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Abstract

A mathematical procedure is presented for the calculation of exact
cumulative distribution statistics for a viscosity-free variant of Burgers
nonlinear partial differential equation (PDE) in one space dimension
and time subject to sinusoidal initial data with uncertain (random
variable) amplitude or phase shift. Analytical solutions of nonlin-
ear PDEs with uncertain initial and/or boundary data are invaluable
benchmarks in assessing approximate uncertainty quantification tech-
niques. The Burgers equation solution with uncertain initial data
results in nonsmooth solution behavior in both physical and random
variable dimensions which provides a severe test for approximate un-
certainty quantification techniques. Mathematical proofs are provided
to verify that exact cumulative distribution statistics can be system-
atically and robustly obtained for all forward time.

1 Introduction

Exact analytical solutions for deterministic nonlinear PDE models are invalu-
able benchmarks in assessing the accuracy of numerical approximations. Un-
fortunately, it is often difficult or impossible to obtain these exact solutions in
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a closed form. The difficulty is compounded when sources of uncertainty (e.g.
random variable parameters or fields) are introduced into the PDE model so
that the solution is a random variable function and uncertainty statistics
(e.g. moment statistics or probability distributions) of output quantities of
interest are sought.

Analytical solutions of the deterministic Burgers equation model, with or
without a second-order differential viscosity term, are often used in evaluating
the accuracy of numerical methods for conservation laws. In the present
work, a viscosity-free variant of Burgers equation with sinusoidal initial data
in a periodic spatial domain is considered. Even though the initial data
is smooth, the solution becomes discontinuous in finite time. The exact
piecewise smooth solution to this problem can be obtained using the method
of characteristics in each smooth region. The boundary location between
smooth regions is determined from the Rankine-Hugoniot jump conditions
and an entropy selection principle [4].

A single source of uncertainty is then introduced into the deterministic
Burgers equation initial data via a random variable with prescribed prob-
ability measure, X ∼ P . The Burgers equation solution is then a random
variable function for which uncertainty statistics may be calculated. A no-
table feature of this random variable solution is the discontinuous behavior
with respect to both physical independent variables and the random variable
X. This solution behavior degrades the accuracy of many numerical meth-
ods in uncertainty quantification that rely on high solution regularity with
respect to random variable dimensions. The purpose of this paper is to show
that given random variable inputs, the exact1 random variable solution for
Burgers equation Y(X) can be readily constructed from which the cumulative
distribution function (CDF)

CDFY(y) = Prob[Y < y] (1)

can be calculated. Given exact Y and/or CDFY(y), other uncertainty statis-
tics are easily obtained, i.e.,

• expectation

E[Y] =

∫
YdP , (2)

1modulo implicit function root finding
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• variance

V [Y] =

∫
(Y− E[Y])2dP , (3)

• probability density function (PDF)

PDFY(y) =
dCDFY(y)

dy
. (4)

Calculation of these quantities serve as important benchmarks in uncertainty
quantification for first-order conservation laws.

2 Background

2.1 A deterministic Burgers equation model

Our starting point is a viscosity-free spatially periodic form of Burgers equa-
tion with sinusoidal initial data, i.e.,

∂tu+ ∂xu
2/2 = 0 (5a)

u(x, 0) = A sin(2πx) (5b)

where u(x, t) : [0, 1]×R+ → R denotes the dependent solution variable, u2/2
is a quadratically nonlinear flux function, and A > 0 is the amplitude of
the sinusoidal initial data. The evolution of this equation, as depicted in
Figure 1, shows a pronounced steepening of the sinusoidal initial data which
eventually becomes discontinuous at x = 1

2
for t > 1

2πA
.

Figure 1: Burgers equation solutions u(x, t) for fixed t =
{0.0, 0.15, 0.3, 0.45, 0.6, 0.75} and A = 1/2.
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2.2 Burgers equation with uncertain initial data

Let (Ω,Σ, P ) denote a probability space with event outcomes in Ω, a σ-
algebra Σ, and probability measure P . Our interest lies in an random variable
form of Burgers equation with uncertain sinusoidal initial data depending
on a random variable X(ω), ω ∈ Ω. Two forms of uncertain initial data
are considered corresponding to (1) phase uncertainty and (2) amplitude
uncertainty as described next.

[Burgers equation with phase uncertainty] Let X(ω) denote a random
variable associated with phase shift in the sinusoidal initial data. As a first
test problem, we pose the following Burgers equation problem with phase
uncertain initial data:

∂tuX + ∂xu
2
X/2 = 0 (6a)

uX(x, 0, ω) = A sin(2π(x+ X(ω))) (6b)

where uX(x, t, ω) : [0, 1] × R+ × Ω → R and A > 0. The spatially periodic
solution uX(x, 4/10,X(ω)) is shown in Figure 2 for − 1

10
≤ X(ω) ≤ 1

10
. The

effect of phase uncertainty is to shift in x the location of the stationary
discontinuity that develops in Burgers equation solution realizations.

Figure 2: Contours of Burgers equation exact solution, uX(x, 4/10,X(ω)),
with phase uncertain initial data and A = 1/2.

