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Europa

Image Credit:  NASA/JPL-Caltech/SETI Institute

Image Credit:  NASA/JPL-Caltech

• NASA is studying a mission concept that would investigate signs of life 

on Jupiter’s icy moon Europa. 

– Europa is thought to contain a moon-spanning ocean of salty water that 

might permit life to make its way onto the icy surface.

– The Europa Lander would land a laboratory on the icy crust to investigate 

the surface and seek out signs of life.
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The Europa Lander Mission

• The spacecraft and descent stage will experience extreme environments 

during transit and around the Jovian system

– Cold interplanetary cruise at 0°C from Earth to the Jovian system 

– Exposure to high-energy electrons in the Europa-Jovian system

• Planetary protection may require dry heat microbial reduction (DHMR) of 

the descent stage solid rocket motor prior to spacecraft integration

Early conceptual Europa lander mission scenario
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De-Orbit/Deceleration Motor Design
Requirements and Constraints

STAR™48B
Deceleration Motor

15% offload from standard STAR™48B 

4 x STAR™5
Separation Motors 

• Modified propellant grain to target required 

deceleration delta velocity over a wide 

temperature range

• Propellant offload based on successful Low-

Density Supersonic Decelerator (LDSD) 

design (20% offload)

• Incorporated and confirmed a 1.4 factor of 

safety for all components while considering 

extreme temperature and radiation 

environments

• Incorporated separation system to remove 

the deorbit stage from the Descent Vehicle

• Planetary protection concept and processes 

being incorporated to limit the risk of 

contaminating Europa with Earth-based 

microbes

Credit:  NASA/JPL-Caltech
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Propellant DHMR, Radiation and Combined 

DHMR + Radiation Exposure Testing

● Samples of propellant were treated to DHMR at 125°C for 442 hours

● Samples were exposed to high-energy electron radiation at NASA MSFC at 

cumulative doses of 3 and 6 Mrad

 Limited samples exposed to DHMR + 3 Mrad combined environment

 A 6 Mrad exposure is up to four (4) times the expected mission radiation exposure

 The titanium motor case will provide some shielding from radiation

 A large radiation dose is predicted along the external 1-2 cm depth of the motor 

encompassing the case insulation and propellant-liner-insulator bondline

 The bulk propellant and bore will experience negligible radiation

● The samples evaluated included:

 Individual JANNAF Class B milled tensile dog bones, propellant-liner-insulation 

panels, 0.25” diameter strands and 0.25 kg test motor grains

 Testing included visual, dimensional and weight change; differential thermal 

analysis (DTA), hazard sensitivity, mechanical property, bondline strength, burning 

rate in strands and test motors, optical and scanning electron microscopy    

Selected representative results are reported in this presentation
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Comparison of Control and 6 Mrad Tensile 

Samples

• No statistically significant weight, dimensional, density or visual 

changes observed due to DHMR and/or radiation exposure

• Impact, friction and ESD (spark) threshold ignition level energies 

are equivalent or higher after DHMR and/or irradiation

Control 6 Mrad
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Radiation Effect on Propellant Exotherm 

Temperature (DTA)

● Propellant exotherm temperature is correlated with ammonium perchlorate 

(AP) decomposition

 AP decomposition is a complex process involving crystallographic phase transition; 

low temperature induction, acceleration and deceleration regimes; and final high 

temperature decomposition

 The Control propellant exotherm is near 331°C following the phase transition and 

the deceleration/arrest low temperature AP decomposition regime

 Exposure to radiation advances the propellant (and AP) decomposition to near 

243°C coincident with the AP orthorhombic-to-cubic phase transition

 This observation is consistent with open literature studies dating to the 1960s on 

the effect of radiolysis on ammonium perchlorate

Control                                   6 Mrad

Radiation does not adversely impact the thermal stability of the propellant. 

Our internal requirement is an exotherm temperature of ≥ 200°C for all 

manufacturing, handling and flight applications with a large margin of safety. 
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Summary of Tensile and Bondline Effects

● DHMR treatment increases stress and decreases elongation (strain)

 DHMR effectively is accelerated thermal aging (hardening) of the propellant

 The mechanism is oxidative cross-linking across polybutadiene polymer chains

 The increase in stress with DHMR duration is logarithmic

● High-energy electron radiation exposure increases stress and decreases strain 

 Radiation induced hardening occurs by an analogous cross-linking process

 The increase in stress with radiation dose is logarithmic

 The effects of DHMR + Radiation do not appear to be additive and follow a 

combined logarithmic stress increase

● The propellant-liner-insulation bondline is not adversely affected by DHMR, 

radiation or DHMR + Radiation

 Bondline strengths generally increase after DHMR and/or radiation exposure

 All failure modes were 100% cohesive-in-the-propellant as desired   

Motor bondline and bulk propellant tensile properties will survive 

expected Europa mission radiation exposure with margin
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Effect on Propellant Stress and Strain
Class B Tensile Samples, 25°C, 0.0128 cm/cm/s
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Effect of Radiation on Cold Stress and Strain
Cold, High-Rate Loading Ignition Condition 
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Propellant-Liner-Insulation Bondline Strength
Desired Cohesive-in-Propellant Failure Mode Observed
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Effect of DHMR and/or Radiation on 

Propellant Burning Rate
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There is no significant effect due to DHMR and/or radiation on 

propellant burning rate in end-burning test motors – possible 

slight decrease in burn rate at intermediate pressures 
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Future Work and Conclusions

● Additional bondline radiation exposure testing is in progress for Control, 3 

Mrad and 6 Mrad dosages as a function of radiation exposure temperature

● It is unlikely that DHMR of the STAR™ motor will be used for planetary 

protection because of the accelerated aging strain penalty

 Motor operation will sterilize all internal materials and components, except possibly 

the insulation and case inside wall; however, these regions will see the higher 

radiation dose and potentially effective microbial reduction

 Pre-propellant cast, motor case assembly operations will be modified to control 

microbial contamination

 Multiple redundant motor ignition systems will insure successful ignition and 

extreme heat sterilization

 Common methods for external surface microbial reduction will be used at the 

spacecraft level

An off-loaded STAR™48 motor will survive the interplanetary 

cruise and Jovian radiation environment, and successfully 

function as part of the Europa Lander Descent Stage 
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