tr>
</tbody>
</table>

Current Risk Summary

<table>
<thead>
<tr>
<th>Probability of Collision</th>
<th>Risk Distance (m)</th>
<th>Risk Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0% - 3.0%</td>
<td>300 ± 3</td>
<td>300 ± 3</td>
</tr>
<tr>
<td>3.0% - 5.0%</td>
<td>120 ± 2</td>
<td>120 ± 2</td>
</tr>
<tr>
<td>5.0% - 7.0%</td>
<td>60 ± 1</td>
<td>60 ± 1</td>
</tr>
<tr>
<td>> 7.0%</td>
<td>30 ± 0.5</td>
<td>30 ± 0.5</td>
</tr>
</tbody>
</table>

Summary

- Secondary is poorly tracked
- Low probability of detection for opportunities prior to TCA
- Due to uncertainties large maneuver is required to mitigate risk
- CARA Team Recommends
 - Monitor event

Multivariate Normality (MVN) assumption can be flawed

PowerPoint presentation sample deck of an HIE Briefing that provides technical input for decision making.

Process Update:
(5) Multi Variate Normal (Gaussian) evaluation of Cartesian-Framed Covariances
Process Updates and Supporting Analysis

- Maneuver Trade Space

Maneuver Trade Space (MTS) → Potential Maneuver Times and Sizes

Process Update:
(6) Determining appropriate Pc remediation thresholds

CARA’s recommended post-maneuver Pc remediation is set to 1×10^{-10}; conservative based on previous analysis.

Recommended maneuver times and sizes are highlighted by the CARA Operator. Alternate time ranges and/or maneuver directions can be provided at mission request.
Process Updates and Supporting Analysis

HIE Briefing

PowerPoint
Additional plots and data

Conjunction Assessment Risk Analysis

Primary vs. Secondary HIE Briefing
TCA 13 Nov 2020 at 14:11:26 UTC
Briefing number 1.

NASA Robotic CARA Team
Briefing Creation Time: 10 November 2016 18:24 UTC

Executive Summary

Current Risk Summary

Event Summary

Current Risk Summary

Primary vs. Secondary

TCA 13 Nov 2020 at 14:11:26 UTC

Secondary Object Information

Conjunction Geometry

Conjunction Event History

Space Weather

Sensor Coverage

Maneuver Planning

Summary & Recommendations

Backup

Summary

Secondary is poorly tracked

Low probability of detection for opportunities prior to TCA

Due to uncertainties large maneuver is required to mitigate risk

CARA Team Recommends

Monitor event

2D Pc assumptions may not apply for some edge cases

PowerPoint presentation sample deck of an HIE Briefing that provides technical input for decision making.
Agenda and Overview

• Introduction
 – Background, Motivation and objectives

• Current CARA operations process
 – Current CARA operations process
 – Automated and Manual process
 – CAS System

• Process Updates and Supporting Analysis

• Operations Devolution

• Conclusions
Devolution

- Devolution: the operations portion of CARA could be pushed out to the mission flight operation teams as an option.
 - Pending completion of 2 pilot programs over the course of the next 2 years

- CARA will still remain the CA technical authority under the NASA Office of the Chief Engineer as well as provide CA operations for non-devolving missions

- CARA will evaluate 3rd party tools to determine whether they meet the Agency’s CA needs.
 - A tool certification plan identifies the essential ✓ and enhancing + tool features
 - Benchmark test cases are available for each item on the list (list will evolve over time as new capabilities emerge)

