Conjunction Assessment Risk Analysis

NASA Conjunction Assessment Risk Analysis (CARA) Updated Requirements Architecture

L.K. Newman*, A.K. Mashiku*, M.D. Hejduk[‡], M.R. Johnson[†] and J.D. Rosa[¥]

* NASA Goddard Space Flight Center
 ‡ The Aerospace Corporation
 † a.i. solutions
 ¥ Omitron, Inc.

The 2019 AAS/AIAA Astrodynamics Specialist Conference Portland, Maine August 13th 2019

Agenda and Overview

Introduction

-Background, motivation and objectives

Current CARA operations process

- -Current CARA operations process
- -Automated and Manual tools
- -CAS System
- Process Updates and Supporting Analysis
- Operations Devolution
- Conclusions

- Background: CARA History
 - Initiated in January 2005 to protect the Agency's unmanned spacecraft from collision with on-orbit objects
 - Currently, supports about 70 operational Agency's assets
 - Located at the NASA Goddard Space Flight Center in Greenbelt, MD

• Motivation for an updated requirements architecture:

- Recent developments in SSA and Commercial Space
 - Constellations launches: 100s to 1000s per constellation
 - Space Fence Radar: Sensitivity increase of the Space Surveillance Network (SSN) from current detection of 10cm in Low-Earth Orbit (LEO) to 5cm

Objectives

- Improvements to existing process
- An extensive evaluation initiative to re-examine
 - risk assessment algorithms and techniques,
 - develop needed improvements and
 - assemble analysis-based operational requirements
- Summarize the technical challenges encountered

Detailed process updates to some of the technical challenges will be presented in this CARA special session

Agenda and Overview

Introduction

-Background, Motivation and objectives

•Current CARA operations process

- -Current CARA operations process
- -Automated and Manual process
- -CAS System
- Process Updates and Supporting Analysis
- Operations Devolution
- Conclusions

CARA Operations Process Overview

The 18th Space Control Squadron at Vandenberg AFB, maintains the high accuracy catalog of space objects, screens CARA-supported assets against the catalog, performs OD/tasking, and generates close approach data

The CARA Team at NASA GSFC serves all NASA operational uncrewed satellites, and is a service provider for some other external agencies/organizations

process of executing mitigative action,

Each satellite Owner/Operator (O/O) mission management, flight dynamics, and flight operations - are responsible for making maneuver decisions and executing the maneuvers

- The CARA workflow has both automated and manual components that:
 - ingest inputs
 - processes data: parsing and algorithmic implementation
 - provides output: numeric data, plots, and reports

• Conjunction Assessment System (CAS) processes:

- the Conjunction Data Messages (CDMs) and
- the Sensor Tasking Files (STF) files

• CAS contains 4 main parts:

– Data parser, Automation Manager, a Messaging Queue, and Application Engines

• Services from Automation Manager:

- Covariance Processing
- OD quality
- Probability of Collision (Pc)
- State Compare
- Risk Characterization
- Report Generation and
- Report Distribution

- The improvements to the existing risk assessment algorithms and techniques are addressed
 - throughout the conjunction assessment & risk analysis of CAS and
 - the manual processing of CAS' output data for decision making

Process, Tools and Outputs

Agenda and Overview

Introduction

-Background, Motivation and objectives

Current CARA operations process

- -Current CARA operations process
- -Automated and Manual process
- -CAS System

•Process Updates and Supporting Analysis

- Operations Devolution
- Conclusions

PowerPoint presentation sample deck of an HIE Briefing that provides technical input for decision making.

L. Newman et al. | August 2019 | 10

within the confidence interval.

epoch is not necessary. L. Newman et al.| August 2019 | 11

PowerPoint presentation sample deck of an HIE Briefing that provides technical input for decision making.

L. Newman et al. | August 2019 | 12

Possibility and Plausibility

PowerPoint presentation sample deck of an HIE Briefing that provides technical input for decision making.

Process Update:(4) Collision Consequence forPc threshold recommendations

PowerPoint presentation sample deck of an HIE Briefing that provides technical input for decision making.