As mentioned previously, in the interval x ∈ [4/10, 6/10] the random variable
solution is only piecewise smooth in the random variable dimension. Numer-
ical methods that require global smoothness in random variable dimensions
(e.g. polynomial chaos and stochastic collocation) suffer a significant deteri-
oration in accuracy in this region.
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[Burgers equation with amplitude uncertainty] Let X(ω) denote a
positive random variable associated with amplitude of the sinusoidal initial
data. As a second test problem, we pose the following Burgers equation
problem with amplitude uncertain initial data

∂tuX + ∂xu
2
X/2 = 0 (7a)

uX(x, 0, ω) = X(ω) sin(2πx) (7b)

Figure 3: Contours of Burgers equation exact solution, uX(x, 4/10,X(ω)),
with amplitude uncertain initial data.

where uX(x, t, ω) : [0, 1] × R+ × Ω → R and 0 < Amin ≤ X(ω) ≤ Amax.
The spatially periodic solution uX(x, 4/10,X(ω)) is shown in Figure 3 for
3
10
≤ X(ω) ≤ 1

2
. Note the formation of discontinuity at x = 1/2 for values of

the amplitude random variable greater than 5
4π

.

3 Calculating exact solutions of Burgers equa-

tion

The Burgers equation solution associated with (5a)-(5b) consists of two
smooth regions, (x, t) ∈ (0, 1/2) × R+ and (x, t) ∈ (1/2, 1) × R+, separated
by a entropy-satisfying stationary discontinuity at x = 1/2. The fixed loca-
tion of the discontinuity greatly simplifies the task of constructing an exact
piecewise solution. Specifically, it avoids the complication associated with
finding a time-evolving discontinuity location that satisfies the proper jump
conditions and an entropy selection principle. Rather, in each fixed smooth
region, the solution is “classical” (see below) and can be straightforwardly
calculated using the method of characteristics.

5



3.1 Classical solutions and the method of characteris-
tics [4, 2]

As a prototype scalar conservation law, consider a function f depending only
on u that satisfies the Cauchy initial value problem

∂tu+ ∂xf(u) = 0 in R× R+ (8a)

u(x, 0) = u0(x) in R (8b)

where u(x, t) : R × R+ → R denotes the dependent solution variable, f ∈
C1(R) denotes the flux function, and u0(x) : R → R the initial data. The
solution u is a classical solution of (8a)-(8b) if u ∈ C1(R,R+) satisfies this
system pointwise. For classical solutions of the scalar conservation law, equa-
tion (8a) may be equivalently written in quasilinear form

∂tu+ f ′(u)∂xu = 0 (9)

Next, let (x(s), t(s)) denote a curve in the (x, t) plane. Along this curve

du

ds
=
∂u

∂t

dt

ds
+
∂u

∂x

dx

ds
(10)

Clearly, if
dt

ds
= 1 and

dx

ds
= f ′(u), (11)

then
du

ds
= 0 (12)

This latter equation implies that u(x(s), t(s)) is constant along the con-
strained curve. These constrained curves are referred to as characteristic
curves for the quasilinear form (9). It follows from (11) that

d t

d x
=

1

f ′(u)
(13)

from which it follows that characteristic curves have constant slope and there-
fore are straight lines. Consequently, a characteristic curve passing through
the coordinate pairs (x0, 0) and (x, t) for t > 0 satisfies

t− 0

x− x0
=

1

f ′(u(x, t))
=

1

f ′(u0(x0))
(14)
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from which the solution is obtained

u(x, t) = u0(x0(x, t)) (15)

The function x0(x, t) will be referred to as the “pullback map” that satisfies
the implicit relation

x− x0(x, t) = t f ′(u0(x0(x, t))) (16)

Finding the pullback map for specific (x, t) pairs is the basis for the “method
of characteristics” when applied to (8a)-(8b).

4 Exact solution of Burgers equation with si-

nusoidal initial data

The global structure of Burgers equation solution with sinusoidal initial data
(5a)-(5b) is shown in Figure 4. It is convenient to denote left and right
subdomains, QL = (0, 1/2) × R+ and QR = (1/2, 1) × R+, for which the
lemmas given below will verify that the solution is classical and computable
using the method of characteristics.

x

1/A

1/2 3/41/4 1 x

t

1I (t )0 0I (t )0 0 0

1 110 1

t1

t0

u(x,t )0

I (t )11 I (t )0

x

u(x,t )1

I (t )I (t )
L L R R

minmax

I (t )1 I (t )0
RRLL

Figure 4: Burgers solutions u(x, t0) and u(x, t1) showing characteristics in the
x-t plane, solution maximum location xmax, and solution minimum location
xmin.
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The solution is time invariant at x = 0 and x = 1, i.e., u(0, t) = u(1, t) =
0. As graphically depicted in this figure, the pullback map at these points
reduces to x0(0, t) = 0 and x0(1, t) = 1. For a sufficiently large time, the
solution at the isolated point x = 1/2 is multivalued with left and right limit
values obtained from QL and QR, respectively.

The evolution of the solution maximum and minimum can be directly
calculated for the Burgers equation problem (5a)-(5b), i.e.,

xmax(t;A) = min(1/2, 1/4 + A t), xmin(t;A) = max(1/2, 3/4− A t) (17)

and used to define the left domain subintervals

IL0 (t;A) = [0, xmax(t;A)], IL1 (t;A) = [xmax(t;A), 1/2] (18)

and the right domain subintervals

IR0 (t;A) = [xmin(t;A), 1], IR1 (t;A) = [1/2, xmin(t;A)] (19)

that are later used in constructing bracketing intervals for root finding meth-
ods.