<table>
<thead>
<tr>
<th>Item</th>
<th>Tool Feature</th>
<th>Topical Area</th>
<th>Maneuverable Spacecraft Requirement</th>
<th>Non-Maneuverable Spacecraft Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point Estimate of Risk</td>
<td>T-1.1 Miss-Distance Reporting</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-1.2 2-D Pc Calculation from ASW data</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-1.3 Identify and flag when 2-D Pc Calculation from ASW data is Non-Positive Definite</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-1.4 2-D Pc Calculation from ASW data with Covariance Cross-Correlation</td>
<td>✓</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-1.5 Indication of 2-D assumption inadequacy</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-1.6 Owner/Operator Ephemeris/Pc Calculation</td>
<td>✓ (HEO,GEO), + (LEO)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-1.7 Identify and flag Missing Covariance for Pc Calculation</td>
<td>✓ (or T-1.8)</td>
<td>✓ (or T-1.8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-1.8 Covariance Synthesis Capability</td>
<td>✓ (or T-1.7)</td>
<td>✓ (or T-1.7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-1.9 Monte Carlo from TCA: equinoctial frame</td>
<td>✓ (or T-1.10)</td>
<td>✓ (or T-1.10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-1.10 Position Monte Carlo from Epoch</td>
<td>✓ (GEO)</td>
<td>✓ (GEO)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-1.11 Collision Consequence</td>
<td>✓</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Pc Error Analysis</td>
<td>T-2.1 Covariance mis-sizing sensitivity</td>
<td>✓ (or T-2.2)</td>
<td>+ (or T-2.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-2.2 Pc Uncertainty: Full consideration of all error sources</td>
<td>✓</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Predicted Situation at Decision Point</td>
<td>T-3.1 Historical Pc Trending (Event Histories)</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-3.2 Space Weather Sensitivity</td>
<td>✓</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-3.3 Tracking Prediction</td>
<td>✓</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-3.4 Predective Pc Trending</td>
<td>✓</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Maneuver Planning Aids</td>
<td>T-4.1 MTS: Single Conjunction</td>
<td>N/A</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-4.2 MTS: Multiple Conjunction</td>
<td>N/A</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-4.3 Maneuver Trade-Space: Execution Error</td>
<td>N/A</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Stress Loading</td>
<td>T-5.1 Loading Performance Test</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Agenda and Overview

• Introduction
 – Background, Motivation and objectives

• Current CARA operations process
 – Current CARA operations process
 – Automated and Manual process
 – CAS System

• Process Updates and Supporting Analysis

• Operations Devolution

• Conclusions
Conclusions

- **CA field is relatively new and so is constantly evolving**
 - Data sources moving from exclusive DoD-control to commercial availability
 - Space Fence implementation adds smaller objects to catalog
 - Anticipated large constellations will add congestion in certain orbits
 - Use of electric propulsion in large constellations as missions are inserted and deorbited cause additional complication for CA due to inability to do non-cooperative tracking
- **CARA performing extensive R&D to develop more robust algorithms to handle this evolution to handle the various technical challenges**
- **NASA plans to continue to evolve our CA process: improving operations, streamlining approaches, and collaborating with other operators to make the most of limited resources.**
<table>
<thead>
<tr>
<th>Author</th>
<th>#</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Mashiku</td>
<td>#AAS-19-702</td>
<td>RECOMMENDED METHODS FOR SETTING MISSION CONJUNCTION ANALYSIS HARD BODY RADII</td>
</tr>
<tr>
<td>L. Baars</td>
<td>#AAS-612</td>
<td>ASSESSING GEO AND LEO REPEATING CONJUNCTIONS USING HIGH FIDELITY BRUTE FORCE MONTE CARLO SIMULATIONS</td>
</tr>
<tr>
<td>M. Hejduk</td>
<td># AAS-652</td>
<td>SATELLITE COLLISION ‘PROBABILITY,’ ‘POSSIBILITY,’ AND ‘PLAUSIBILITY’: A CATEGORIZATION OF COMPETING CA RISK ASSESSMENT PARADIGMS</td>
</tr>
<tr>
<td>T. Lechtenberg</td>
<td># AAS-19-669</td>
<td>AN OPERATIONAL ALGORITHM FOR EVALUATING SATELLITE COLLISION CONSEQUENCE</td>
</tr>
<tr>
<td>T. Lechtenberg</td>
<td># AAS-19-671</td>
<td>MULTIVARIATE NORMALITY OF CARTESIAN-FRAMED COVARIANCES: EVALUATION AND OPERATIONAL SIGNIFICANCE</td>
</tr>
<tr>
<td>D. Hall</td>
<td># AAS-631</td>
<td>DETERMINING APPROPRIATE RISK REMEDIATION THRESHOLDS FROM EMPIRICAL CONJUNCTON DATA USING SURVIVAL PROBABILITY METHODS</td>
</tr>
<tr>
<td>D. Hall</td>
<td># AAS-632</td>
<td>IMPLEMENTATION RECOMMENDATIONS AND USAGE BOUNDARIES FOR THE TWO-DIMENSIONAL PROBABILITY OF COLLISION CALCULATION</td>
</tr>
</tbody>
</table>