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Abstract 

A series of electromagnetic simulations was conducted for the 

Conformal Lightweight Antenna System for Aeronautical 

Communications Technologies (CLAS-ACT) Program.  The 

program designed, built, and flight tested a 14.25 GHz conformal 

patch array antenna for satellite communications on a T-34C 

airplane.  Various studies were performed to evaluate the effects 

of antenna element spacing, array shape, signal taper, phased 

array pointing angle, null steering coefficients, antenna platform, 

and location on the airplane.  This report documents the methods 

and some of the results of tests done over a 2 ½ year period. 

 

I.  Experiment Purpose 

The Conformal Lightweight Antenna System for Aeronautical Communications Technologies (CLAS-

ACT) Program was conducted between 2017 and 2019 and funded by the Convergent Aeronautics 

Solutions (CAS) portion of the NASA Aeronautics Research Mission Directorate.  The purpose of the 

experiment was to develop a conformal array antenna making use of the lightweight Aero-Zero substrate 

materials invented at Glenn Research Center (GRC).  The antenna was to operate at 14.25 GHz and be 

flown on a UAV to allow satellite communication with the airplane, a capability which in turn would 

allow beyond line-of-sight command and control.  Furthermore, the phased array antenna radiation 

pattern was to be characterized by a notch such that transmissions from the airplane towards the ground 

would not interfere with ground instruments operating at the same frequency.  During the antenna 

development, computational models were used to simulate the antenna patterns resulting from the use of 

various antenna designs, on and off the airplane.  3-D radiation patterns were supplied to team members 

at Ames Research Center (AMC) to incorporate into their Sytems Tool Kit (STK) software to aid with 

experiment flight planning.  This report describes the electromagnetic modeling performed for the CLAS-

ACT program.  Given that over 60 reports were submitted on this subject to the Principal Investigators, 

Drs. Mary Ann Meador and Jim Downey, this paper summarizes only some of the methods and results. 

 

II.  Software and Computers 

MATLAB was used to create array layout files and to assemble data into the formats required by the 

various commercial software products in use.  Portable Batch System script files were written to provide 

instructions to work problems on the Langley Research Center (LaRC) K-Cluster computers.  Antenna 

Magus was used to design simple patches, to display array layouts, and to calculate field patterns for 

patch antennas and array designs.  Simulations of an array mounted on an airplane were calculated in 

ALTAIR FEKO to produce far field files, which were the desired outputs.  PREFEKO files, which have 

their own scripting language, mesh files generated from drawings in CADFEKO, and near field files 

generated from FEKO models all became inputs for FEKO simulations.  Airplane models were 

downloaded from share sites such as GrabCAD and 3dcadbrowser.com. 

 

Smaller problems were calculated on an HP Z840 workstation, while larger problems were sent to the 

Langley K-Cluster.  Some of the problems became quite large, as the airplanes were on the order of  521 

wavelengths (Ikhana) or 416 wavelengths (T-34C). 

 



 

2 

 

III.  Methods 

A.  Element Models 

1.  Cavity-backed patch element in Antenna Magus 

Initially, it was desired to calculate the effect of patch antenna spacing, array shape, phase inputs for 

antenna pointing, and window functions for sidelobe reduction.  However the patch antenna itself had not 

been designed.  A number of simulations were performed using the far field for an ideal cavity-backed 

patch as the source.  This method was implemented in Antenna Magus software and simply added far 

fields together, therefore neglecting mutual impedance effects. 

 

2.  Circular patch designed in Antenna Magus 

Later, a simple circular patch antenna as shown in figure 1 was designed and its near field or far field was 

used as the source for array simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.  Stacked patch designed at GRC 

Still later, team members at Glenn Research Center (GRC) designed a multilayer stacked patch antenna 

and calculated near field data for that patch, which became the source for array simulations.  In 

simulations containing the mounting platform or part or all of an airplane, the use of near fields as 

radiation sources allowed the computational problem to be performed on a computer which could not 

have accomodated the individual design geometry for all of the array elements in addition to the airplane.  

Near field data were provided as calculated in a spherical or hemispherical shape around the patch. 

 

B.  Array models 

1.  Linear arrays, flat and curved 

Some relatively simple simulations used a flat or curved single line of elements. 

 

Figure 1. Circular patch used for initial simulations before the final experimental stacked layer patch had 

been designed. 