4.1 Characteristic pullback map iterations

In the specific case of Burgers equation with sinusoidal initial data (5a) -
(5b), the characteristic pullback map relation (16) reduces to

x− x0(x, t;A) = t A sin(2πx0(x, t;A)) (20)

Values of the characteristic pullback map for specific (x, t) pairs are zeros of
the function

F (ξ)(x, t;A) := x− ξ − t A sin(2πξ) (21)

Given ξ∗(x, t;A) satisfying F (ξ∗)(x, t;A) = 0, one obtains the desired solu-
tion

u(x, t;A) = u0(ξ
∗(x, t;A)) = A sin(2πξ∗(x, t;A)) (22)

As a root finding problem, it is not clear how many roots (21) possesses and
whether the root(s) can be robustly approximated to any desired level of
accuracy. These questions are addressed below.
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4.1.1 Bracketing characteristic pullback map iterations

There is a keen interest in constructing intervals that bracket isolated roots
of the characteristic pullback map iteration function F (ξ). The bisection
method [3] applied to an initial bracketing interval [ξ(0), ξ(1)] produces a con-
vergent sequence of root approximations such that the n-th member of the
sequence approximates the root ξ∗ with bound

|ξ(n) − ξ∗| ≤ ξ(1) − ξ(0)

2n
(23)

Thus, the bisection method applied to intervals that bracket and isolate roots
of F (ξ) provides both a guarantee of convergence and a reliable error esti-
mate. In practice, other bracket preserving methods such as the regula-falsi
method, that employs bracketed secants, may offer significantly improved
convergence rates but usually require minor modifications [1] to prevent a
slowdown when one bracket limit is repeatedly retained in iterations.

Definition 1 (Isolated bracketing interval) Given an interval I = [x0, x1]
and the continuous function f(x) : C0(I)→ R which brackets roots of f(x),
f(x0)f(x1) < 0. Interval I is an isolated bracketing interval for f(x) if and
only if f(x∗) = 0 occurs exactly once for x∗ ∈ I.

The following lemma gives sufficient conditions for a bracketing interval to
contain a single root.

Lemma 1 (Isolated bracketing interval) Given an interval I = [x0, x1]
and a continuous function f(x) : C0(I) → R which brackets roots of f(x),
f(x0)f(x1) < 0. A sufficient condition for I to be an isolated bracketing
interval is that either

(a) f(x) is strictly increasing or decreasing on I,

or

(b) f(x) is strictly convex or concave on I.

Proof: From the given bracketing assumption f(x0)f(x1) < 0 and continuity
of f(x), at least one root f(x∗) = 0 must exist for x∗ ∈ I. Strictly increas-
ing or decreasing functions are injective. Assume the existence of a second
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distinct root, f(y) = 0, y ∈ I. From the injective property, f(y) = f(x∗),
implies y = x∗ which contradicts the assumption of a second distinct root and
proves condition (a). Next, assume that f(x) is a strictly convex function.
The secant line passing through f(x0) and f(x1) crosses the zero axis from the
given bracketing assumption f(x0)f(x1) < 0 . A strictly convex function lies
entirely below this secant line with exactly one minimum, f(xm), occurring
either in the interval interior or on the the interval boundary. Therefore, xm
partitions the curve into at most two subcurves that are each strictly increas-
ing or decreasing. When a single subcurve is present, it is strictly increasing
or decreasing and satisfies f(x0)f(x1) < 0 so condition (a) directly applies.
When two subcurves are present, one of these subcurves must lie entirely
below the zero axis because the local secant line lies entirely below the zero
axis. Thus, it can be concluded that the remaining strictly increasing or
decreasing subcurve must cross the zero axis, i.e., either f(x0)f(xm) < 0 or
f(x1)f(xm) < 0. Thus, condition (a) applies to this subcurve and condition
(b) is proved. The proof for concave functions follows a similar path and is
omitted. �

Using convexity and bracketing properties of the characteristic pullback
map iteration function, the next lemma proves that isolated bracketing in-
tervals exist when applied to the Burgers equation problem (5a) - (5b) in
subdomains QL and QR.

Lemma 2 (Characteristic pullback map iteration function bracketing)
Let F (ξ)(x, t;A) denote the characteristic pullback iteration function

F (ξ)(x, t;A) := x− ξ − t A sin(2πξ)

for the Burgers equation problem (5a) - (5b). The intervals

• [0, 1/2] for (x, t) ∈ QL

• [1/2, 1] for (x, t) ∈ QR

are isolated bracketing intervals for the characteristic pullback map iteration
function.

Proof: Consider the characteristic pullback map iteration function F (ξ)(x, t;A)
in the subdomain QL. The interval [0, 1/2] satisfies the bracketing property
for (x, t) ∈ QL, i.e.,

F (0) = x > 0

F (1/2) = x− 1/2 < 0
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Twice differentiation of the function F (ξ) yields

F ′′(ξ)(x, t;A) = t A (2π)2 sin(2πξ) (24)

It follows that F (ξ)(x, t;A) satisfies the necessary and sufficient condition
for strict convexity of a twice differentiable function that {ξ ∈ [0, 1/2] :
F ′′(ξ) > 0} is a dense set. Using Lemma 1, the stated lemma is proved for
the bracketing interval [0, 1/2] and (x, t) ∈ QL. The proof for the bracketing
interval [1/2, 1] and (x, t) ∈ QR with F ′′(ξ) concave follows a similar path
that is omitted. �

This lemma is useful in devising robust numerical methods for calculat-
ing the characteristic pullback map for (x, t) pairs. Even so, it is possible
to construct improved (reduced) isolated bracketing intervals. These refined
intervals are then used to determine domain-codomain properties of the pull-
back map.

