Conjunction Assessment Risk Analysis

Satellite Conjunction "Probability," "Plausibility," and "Possibility": A Categorization of Competing Satellite Conjunction Assessment Risk Analysis Paradigms

M.D. Hejduk and D.E. Snow August 2019

Introduction and definition of categorization terms

- Probability, Plausibility, and Possibility (imperative, subjunctive, optative)

Categorization supporting/amplifying considerations

- Fundamental question, null hypothesis, and required supporting data

Probabilistic techniques

- Vanilla Pc calculation, Wald sequential probability ratio, Pc Uncertainty

Plausibilistic techniques

- Pc Sensitivity, Maximum Pc

Possibilistic techniques

- Ellipsoid "overlap"
- Categorization summary and observations
- Conclusions and future work

- Number of different conjunction assessment risk analysis methodologies/parameters proposed in critical literature
 - Proposed over a long period (decades)
 - Proposed episodically and often in isolation
- Approaches have different foundational CA philosophies
 - CA practitioners must choose methods that agree with philosophical alignment

• What is actually needed is development of full CA philosophy

- Large project for another day
- However, can substantially assist development of philosophy by providing categorization of existing major risk analysis methods
 - Tease out different features
 - Identify conceptual points of difference
 - Develop vocabulary to discuss different approaches (and potential future approaches) meaningfully

- Indo-European languages developed three linguistic moods in order to specify the level of certainty of described event/circumstance
 - Indicative mood: modality of certainty; indicates that something will occur
 - Subjunctive mood: modality of less certainty; indicates that something may occur
 - Optative mood: modality of potentiality; indicates that something could occur

Examining risk analysis methods suggests applying same categories

- Indicative: (ostensible) precise calculation of collision likelihood
 - "Probability"
- Subjunctive: considers additional errors and "likelihood of likelihoods"
 - "Plausibility"
- Optative: establishes or negates mere possibility of collision event
 - "Possibility"
- Use of Probability/Plausibility/Possibility nomenclature may not be an improvement
- Actual situation more a spectrum from Probability to Possibility

Probability/Plausibility/Possibility: Notional Definitions

- Probability
 - Determination of (ostensible) actual probability that a serious close approach event will take place
 - Dispute in literature regarding whether these constitute actual probabilities
 - But intent is that they be probabilities, so reasonable category to apply

Possibility

- Determination whether a collision is simply possible
- Implication is that mitigation action would be pursued even for mere possibility
- Statistics involved here, as some threshold for possibility required

Plausibility

- Term for approaches that seem to stand between probability and possibility
- Often a probabilistic calculation of sorts that attempts to take account of additional uncertainties in input data
 - Can be more rigorously probabilistic or more speculative and notional

Decision processes should be guided by a fundamental question

Should get at the core issue

– "Will the two satellites collide" is God's eye truth and cannot be known, so one has to proceed statistically; fundamental question should be statistical as well

• Must not be too general or too specific

- Otherwise does not illuminate the decision process

Needs to focus on decision nexus

- For CA risk assessment, question is whether to pursue a mitigation action
- Needs to make evident the "default" position with regard to the basic decision
 - When the data are ambiguous or not definitive, should the decision favor or refrain from a mitigation action

• CA risk analysis bears outward similarity to hypothesis testing

- Employs a conjunction risk test statistic
- Test statistic compared to a threshold, which defines a critical region
- Strength of test greater the further test statistic pushes into critical region
- Can define confidence interval on test statistic, to determine strength of test with more precision
- Degree of similarity between CA risk analysis and classic hypothesis testing presently an open question
 - Subject of dispute in current critical literature
 - But many tenets of hypothesis testing presently disputed within statistical sciences
 - CA operators often do not conceive of their activities explicitly in these terms
- However, analogy strong enough that is useful as point of description to aid risk assessment technique characterization

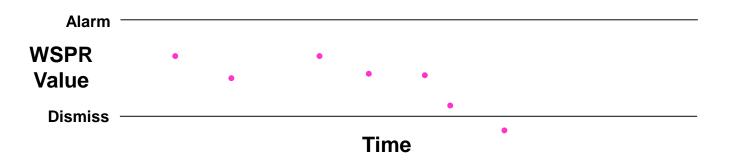
- Calculated by one of a number of techniques
 - -2- or 3-D analytical; Monte Carlo; even some geometric proposals
- Pc represents the likelihood that the actual miss distance will fall within the hard-body radius circle
- Pc value compared to a mitigation threshold
 - If Pc value greater than threshold, typically mitigation action pursued