Feed pin 
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2.  Three-dimensional arrays, flat and curved 

Three-dimensional simulations included 8x8, 9x9, 49x49, or 50x50 elements.  It was calculated that at 

least 50x50 elements would be needed to achieve the desired 2-degree beam width.  Because the array 

size would be 2n and to simplify the initial antenna construction, an 8x8 antenna was fabricated for flight 

testing.  Therefore many of the simulations incorporated the array size 8x8.  Figure 2 shows an example 

of (a) the array layout for a 50x50 curved array and (b) the field pattern for a 50x50 planar array. 

 

Originally, a hemicylindrical antenna platform was designed to mount the antenna inside the antenna 

compartment of the Ikhana.  It was intended that this shape would simulate the curved surface of an 

airplane on which an array antenna might be mounted.  The hemicylinder was chosen to have a radius of 

16 inches; therefore a number of simulations incorporated the 16-inch radius into the shape of the array 

curve.  Later, the airplane was changed to a Global Hawk, and still later, due to scheduling problems, a 

T-34C (Navy trainer) on which a flat antenna array was mounted on the left side of the airplane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.  Windowing and phased array steering 

a.  Sidelobe Reduction 

Sidelobe reduction was accomplished through the use of various window functions; the window most 

commonly employed being a 0.3 pedestal cosine taper applied to the signal magnitudes.  Figure 2 (a) 

shows 2500 elements in an array for which the signal magnitude taper is indicated by the color scale. 

 

b.  Pointing 

Beam pointing was accomplished by varying the signal phase across the array.  GRC personnel calculated 

a series of complex coefficients to apply to signals at the 8x8 flight array feed points to produce null 

steering, that is, a radiation notch at a particular angle where it was desired to prevent interference with 

instruments on the ground. 

 

y 

x 

z 

(a) (b) 

Figure 2 (a) Array layout for 50x50 patches on a curved surface of radius 16 in. (b) Far field pattern 

for a 50x50 planar array of circular patches.  3-dB beamwidth = 1.8°. 
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C.  Equivalent Sources 

1.  Near field calculated for one element, multiple copies arranged into an array 

Given that each patch element had a complex structure which would be too computationally intensive to 

model 2500 or even 64 times, the computational load was lessened by using near field data as radiation 

sources when computing array radiation patterns.  Near electric and magnetic fields were calculated for a 

single element at a radius of 100 mm from the patch center, and multiple copies of the near field data 

hemisphere were arranged in a geometrical pattern corresponding to the array layout spacing and angular 

orientation.  Figures 3 and 4 show, respectively, such a hemisphere and 81 groups of hemispherically 

arranged near field data points.  Some simulations were also perfomed with near fields calculated in a 

spherical pattern around each patch element. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.  Near field measured for array on the T-34C 

When available, measured near field data for the entire array on the airplane were used as an equivalent 

source.  GRC personnel provided near field data measured at GRC and at Armstrong, both data sets based 

on the 8x8 array antenna mounted on a T-34C.  By means of an open-ended waveguide (OEWG), the near 

field was measured in a vertically oriented rectangle approximately 4.5 inches from the side of the 

airplane; data were collected at 1862 (38x49) points or 2622 (46x57) points. 

 

D.  Airplane Platform Models 

1.  Hemicylinder 

When the experiment began, the designated aircraft was the NASA Ikhana and the intended location for 

the antenna array was inside the Ikhana’s antenna compartment under a radome.  The usual antenna 

gimbal assembly was to be removed and in its place there would be a hemicylindrical platform on which 

the phased array would be mounted.  Following this plan, many simulations were performed with an array 

drawn in a hemicylindrical shape.  Figure 4 shows one example of a half cylinder built into the simulation 

and used as the antenna platform. 

 

2.  Closed cylinder 

Some simulations were performed with an array mounted on a large reflective closed cylinder, in the 

absence of an airplane model. 

Figure 3. A hemisphere over a single 

patch showing where near field data were 

calculated. 

Figure 4. Arrangement of near field points 

to represent a 9x9 array on a perfect 

electrical conductor (PEC) half cylinder. 
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Figure 6. Model of the Global Hawk including the forward 

portion, radome, antenna platform, and wings. 

Figure 7. Model of the T-34C. 

3.  Ikhana 

A good computer aided drawing (CAD) of the Ikhana, shown in figure 5, was obtained from the US 

Army; however it was not used in simulations because of the large size making it impractical to run on 

available computers even with the multilevel fast multipole method (MLFMM), an efficient but fairly 

accurate approximation method. 