Lemma 3 (Improved characteristic pullback map iteration isolated
bracketing) Let xmax(t;A) and xmin(t;A) denote the solution maximum and
minimum locations for the Burgers equation problem (5a) - (5b) as defined
in (17). Further, let F (ξ)(x, t;A) denote the characteristic pullback iteration
function

F (ξ)(x, t;A) := x− ξ − t A sin(2πξ)

for this Burgers equation problem. The intervals

• [0, 1/4] for (x, t) ∈ (0, xmax(t;A))× R+

• [1/4, 1/2] for (x, t) ∈ (xmax(t;A), 1/2)× R+

• [3/4, 1] for (x, t) ∈ (xmin(t;A), 1)× R+

• [1/2, 3/4] for (x, t) ∈ (1/2, xmin(t;A))× R+

are isolated bracketing intervals for the characteristic pullback map iteration
function.
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Proof: The proof is identical to Lemma 2 but with the following time de-
pendent bracket limits

F (0) = x > 0, (x, t) ∈ (0, xmax(t;A))× R+

F (1/4) = x− 1/4− t A ≤ x− xmax(t;A) < 0, (x, t) ∈ (0, xmax(t;A))× R+

F (3/4) = x− 3/4 + t A ≥ x− xmin(t;A) > 0, (x, t) ∈ (xmin(t;A), 1)× R+

F (1) = x− 1 < 0, (x, t) ∈ (xmin(t;A), 1)× R+

the following bracket limits when xmax(t;A) < 1/2

F (1/4) = x− 1/4− t A = x− xmax(t;A) > 0, (x, t) ∈ (xmax(t;A), 1/2)× R+

F (1/2) = x− 1/2 < 0, (x, t) ∈ (xmax(t;A), 1/2)× R+

and the following bracket limits when xmin(t;A) > 1/2

F (1/2) = x− 1/2 > 0, (x, t) ∈ (1/2, xmin(t;A))× R+

F (3/4) = x− 3/4 + t A = x− xmin(t;A) < 0, (x, t) ∈ (1/2, xmin(t;A))× R+

F is strictly convex in QL and strictly concave in QR so that the stated
lemma is proved. �

4.2 Burgers equation problem (5a)-(5b) computability

The isolated bracketing property when combined with a root finding method
such as the bisection method, described earlier, is the basis for a robust
algorithm for constructing exact solutions of the Burger equation problem
(5a) - (5b).

Theorem 1 (Burgers equation problem (5a) - (5b) computability)
Given the Burgers equation problem (5a) - (5b), the solution u(x, t;A) for
any (x, t) ∈ QL∪QR can be computed, assuming exact arithmetic, with guar-

anteed reliability to a specified precision ε using at most log2
1/2
ε

steps of the
bisection bracketing method.

Proof: The theorem follows immediately from Lemma 2 together with the
error convergence estimate (23) for the bisection root finding method. �
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4.3 Further properties of the characteristic pullback
map

4.3.1 Characteristic pullback map domain-codomain relationships

From Lemma 3 and guaranteed convergence of the bisection root finding
method (23), the following domain-codomain relationships can be deduced
for any given time t ≥ 0. These relationships are used later in Sect. 5.

Lemma 4 (Pullback map domain-codomain relationships) Given the
Burgers equation problem (5a) - (5b), the characteristic pullback map relation

x− x0(x, t;A) = t A sin(2πx0(x, t;A))

exhibits the following domain-codomain relationships

x0(x, t;A) : QL → (0, 1/2)

x0(x, t;A) : QR → (1/2, 1)

and using the refined subintervals

x0(x, t;A) : (0, xmax(t;A))× R+ → (0, 1/4)

x0(x, t;A) : (xmax(t;A), 1/2)× R+ → (1/4, 1/2)

x0(x, t;A) : (1/2, xmin(t;A))× R+ → (1/2, 3/4)

x0(x, t;A) : (xmin(t;A), 1)× R+ → (3/4, 1)

Proof: The proof follows from Lemmas 2-3 and convergence of the bisection
bracketing method in Theorem 1. �

4.3.2 Monotonicity of the characteristic pullback map

It is instructive and useful later on to algebraically verify that the solution
in QL and QR remains classical for all time t ≥ 0. Solutions obtained from
the method of characteristics are of the form

u(x, t) = u0(x0(x, t))

and are classical if the solution gradients

∂u

∂x
= u′0

∂x0
∂x

and
∂u

∂t
= u′0

∂x0
∂t
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remain bounded and hold pointwise. For the Burgers equation problem (5a)
- (5b), u′0 is trivially bounded and a direct calculation yields

∂x0
∂t

= −A sin(2πx0(x, t;A))
∂x0
∂x

so that boundedness of solution gradients reduces to the problem of proving
boundedness of spatial derivatives of the characteristic pullback map. This
question is addressed in the next lemma.

Lemma 5 (Pullback map monotonicity) The Burgers equation problem
(5a) - (5b) characteristic pullback map x0(x, t) satisfying the following im-
plicit relation

x− x0(x, t;A) = t A sin(2πx0(x, t;A)) (25)

is a bounded strictly increasing function for a fixed time t and (x, t) ∈ QL ∪
QR.