• Problem: "dilution region"

- Two ways Pc can be low
 - Satellite positions known with precision, covariances small, very little likelihood that actual miss distance will fall within HBR
 - Satellite positions known only poorly, covariances large, range of possible miss distances so large that little likelihood that actual miss distance will fall within HBR
- Latter case is called "dilution region"
 - In such a situation, low Pc does not provide evidence that situation is safe

- If Pc is only risk analysis parameter, then particular, endemic default conditions emerge
 - If outside of dilution region, calculation is robust; compare Pc to threshold
 - If in dilution region and Pc high, situation is high-risk; compare Pc to threshold
 - If in dilution region and Pc low, cannot definitively conclude situation is safe, but can justify refraining from mitigation action
 - According to modeling, most conjunctions that satellites encounter are with untracked debris; no way to mitigate, so just accept as background risk
 - Dilution region events are very similar to this (a little bit known about positions, but too little to conclude definitively that an unsafe situation exists)
 - These events therefore also treated as a portion of background risk that is simply accepted as a condition of operating satellites

• Given the above, propose following fundamental question


- Do the presented data justify a decision to mitigate the conjunction?
- Associated null hypothesis
 - The actual miss distance is greater than the HBR

Individual RA Techniques: WSPRT (1 of 2)

- WSPRT = Wald Sequential Probability Ratio Test
- Computes ratio between the current collision likelihood and that which the two objects typically experience, apart from this event
 - Ratio calculable from Pc values and P_{Cl0} , the two-object background risk
- User-defined probabilities of false alarm and missed detection allow definition of alarm (mitigate) and dismiss (ignore) conditions
 - Also includes third possibility between these, which is to wait for more data
- Ratio evaluated sequentially with each information update

- Time-series situation shown below

- In some ways, fundamental question and null hypothesis not relevant to WSPRT because these concepts baked into construct
 - By nature treats alarm, dismissal, and ambiguous situation innately
 - Thus intrinsically directed to CA decision, and no null hypothesis needed

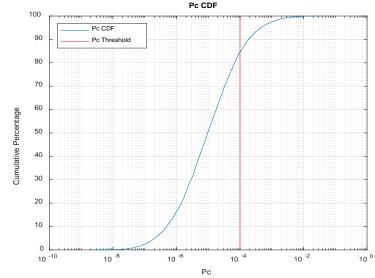
• However, actual implementation in CA construct forces modification

- Mitigation decision must be made by satellite maneuver commitment point
- If WSPRT between thresholds at this point, cannot wait longer and must decide

Could potentially accommodate opposite forms of default position

- Intra-constellation use of WSPRT embraced mitigation as default
- Satellite-catalogue-based use refrained from mitigation as default
- This particular technique thus more fungible than some others

• For now, will assign fundamental question used for full catalogue


- Do present data and background risk analysis justify a mitigation action?

Null hypothesis

- The actual miss distance is greater than the HBR

- 18 SPCS covariances known not always to be fully representative
- Historical state and covariance data can be analyzed against reference orbits for every satellite to develop covariance corrections
- PDFs of these corrections can be used to generate corrected family of secondary covariances, which can then be used to calculate Pcs
- Output produces PDF of Pc values
 - Mitigation action sought if enough of Pc probability density over threshold

Individual RA Techniques: CARA Pc Uncertainty (2 of 2)

• Takes some steps toward a plausibilistic construct

 Considers what range of Pc values would be if current secondary's covariance suffered from same levels and frequencies of irrealism as in past