 

 

 

 

 

 

 

 

 

 

 

 

4.  Global Hawk 

A drawing of the Global Hawk was obtained from GrabCAD and a portion of this model was used 

together with the physical optics (PO) simulation method for some simulations.  Figure 6 shows a portion 

of the Global Hawk including the radome, hemicylindrical antenna platform, and wings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.  T-34C 

A drawing of a T-34C was obtained from 3dcadbrowser.com for simulations using the PO method.  These 

simulations ran on the K-Cluster in about 7 hours.  The model is shown in figure 7. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Model of the Ikhana with a PEC hemicylindrical 

antenna platform in the antenna compartment area. 
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E.  Solver methods 

The method of moments (MOM) is a full wave solver method which is very accurate.  MLFMM and PO 

are approximate electromagnetic simulation methods which produce slightly less accurate results but 

require much less computer memory and time for solutions. 

 

IV.  Example Results 

A.  Total Radiation Pattern in Two Planes for a 49x49 Array, Radius of Curvature 24 In. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For a cylindrically curved suface as shown in figure 8, the far field radiation pattern looks quite different 

in the two principal vertical planes, as shown in figures 10 and 11.  This simulation incorporated a 49x49-

element array with a 0.3 cosine window applied.  The cosine widow is shown by the color scale in figure 

8 and is graphed in figure 9. 

 

 

 

y 

x 

z 

Figure 8. 49x49-element rectangular array, radius of 

curvature = 24 in., 0.3 pedestal cosine window, element 

spacing = 0.6 . 

Figure 9. Signal magnitude window is  

0.3 pedestal cosine. 

Figure 10. Gain pattern in x-z plane where surface is 

curved, cavity-backed patch elements.   1
st

 sidelobe level = 

22.8 dB. 

Figure 11. Gain pattern in y-z plane where surface is not 

curved, cavity-backed patch elements.  
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B.  Effect of Pointing Angle in a 49x49 Array 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the pointing angle deviates farther from zenith, gain is decreased, beamwidth increased, and grating 

lobes vary depending on which side of the main beam they are on. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Gain Values, Taylor Weighting 

Pointing Angle 

Theta [deg] 
at Phi = 180°  

Peak Gain 
[dBi] 

3-dB 
 Beamwidth 
[deg] 

1
st

 

Sidelobe 
Level [dB] 

Grating 

Lobe Level 
 [dB] 

5.0 39.5 2.9 -50.5 -34.5 
10.0 39.4 2.9 -48.0 -32.1 
20.0 38.8 3.1 -40.9 -27.5 

Figure 12. Total far-field gain, x-z plane, 0.55  spacing in x-y plane, 49x49 array of cavity-backed 

patch elements pointing at  = 5, 10, or 20°, 16-inch radius of curvature, 45 dB Taylor window. 
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C.  Effect of Curvature on Grating Lobes in a 49x49 Array 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Grating lobes are seen to decrease in height with lesser surface curvature, as shown in figure 13. 

 

z 
y 

x 

(a) 

z 
y 

x 

(b) 

(c) 

z 
y 

x 

Figure 13. Gain patterns in x-z plane for radius of curvature = (a) 8 in., (b) 16 in., (c) 24 in., 49x49 array with cosine 

window, 0.6  element spacing, cavity-backed patch elements. 
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D.  Effect of Element Spacing on Grating Lobes in a 49x49 Array

 

 

 

E.  Scaling 9x9 to 49x49 Element Array Characteristics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In a uniform, planar array, the peak power is proportional to the number of elements. The first sidelobe 

level varies according to the window function applied to the element feeds. 

Table 2. Gain Values at Pointing Angle Theta = 0°, Phi = 180° 

  9x9 

elements 
49x49 

elements 
Difference [dB] 

Note: Sidelobe level is 

the difference between 

the peak gain and the 1
st
 

sidelobe gain. 

14.7 
Peak value, uniform [dBi] 26.6 41.4 14.7 
Peak value, cosine [dBi] 21.7 37.3 15.6 
1

st
 sidelobe level, uniform [dB] 13.4 13.3 -0.1 

1
st
 sidelobe level, cosine [dB] 36.3 34.0 -2.3 

1
st
 sidelobe level, cosine 

improvement over uniform [dB] 

23.0 20.8 -2.2 

Figure 14. Gain patterns in x-z plane for element spacing = 0.65, 0.60, and 0.55 , 49x49 array with cosine window, 

16-inch radius of curvature, cavity-backed patch elements.  Wider spacing increases the grating lobe height. 

Figure 15. Total far-field x-z gain at phi = 180°, 9x9 or 49x49 array.  