Proof: Given the characteristic pullback map relation (25), the spatial par-
tial derivative is readily obtained

∂x0
∂x

=
1

1 + 2π tA cos(2πx0(x, t;A))
(26)

This partial derivative is positive at x = 0

∂x0
∂x

(x = 0, t) =
1

1 + 2πtA
> 0

and can only change sign by the denominator in (26) passing through zero
at some critical space-time (x∗, t∗) that satisfies

t∗ = − 1

2πA cos(2πx0(x∗, t∗;A))
(27)

and

x∗ = x0(x
∗, t∗;A)− 1

2π
tan(2πx0(x

∗, t∗;A)) (28)

To prove positivity and boundedness of the derivative (26), it must be shown
that no (x∗, t∗) ∈ QL ∪QR exists that satisfies these equations. Assume that
a critical space-time (x∗, t∗) ∈ QL does exist (similarly for (x∗, t∗) ∈ QR).
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Figure 5: Graph of x∗ versus x0, x
∗ = x0 − 1

2π
tan(2πx0).

From Lemma 4, (x∗, t∗) ∈ QL implies x0 ∈ (0, 1/2). The graph of x∗ versus
x0 (see Figure 5) reveals that for x0 ∈ (0, 1/2), the function x∗ 6∈ (0, 1/2).
More specifically,

x∗ < 0 for x0 ∈ (0, 1/4)

x∗ > 1/2 for x0 ∈ (1/4, 1/2)

and
|x∗| =∞ for x0 = 1/4

This shows that (x∗, t∗) 6∈ QL and the stated assumption is contradicted.
Thus, the denominator in (26) never vanishes which implies that

∂x0
∂x

(x, t) > 0, (x, t) ∈ QL

A similar analysis in QR yields

∂x0
∂x

(x, t) > 0, (x, t) ∈ QR

and the stated lemma is proved. �
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5 Calculating an output cumulative probabil-

ity distribution for Burgers equation with

uncertainty

5.1 Calculating the cumulative probability distribu-
tion for an output random variable

Let X ∼ P denote a random variable with prescribed probability measure
and Y an output random variable that satisfies

Y = g(X) (29)

The cumulative distribution associated with Y can be directly calculated

CDFY(y) = Prob[Y < y]

= Prob[g(X) < y]

= Prob[{X < g−1(y)}]

ga −1 g−1
10

X

g(x)

y

g
2
−1(y)(y) (y) b

Figure 6: Non-monotone g(x) versus x.

This latter equation is complicated by the fact that the inverse of g(y) may
not be unique when g(y) is non-monotone as depicted in Figure 6. These
multiple inverses form a set of cardinality N(y) with this set denoted here by
{g−10 (y), g−11 (y), . . . , g−1N−1(y)} with the convention g−1i (y) ≥ g−1j (y) if i > j.

Again referring to Figure 6, for convenience define g−1−1(y) ≡ a and g−1N (y) ≡ b
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with CDFX(g−1−1(y)) = 0 and CDFX(g−1N (y)) = 1. Using these added defini-
tions, the cumulative distribution associated with the random variable Y is
then canonically given by

CDFY(y) =


bN(y)/2c∑
i=0

CDFX(g−12i (y))− CDFX(g−12i−1(y)), if g(g−10 (y)) increasing

1−
bN(y)/2c∑
i=0

CDFX(g−12i (y))− CDFX(g−12i−1(y)), otherwise

(30)
The following example gives a concrete application of this formula for N(y) =
2.

5.1.1 Example: calculation of an output probability distribution

Let X ∼ P denote a random variable. Assume P has a uniform probability
distribution

PDFX(x) =

{
1 for x ∈ [0, 1]

0 otherwise
, CDFX(x) =


0 for x < 0

x for 0 ≤ x ≤ 1

1 otherwise

Next, let g(x) denote the parabolic function

g(x) = 4x(1− x)

Over the nonzero support of PDFX(x), this function is the mapping g :
[0, 1]→ [0, 1] with values of x satisfying g(x) = y given by {1

2
(1−
√

1− y), 1
2
(1+√

1− y)} such that g(x) is a locally increasing function at the first root and a
locally decreasing function at the second root. Using equation (30), a random
variable Y satisfying the random variable equation

Y = g(X)

has the following cumulative distribution function for y ∈ [0, 1]

CDFY(y) = 1 + CDFX(g−10 (y))− CDFX(g−11 (y))

= 1 + g−10 (y)− g−11 (y)

= 1−
√

1− y

Using (4), PDFY(y) is obtained from CDFY(y) by differentiation.
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5.2 Calculating the output cumulative probability dis-
tribution for Burgers equation with phase uncer-
tainty

Recall the phase uncertain initial data problem (6a) and (6b) repeated here

∂tuX + ∂xu
2
X/2 = 0 in [0, 1]× R+ × Ω

uX(x, 0, ω) = A sin(2π(x+ X(ω)))

Let g(ξ)(x, t;A) denote a solution of the deterministic Burgers equation prob-
lem with ξ phase-shifted initial data. This function is related to the unshifted
initial data problem by the relation

g(ξ)(x, t;A) = u(x+ ξ, t;A) (32)

Further, define the phase uncertainty iteration function

G(ξ)(x, t; ũ, A) := g(ξ)(x, t;A)− ũ (33)

that effectively inverts g(·), i.e., ξ(ũ)(x, t;A) = g−1i (ũ)(x, t;A). In implemen-
tations, it is preferable to use the unshifted reference problem

G0(η)(t; ũ, A) := u(η, t;A)− ũ (34)

to calculate unshifted roots and then calculate the shifted roots via (modulo
periodicity)

ξ(ũ)(x, t;A) = η(ũ)(t;A)− x (35)

The following results prove that roots of G0(η) can be reliably computed
using bracketed iteration.