L. Newman et al. | August 2019 | 14

Cartesian-Framed Covariances

Recommended maneuver times and sizes are highlighted by the CARA Operator. Alternate time ranges and/or maneuver directions can be provided at mission request. Process Update: (6) Determining appropriate Pc remediation thresholds

PowerPoint presentation sample deck of an HIE Briefing that provides technical input for decision making. **Process Update:** (7) **2D Pc Boundaries implementation recommendations and usage**

Introduction

-Background, Motivation and objectives

Current CARA operations process

- -Current CARA operations process
- -Automated and Manual process
- -CAS System
- Process Updates and Supporting Analysis
- •Operations Devolution
 - Conclusions

Devolution

- Devolution: the operations portion of CARA could be pushed out to the mission flight operation teams as an option.
 - Pending completion of 2 pilot programs over the course of the next 2 years
- CARA will still remain the CA technical authority under the NASA Office of the Chief Engineer as well as provide CA operations for non-devolving missions
- CARA will evaluate 3rd party tools to determine whether they meet the Agency's CA needs.
 - A tool certification plan identifies the essential
 and enhancing + tool features
 - Benchmark test cases are available for each item on the list (list will evolve over time as new capabilities emerge)

Item	Tool Feature	Topical Area	Maneuverable Spacecraft Requirement	Non- Maneuverable Spacecraft Requirement
Point Estimate of Risk	T-1.1	Miss-Distance Reporting	~	v
	T-1.2	2-D Pc Calculation from ASW data	~	~
	T-1.3	Identify and flag when 2-D Pc Calculation from ASW data is Non-Positive Definite	~	*
	T-1.4	2-D Pc Calculation from ASW data with Covariance Cross- Correlation	+	+
	T-1.5	Indication of 2-D assumption inadequacy	~	>
	T-1.6	Owner/Operator Ephemeris/Pc Calculation	✓ (HEO,GEO),+ (LEO)	>
	T-1.7	Identify and flag Missing Covariance for Pc Calculation	✓ (or T-1.8)	✓ (or T-1.8)
	T-1.8	Covariance Synthesis Capability	✓ (or T-1.7)	✓ (or T-1.7)
	T-1.9	Monte Carlo from TCA: equinoctial frame	✓ (or T-1.10)	✔ (or T-1.10)
	T-1.10	Position Monte Carlo from Epoch	✔ (GEO)	✔ (GEO)
	T-1.11	Collision Consequence	+	+
Pc Error Analysis	T-2.1	Covariance mis-sizing sensitivity	+ (or T-2.2)	+ (or T-2.2)
	T-2.2	Pc Uncertainty: Full consideration of all error sources	+	+
Predicted Situation at Decision Point	T-3.1	Historical Pc Trending (Event Histories)	+	~
	T-3.2	Space Weather Sensitivity	+	+
	T-3.3	Tracking Prediction	+	+
	T-3.4	Predictive Pc Trending	+	+
Maneuver Planning Aids	T-4.1	MTS: Single Conjunction	N/A	~
	T-4.2	MTS: Multiple Conjunctions	N/A	~
	T-4.3	Maneuver Trade-Space: Execution Error	N/A	+
Stress Loading	T-5.1	Loading Performance Test	~	~

Introduction

-Background, Motivation and objectives

Current CARA operations process

- -Current CARA operations process
- -Automated and Manual process
- -CAS System
- Process Updates and Supporting Analysis
- Operations Devolution
- •Conclusions

- CA field is relatively new and so is constantly evolving
 - Data sources moving from exclusive DoD-control to commercial availability
 - Space Fence implementation adds smaller objects to catalog
 - Anticipated large constellations will add congestion in certain orbits
 - Use of electric propulsion in large constellations as missions are inserted and deorbited cause additional complication for CA due to inability to do non-cooperative tracking
- CARA performing extensive R&D to develop more robust algorithms to handle this evolution to handle the various technical challenges
- NASA plans to continue to evolve our CA process: improving operations, streamlining approaches, and collaborating with other operators to make the most of limited resources.

CARA process updates Special Session Presentation

A. Mashiku #AAS-19-702

RECOMMENDED METHODS FOR SETTING MISSION CONJUNCTION ANALYSIS HARD BODY RADII

L. Baars #AAS-612

ASSESSING GEO AND LEO REPEATING CONJUNCTIONS USING HIGH FIDELITY BRUTE FORCE MONTE CARLO SIMULATIONS

M. Hejduk # AAS-652

SATELLITE COLLISION 'PROBABILITY,' 'POSSIBILITY,' AND 'PLAUSIBILITY': A CATEGORIZATION OF COMPETING CA RISK ASSESSMENT PARADIGMS

T. Lechtenberg # AAS-19-669

AN OPERATIONAL ALGORITHM FOR EVALUATING SATELLITE COLLISION CONSEQUENCE

T. Lechtenberg # AAS-19-671

MULTIVARIATE NORMALITY OF CARTESIAN-FRAMED COVARIANCES: EVALUATION AND OPERATIONAL SIGNIFICANCE

D. Hall # AAS-631

DETERMINING APPROPRIATE RISK REMEDIATION THRESHOLDS FROM EMPIRICAL CONJUNCTION DATA USING SURVIVAL PROBABILITY METHODS

D. Hall # AAS-632

IMPLEMENTATION RECOMMENDATIONS AND USAGE BOUNDARIES FOR THE TWO-DIMENSIONAL PROBABILITY OF COLLISION CALCULATION