• However, level of speculation kept to a minimum

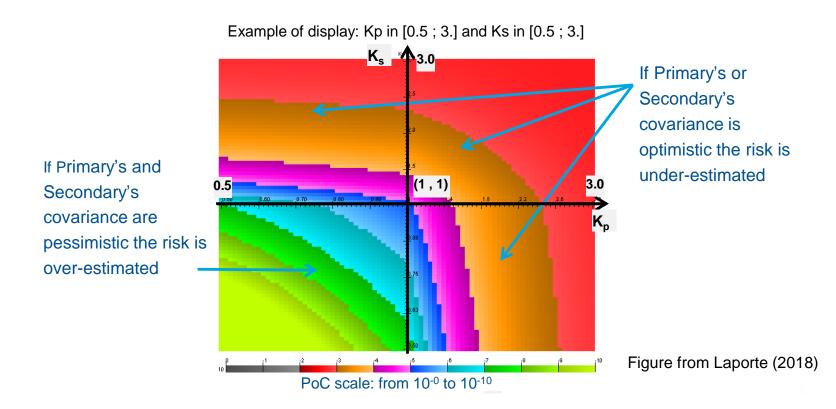
- Actual frequency of each covariance modification known, so rigorous PDF of covariance alternations constructed
- This allows actual PDF/CDF of expected Pc values
- Fundamental question should recognize this pedigree, but only slight broadening of that for vanilla Pc calculation needed
 - Given the current data and historical covariance realism information, does the Pc range of values justify a decision to mitigate?

• Null hypothesis is the same as for vanilla Pc

- The actual miss distance is greater than the HBR

Individual RA Techniques: Pc Sensitivity (1 of 3)

Same foundational concept as Pc Uncertainty


- Attempt to account for covariance irrealism
- However, no access to broad set of covariance realism data to construct PDF

Instead, uses interval analysis

- Analytical/heuristic effort to establish scale factor boundaries for covariances
 - E.g., covariance can be expected to be between 0.25 to 4 times representative size
- Presume uniform distribution between these boundaries
- Apply range of scale factors to both primary and secondary covariances in gridded fashion, and calculate Pcs
- If any Pc exceeds set threshold, then take as alert condition and consider mitigation action

Individual RA Techniques: Pc Sensitivity (2 of 3)

- In above plot, primary scaling on x-axis; secondary on y-axis
- If any color above threshold (perhaps brown or red), potentially risky situation

• Pc Sensitivity journeys further into plausibility

- Considers range of Pc values, like Pc Uncertainty
- However, (somewhat) loosely establishes scale factor range and merely presumes a PDF (uniform distribution), so overall more speculative

Technique does not suggest particular default position

- CNES implementation, however, seems to favor similarity with vanilla Pc
 - Overall threshold made more lenient from vanilla Pc situation, but even single Pc above modified threshold will trigger mitigation action consideration
 - Leans away from pushing ambiguous situation to mitigation because only one Pc violation needed to require it—reasonably easy to get null hypothesis rejection

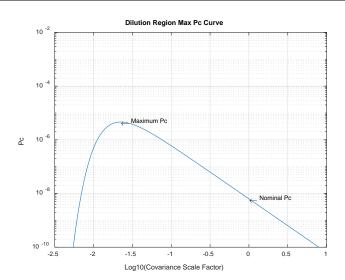
Proposed fundamental question

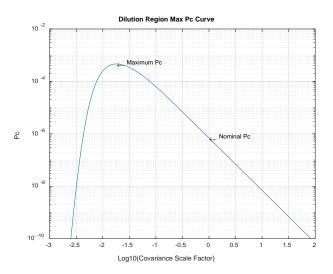
– Given the current data and covariance realism assumptions, does the Pc range of values justify a decision to mitigate?

Proposed null hypothesis

- The actual miss distance is greater than the HBR

- Technique originally constructed to address issue of dilution region
 - If in non-dilution region, use covariances as submitted
 - If in dilution region
 - Freeze miss distance
 - Contract secondary covariance incrementally, maintaining aspect ratio, and calculate Pc at each contraction step
 - Find maximum Pc value and if above threshold, pursue mitigation action
- Essentially moves along P_c curve by varying covariance for given miss distance until maximum P_c found for covariance smaller than or equal to given value
 - Grounding claim is that more data would produce a smaller covariance, and could to the max value of $\rm P_{c}$
- Similar to Pc Sensitivity approach, but with scaling factors limited to range of 0 to 1


Individual RA Techniques: Maximum Pc (2 of 3)


• Top graph example event

- Nominal Pc of 6.3E-09; maximum Pc (peak of curve) 4.6E-06
- "True" Pc (which could have been obtained with more adequate data) could be as high as 4.6E-06
- Below threshold of 1E-04, so can conclude that this dilution region event not dangerous

Bottom graph example event

- Nominal Pc of 6.9E-07; maximum Pc (peak of curve) 4.6E-04
- Here, maximum Pc above threshold, so situation remains inconclusive

Individual RA Techniques: Maximum Pc (3 of 3)

• Approach operates even more strongly in realm of plausibility

 Constraining assumptions about (secondary or joint) covariance relaxed to aspect ratio only

• Technique promotes a different default response

- Constructed to demonstrate when a safe situation exists; ambiguous otherwise
- Thus naturally fits a null hypothesis that favors mitigation
 - Can reject this null hypothesis when safety criteria established

Proposed fundamental question

– Given the data and assumptions regarding possible values of the covariance, does the maximum Pc value justify dismissal of the event?