Lemma 6 (Phase uncertainty iteration function convexity/concavity)
Let u(x, t;A) denote a solution of the Burgers equation problem (5a)-(5b).
The phase uncertainty iteration function

G0(η)(t; ũ, A) := u(η, t;A)− ũ (36)

for a given fixed ũ is strictly

• concave for (η, t) ∈ [0, 1/2]× R+
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• convex for (η, t) ∈ [1/2, 1]× R+

Proof: The phase uncertainty iteration function simplifies to

G0(η)(t; ũ, A) = A sin(2πx0(η, t;A))− ũ (37)

and after twice differenting

G′′0(η)(t; ũ, A) = − (2π)2A sin(2πx0(η, t;A))

(1 + 2πtA cos(2πx0(η, t;A)))3
(38)

In the proof of Lemma 5, the denominator in this formula is proven strictly
positive for (η, t) ∈ QL∪QR. From Lemma 4, (η, t) ∈ QL implies x0(η, t;A) ∈
(0, 1/2) and sin(2πx0(η, t;A)) > 0. Similarly, (η, t) ∈ QR implies x0(η, t;A) ∈
(1/2, 1) and sin(2πx0(η, t;A)) < 0. Thus, the sets {(η, t) ∈ [0, 1/2] × R+ :
G′′0(η)(t; ũ, A) < 0} and {(η, t) ∈ [1/2, 1]×R+ : G′′0(η)(t; ũ, A) > 0} are dense
and the stated lemma is proved. �

Recall that explicit formulas for the location of the solution minimum
and maximum for the Burgers equation problem (5a)-(5b) are given in (17)
from which the solution minimum

umin(t;A) = A sin(2πx0(xmin(t;A), t;A)) (39)

and solution maximum

umax(t;A) = A sin(2πx0(xmax(t;A), t;A)) (40)

are obtained. The phase uncertainty random variable solution at a time t is
bounded between these limits, i.e.,

umin(t;A) ≤ uX(x, t, ω) ≤ umax(t;A), (x, t) ∈ QL ∪QR (41)

The next lemma proves that two roots of G0(η)(x, t; ũ) exist with isolated
bracketing intervals for umin(t;A) < ũ < umax(t;A). To insure that two roots
are always obtained (rather than just one), it is convenient to supplant the
multivalued solution at x = 1/2 with the single value u(x = 1/2, t) = 0 on
the closure boundary of QL and QR.
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Lemma 7 (Phase uncertainty iteration function isolated bracketing)
Let u(x, t;A) denote a solution of the Burgers equation problem (5a)-(5b) and
G0(η)(t; ũ, A) the phase uncertainty iteration function

G0(η)(t; ũ, A) := u(η, t;A)− ũ (42)

for umin(t;A) < ũ < umax(t;A). The phase uncertainty iteration function
possesses exactly two isolated bracketing intervals for 0 < ũ < umax(t;A)

• IL0 (t;A) = [0, xmax(t;A)]

• IL1 (t;A) = [xmax(t;A), 1/2]

and exactly two isolated bracketing intervals for umin(t;A) < ũ < 0

• IR1 (t;A) = [1/2, xmin(t;A)]

• IR0 (t;A) = [xmin(t;A), 1]

as depicted in Figure 7.

Proof: Assume 0 < ũ < umax(t;A), a direct evaluation of the bracket limits
verifies the bracketing properties

G0(0) = ũ > 0

G0(xmax(t;A)) = ũ− umax(t;A) < 0

G0(1/2) = ũ > 0

When combined with the concavity result of Lemma 6, [0, xmax(t;A)] and
[xmax(t;A), 1/2] are isolated bracketing intervals. Since [0, xmax(t;A)]∪[xmax(t;A), 1/2]
completely covers [0, 1/2], no additional isolated bracketing intervals are
possible for η ∈ [0, 1/2]. The proof of isolated bracketing intervals when
umin(t;A) < ũ < 0 follows a similar path and is omitted. �
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Figure 7: Burgers equation solution identifying the two roots (circles) of
G(ξ)(x, t; ũ, A) = 0 for 0 < ũ < umax(t;A).

Theorem 2 (Phase Uncertainty Computability) Let u(x, t;A) denote
a solution of the Burgers equation problem (5a)-(5b) and G0(η)(t; ũ, A) the
phase uncertainty iteration function

G0(η)(t; ũ, A) := u(η, t;A)− ũ (43)

for umin(t;A) < ũ < umax(t;A). The two roots of the phase uncertainty
iteration function can be reliably computed, assuming exact arithmetic, with
guaranteed reliability to a specified precision ε using at most log2

1/2
ε

steps of
the bisection root finding method.

Proof: The theorem follows immediately from Lemma 7 together with the
error convergence estimate (23) for the bisection root finding method. �

Theorem 2 proves that the two roots of the phase uncertainty iteration
function, G0(η)(t; ũ, A), can be reliably computed. Equation (35) then pro-
vides the transformation of these roots to roots of G(ξ)(x, t; ũ;A), namely,
{ξ0(ũ)(x, t;A), ξ1(ũ)(x, t;A)} with the ordering convention ξ0(ũ)(x, t;A) ≤
ξ1(ũ)(x, t;A). Using (30), the cumulative probability distribution formula
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for the phase uncertain Burgers problem (6a)-(6b) solution is then given by

CDFuX(ũ)(x, t;A) =
0 ũ ≤ umin(t;A)

CDFX(ξ1(ũ))(x, t;A)− CDFX(ξ0(ũ))(x, t;A), umin(t;A) < ũ < 0

1 + CDFX(ξ0(ũ))(x, t;A)− CDFX(ξ1(ũ))(x, t;A), 0 < ũ < umax(t;A)

1 ũ ≥ umax(t;A)

5.2.1 Example: Burgers equation phase uncertainty output statis-
tics, X(ω) ∼ U [−.1, .1]

Output statistics for the phase uncertain Burgers equation problem (6a)-(6b)
with uniform probability measure, X(ω) ∼ U [−.1, .1] are presented in Figure
8.