 

10 

 

F.  A Possible Antenna Array Design Technique: Change Pointing Direction by 

Illuminating Different Sections of a Large Array 

 

 

 

 

 

 

 

 

 

 

 

G.  Sidelobe Nulling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By controlling the complex signal coefficients, a narrow null can be created in the radiation pattern at a 

desired angle, in this case, 30° elevation.   

Figure 18. x-z radiation pattern for an array of cavity-backed patch elements as shown in figure 17.  By 

sidelobe nulling, a notch is produced at 30° elevation . 

 = -42° 
 = +42° 

Figure 16. With 92 total elements and 49 elements illuminated at one time, the scanning extent is ±42.7°.  Here the 

left (a) or right side (b) is shown illuminated.  The element spacing is 0.6 or°, the radius of curvature, 16 in. 

(a) (b) 

Figure 17. Layout for an 8x8 triangular array with 

0.3 cosine taper.  Radius of curvature = 16 in. 

z y 
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H.  Simulations with Hemicylinder 

   

 

 

 

 

 

 

 

 

 

 

 

 

I.  Simulations with Cylinder 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. 2-D radiation patterns in two planes for the 8x8 array on a closed PEC cylinder, MLFMM. 

Figure 19. 8x8 triangular lattice, circular patch near 

fields as sources, 0.3 cosine window, located at  

 = 45° on a PEC hemicylinder of radius 16 in., 

length = 32 in. 

Figure 20. 3-D radiation pattern calculated for the 

8x8 array on a hemicylinder, MLFMM. 

Figure 22. Circular patch near fields are shown as 

sources for the 8x8 array on a PEC closed cylinder of 

radius 16 in. and length 32 in. 
Figure 21. 8x8-element rectangular array layout, 

0.3 cosine taper. 

z y 
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J.  Simulations with Simplified Global Hawk Body Section 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to approximate the shape of a very large airplane, a section of the body was approximated and 

used as a model. 

 

 

 

 

Figure 25. Total far field in two planes calculated for the 8x8 array on a section of the 

Global Hawk, PO solution.  The theta′ phi′ coordinate system puts ′ = 0° at  = 45°. 

Figure 24. Near fields for 8x8 triangular array 

of stacked circular patches on a PEC 

hemicylidrical platform mounted close to the 

left side of a Global Hawk body section. 

Near field data 
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K.  Simulations with Global Hawk Forward Section and Radome 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. Total far field in two planes calculated for the 8x8 array on a section of the Global 

Hawk with radome, PO solution.  The theta′ phi′ coordinate system puts ′ = 0° at  = 45°. 

Figure 26. Near fields for 8x8 triangular array 

of stacked circular patches on a PEC 

hemicylindrical platform mounted close to the 

right side of a section of a Global Hawk with 

radome. 

Near field data 
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L.  Simulations with the T-34C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 30. 3-D total radiation pattern using the calculated element near fields, PO solution. 

Figure 29. Magnitude and phase information for the 8x8 phased array, which is designed to point 30° up from horizontal. 

Figure 28. T-34C with (a) calculated near field data for 8x8 array elements and (b) measured OEWG data for the 

array on the airplane. 

(a) (b) 

Near field data Near field 
data 
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Figure 28 shows the locations of two types of near field data thata were used as sources for simulations 

with the T34-C airplane model.  In figure 28 (a), the near field data were calculated from the stacked 

patch model; in figure 28 (b), OEWG near field data were measured while the antenna was radiating and 

affixed to the side of the airplane.  Figure 29 shows the array signal coefficients, magnitude and phase.  A 

3-D pattern was calculated using each method.  Figure 30 shows the 3-D result assuming the calculated 

element near fields.  The maximum gain is seen here to be about 20.1 dBi and the main beam, on the left 

side, is pointing upward about 30° from the horizon. 

 

Figure 31 shows polar plots of both simulated results at  = 178°.  In the “calculated element near fields” 

plot, a deep null is seen at -10° elevation.  Given the disparity between the results, there is a problem with 

at least one of the simulations, possibly indicating an incorrect airplane model.  The simulation using the 

element near fields as sources (in blue) is more like the expected pattern with lowered radiation towards 

the ground. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V.  Publications 
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Program Review, Fort Eustis, VA, June 20, 2017. 

 

Mackenzie, A.I., “Estimating a Large Phased Array Antenna Radiation Pattern by Computer 
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Figure 31. Polar plot of total far field gain at  = 178° for two simulation methods, PO solution.   
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