Proposed null hypothesis

- The miss distance is less than the HBR

- Again, motivated by dilution region phenomenon for vanilla Pc
- To ensure a safe situation, defines a maximum "overlap" between primary and secondary covariance ellipsoids
 - First approach: requires that a certain sigma level of joint covariance remain smaller than nominal miss distance by HBR length
 - Second approach: requires that a certain sigma-level of primary and secondary covariance ellipsoids be separated by HBR length
 - Finally, requires mitigation actions to enforce these overlap distances
- Still a statistical method certainly, but notably more conservative than Pc approaches
 - With dilution region, increased uncertainty leads to lower likelihood and less frequency of mitigation action
 - With ellipse overlap approach, increased uncertainty leads to larger required separation distances and greater frequency of mitigation action

- Technique focuses on limiting mere possibility of conjunction
 - Much more demanding safety standard

Default action is to mitigate

 To guarantee safety, must be prepared to mitigate unless conservative safety standard met

• Fundamental question simply restatement of this requirement

- Do the presented data rule out the possibility of a collision?

Different formulations of null hypothesis possible

- Miss distance less than HBR—standard form used here so far
- Covariance ellipsoids overlap to a non-discountable degree—more specific to particular technique used here

RA Techniques Categorization: Summary Table

	Technique	Fundamental Question	Null Hypothesis	Data Required
Possibility Probability	Vanilla Pc	Do the presented data justify	The actual miss	Immediate CDM
	Calculation	a decision to mitigate the	distance is greater	
		conjunction?	than the hard-body	
			radius	
	Wald	Do the presented data and	The actual miss	Immediate CDM
	Sequential	background risk analysis	distance is greater	+ background
	Probability	justify a decision to mitigate	than the hard-	risk between
	Ratio Test	the conjunction?	body radius	primary and
				secondary
	CARA Pc	Given the current data and	The actual miss	Immediate CDM
	Uncertainty	historical covariance realism	distance is greater	+ large historical
		information, does the Pc	than the hard-body	archive of by-
		range of values justify a	radius	object
		decision to mitigate?		covariance
				realism data
	Pc Sensitivity	Given the current data and	The actual miss	Immediate CDM
		covariance realism	distance is greater	+ scale-factor
		assumptions, do the Pc	than the hard-	end-points for
		range of values justify a	body radius	primary and
		decision to mitigate?		secondary
				covariance
	Maximum Pc	Given the data and	The actual miss	Immediate CDM
		assumptions regarding	distance is less	+ expected
		possible values of the	than the hard-body	covariance
		covariance, does the	radius	aspect ratio
		maximum Pc value justify		
		dismissal of the event?		
	Ellipse	Do the data rule out the	The covariance	Immediate CDM
	Overlap	possibility of a collision?	ellipses overlap to	
Ъ			a non-discountable	
			degree	

• Different major risk analysis techniques span full spectrum

- Three probabilistic, two plausibilistic, one possibilistic, although more of a continuum than discrete binning, and bin titles not necessarily all that helpful

Some techniques favor particular fundamental question and null hypothesis; others less so

- Vanilla Pc and ellipse overlap strongly directed to particular operational approach and use
- WSPRT and Pc Sensitivity seem most flexible
- In midst of spectrum (middle of plausibility bin), null hypothesis flips from refraining from mitigation to presuming it

- Not a surprise, given general trend from more permissive to more conservative

- Techniques at extremes of spectrum require least amount of conjunction information
 - Middle-of-spectrum approaches, which try to expand safety without becoming overly conservative, require additional information for such an expansion

- Wide range of risk analysis techniques extant in literature, with full swath of risk-tolerant to risk-adverse orientations
- Categorization provides vocabulary to allow fruitful comparative discussion of approaches
- Categories and associated features also can help current CA practitioners choose risk analysis approaches that suit their particular operational philosophy
- Categorization results can provide building blocks for overarching CA philosophy
 - To be developed by CARA as part of CA Handbook initiative