Figure 8: Burgers equation with phase uncertainty, X(ω) ∼ U [−.1, .1]. Mo-
ment statistics and representative realization (top) and shaded cumulative
distribution with 10% quantile lines (bottom) at time t = 0.25

The cumulative distribution function, CDFuX(u)(x, t = 1/4; 1/2), (shaded
region) together with quantiles of 10% probability are shown in Figure 8 (bot-
tom). Moment statistics and a representative realization have been graphed
in Figure 8 (top) for reference. Figure 9 shows graphs of the solution cumu-
lative distribution function at x = 0.2 (left) and x = 0.46 (right) with the
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latter figure showing significant nonlinear distortion of the output cumulative
distribution due to uncertainty in the discontinuity location resulting from
phase uncertainty.

Figure 9: Burgers equation with phase uncertainty, X(ω) ∼ U [−.1, .1].
Graphs of the cumulative distribution at x = 0.2 (left) and x = 0.46 (right)
at time t = 0.25

5.2.2 Example: Burgers equation phase uncertainty output statis-
tics, X(ω) ∼ N3(m = 0, σ = 0.05)

Output statistics for the phase uncertain Burgers equation problem (6a)-
(6b) with normal distribution probability measure truncated at 3σ, X(ω) ∼
N3[m = 0, 0.05] are presented in Figure 10.
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Figure 10: Burgers equation with phase uncertainty, X(ω) ∼ N3(m = 0, σ =
0.05). Moment statistics and representative realization (top) and shaded
cumulative distribution with 10% quantiles (bottom) at time t = 0.25

The cumulative distribution function, CDFuX(u)(x, t = 1/4; 1/2), (shaded re-
gion) together with quantiles of 10% probability are shown in Figure 10 (bot-
tom). Moment statistics and a representative realization have been graphed
in Figure 10 (top) for reference. Figure 11 shows graphs of the solution cu-
mulative distribution function at x = 0.2 (left) and x = 0.46 (right). These
results appear similar to the previous uniform distribution results with the
most pronounced differences in the discontinuity region apparently due to
the distribution tails in the normal distribution.

Figure 11: Burgers equation with phase uncertainty, X(ω) ∼ N3(m = 0, σ =
0.05). Graphs of the cumulative distribution at x = 0.2 (left) and x = 0.46
(right) at time t = 0.4

5.3 Calculating the output cumulative probability dis-
tribution for Burgers equation with amplitude un-
certainty

Recall the amplitude uncertain initial data problem (7a) and (7b) repeated
here

∂tuX + ∂xu
2
X/2 = 0 in [0, 1]× R+ × Ω

uX(x, 0, ω) = X(ω) sin(2πx) for 0 < Amin ≤ X(ω) ≤ Amax

Let h(ζ)(x, t) : R+ × R × R+ → R denote a solution of the deterministic
Burgers equation problem with ζ amplitude initial data. This function is
related to the Burgers solution by

h(ζ)(x, t) = u(x, t; ζ) (45)
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Further, define the amplitude uncertainty iteration function

H(ζ)(x, t; ũ) := h(ζ)(x, t)− ũ (46)

that effectively inverts h(·), i.e., ζ(ũ) = h−1(ũ)(x, t). At this point, the num-
ber of roots of H(ζ)(x, t; ũ) is unknown and a robust strategy for computing
them is desired. The following lemmas prove that the amplitude uncertainty
iteration function contains a single root that can be reliably computed using
bracketed iteration. The next lemma proves that this function is a strictly
monotone function.

Lemma 8 (Amplitude uncertainty iteration function monotonicity)
Let u(x, t;A) denote a solution of the Burgers equation problem (5a)-(5b).
The amplitude uncertainty iteration function

H(ζ)(x, t; ũ) := h(ζ)(x, t)− ũ (47)

for a given fixed ũ is strictly

• increasing for ζ > 0 and (x, t) ∈ QL

• decreasing for ζ > 0 and (x, t) ∈ QR

Proof: The amplitude uncertainty iteration function simplifies to

H(ζ)(x, t; ũ) = ζ sin(2πx0(x, t; ζ))− ũ

with
x0(x, t; ζ) = x− t ζ sin(2πx0(x, t; ζ)) (48)

and by differentiation

H ′(ζ)(x, t; ũ) =
sin(2πx0(x, t; ζ)

1 + 2π t ζ cos(2πx0(x, t; ζ)
(49)

In the proof of Lemma 5, the denominator in this formula is proven strictly
positive for (x, t) ∈ QL ∪QR and ζ > 0. From Lemma 4, (x, t) ∈ QL implies
x0(x, t; ζ) ∈ (0, 1/2) and sin(2πx0(x, t; ζ)) > 0 . Similarly, (x, t) ∈ QR implies
x0(x, t; ζ) ∈ (1/2, 1) and sin(2πx0(x, t; ζ)) < 0. Combining these results
proves the stated lemma. �

Lemma 8 implies that H(ζ) is injective and has at most one root. The next
lemma proves that this single root with isolated bracketed interval always
exists whenever u(x, t;Amin) < ũ < u(x, t;Amax).
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Lemma 9 (Amplitude uncertainty iteration function isolated bracketing)
Let u(x, t;A) denote a solution of the Burgers equation problem (5a)-(5b) and
H(ζ)(x, t; ũ) the amplitude uncertainty iteration function

H(ζ)(x, t; ũ) := h(ζ)(x, t)− ũ (50)

with u(x, t;Amin) < ũ < u(x, t;Amax). The interval [Amin, Amax] is an iso-
lated bracketing interval for H(ζ)(x, t; ũ).

Proof: Evaluating the amplitude uncertainty iteration function at the bracket
limits verifies the bracketing property for u(x, t;Amin) < ũ < u(x, t;Amax)

H(Amin) = ũ− u(x, t;Amin) > 0

H(Amax) = ũ− u(x, t;Amax) < 0

When combined with the strict monotonicity results of Lemma 8, the stated
lemma is proved. �

Theorem 3 (Amplitude Uncertainty Computability) Let u(x, t;A) de-
note a solution of the Burgers equation problem (5a)-(5b) and H(ζ)(x, t; ũ)
the amplitude uncertainty iteration function

H(ζ)(x, t; ũ) := u(x, t; ζ)− ũ (51)

for u(x, t;Amin) < ũ < u(x, t;Amax) The single root of the amplitude un-
certainty iteration function can be reliably computed, assuming exact arith-
metic, with guaranteed reliability to a specified precision ε using at most
log2

Amax−Amin

ε
steps of the bisection root finding method.

Proof: The theorem follows immediately from Lemma 9 together with the
error convergence estimate (23) for the bisection root finding method. �

Theorem 3 proves that the single isolated root of the amplitude uncer-
tainty function can be reliably computed. Using (30), the cumulative prob-
ability distribution then reduces to

CDFuX(ũ)(x, t) =


0, ũ ≤ umin(x, t;Amin, Amax)

1− CDFX(ζ(ũ))(x, t), umin(x, t;Amin, Amax) < ũ < 0

CDFX(ζ(ũ))(x, t), 0 < ũ < umax(x, t;Amin, Amax)

1, ũ ≥ umax(x, t;Amin, Amax)

(52)

26



where

umin(x, t;Amin, Amax) =

{
u(x, t;Amin), x < 1/2

u(x, t;Amax), otherwise

and

umax(x, t;Amin, Amax) =

{
u(x, t;Amax), x < 1/2

u(x, t;Amin), otherwise

5.3.1 Example: Burgers equation amplitude uncertainty output
statistics, X(ω) ∼ U [.3, .5]

Output statistics for the amplitude uncertain Burgers equation problem (7a)-
(7b) with uniform probability measure, X(ω) ∼ U [.3, .5] are presented in
Figure 12.

Figure 12: Burgers equation with amplitude uncertainty, X(ω) ∼ U [.3, .5].
Moment statistics and representative realization (top) and shaded cumulative
distribution with 10% quantiles (bottom) at time t = .4

The cumulative distribution function, CDFuX(u)(x, t = 4/10; 1/2), (shaded
region) together with quantiles of 10% probability are shown in Figure 12
(bottom). Moment statistics and a representative realization have been
graphed in Figure 12 (top) for reference. Figure 13 shows graphs of the
solution cumulative distribution function at x = 0.2 (left) and x = 0.46
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(right). In sharp contrast to phase uncertainty, the present results show only
relatively small deviation from a uniform distribution.

Figure 13: Burgers equation with amplitude uncertainty, X(ω) ∼ U [.3, .5].
Graphs of the cumulative distribution at x = 0.2 (left) and x = 0.46 (right)
at time t = 0.4

5.3.2 Example: Burgers equation amplitude uncertainty output
statistics, X(ω) ∼ N3(m = 0.35, σ = 0.05)

Output statistics for the amplitude uncertain Burgers equation problem (7a)-
(7b) with normal distribution probability measure truncated at 3σ, X(ω) ∼
N3[m = 0.35, 0.05] are presented in Figure 14.
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Figure 14: Burgers equation with amplitude uncertainty, X(ω) ∼ N3(m =
0.35, σ = 0.05). Moment statistics and representative realization (top) and
shaded cumulative distribution with 10% quantiles (bottom) at time t = .4

The cumulative distribution function, CDFuX(u)(x, t = 1/4; 1/2), (shaded re-
gion) together with quantiles of 10% probability are shown in Figure 14 (bot-
tom). Moment statistics and a representative realization have been graphed
in Figure 14 (top) for reference. Figure 15 shows graphs of the solution cumu-
lative distribution function at x = 0.2 (left) and x = 0.46 (right). Again in
sharp contrast with the phase uncertainty results, the present graphs results
show only relatively small deviation from a normal distributions.

Figure 15: Burgers equation with amplitude uncertainty, X(ω) ∼ N3(m =
0.35, σ = 0.05). Graphs of the cumulative distribution at x = 0.2 (left) and
x = 0.46 (right) at time t = 0.4

6 Concluding Remarks

A robust procedure and underlying theory have been presented for calculat-
ing exact uncertainty statistics for Burgers equation with uncertain sinusoidal
initial data. This model problem together with exact uncertainty statistics
provides a benchmark for assessing numerical methods in uncertainty quan-
tification.

The exact solution to Burgers equation problem with uncertain sinusoidal
initial data also provides insight into difficulties encountered by many numer-
ical methods. In particular, the exact solution exhibits a piecewise smooth
behavior in random variable dimensions that can greatly degrade the accu-
racy of numerical methods that rely on global smoothness in random variable
dimensions.
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