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Background — What is Drag Modulated Aerocapture (DMA)? Conceptual Neptune Orbiter using DMA Background — What is ADEPT?
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S e & - p. .p y ' | purpose of assessing mission feasibility Neptune DMA Concept with ADEPT missions to most planetary bodies with atmospheres. Earth Flight Test (Mach 3)
* Drag modulation flight control is used to reach a specific orbit in the presence of targeting and _ Built off of the 2017 Pre-Decadal Study, but adapted for drag (Stowed in 5m Fairing) - (Deployed for Entry) _ Current Technology development project funded under Sept 2018
atmospheric uncertainties. modulation aerocapture. STMD G : <
. . - . _ _ ADEPT ame Changing Development Program (FY12 start)
— By modulating the time that a drag skirt is jettisoned from the spacecraft, the vehicle can control — Science payload includes: Narrow Angle camera, Doppler Imager, , stowed inside the | H vehicle shroud and deploved
the amount of delta-v received Magnetometer, Atmospheric Probe (w/ ASI, Nephelometer, Mass Drag Skirt - Oowe I.nSI € the€ launch Veniclie snroud and aeployed Iin
& ' / Spectrometer). 4 Space prior to entry.
e A Mission Benefi BN — Baseline concept of operations releases probe prior to orbit - Low ballistic coefficient provides a benign deceleration and
erocapture Mission benetits insertion, but investigations are ongoing to assess the feasibility Spacecraft thermal environment to the payload.
e Greater mass efficiency — lower propellant mass can leave more room for payload or enable missions with different of bringing the probe to orbit before release.

launch vehicles. e 70 degree sphere-cone geometry chosen as starting

point because of high heritage and good understanding
of aerodynamics (Viking, MER, MSL, M2020).

- High-temperature ribs support 3D woven carbon fabric to
e Shorter trip time — the spacecraft can travel faster and arrive at a greater speed relative to the planet without a \ generate drag and withstand high heating. /
K propulsive penalty to slow down and enter orbit. /
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(Human Mars Exploration)

L e 6m ADEPT-VITal
e 12m ADEPT drag skirt is stowed for launch, facilitating Pam 12m " (Verus| .
fit within 5 meter launch vehicle fairing. \ 3
— ADEPT drag skirt is jettisoned during atmospheric pass and
e e : { i RE SERAHATION the orbiter is released from the aeroshell after exiting the i N\
MANEURES . ‘ atmosphere. )
’ A | e The vehicle targets a , m apoapsis orbit, to
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o | allow for Triton flybys. Y | )
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Ly E'NTBY - *Many opportunities exist for further flight system optimization
Interplanetary Trajectory Design for Neptune Orbiter Neptune Atmosphere Module used in DMA Simulations Neptune DMA Trajectories and Preliminary Aerothermal Analysis
* A broad trajectory search was conducted for launch dates in the late 2020’s to mid 2030’s Atmospheric Profile (3°S Latitude)
* Launch vehicles considered were SLS Block 1B and Falcon Heavy Modified ot Neotune GRAM used in traiect o ~TRAI(Modlfied GRAM)  —Moses o Lindal Preliminary DMA Trajectory and
, - o _  Modified version of Neptune used in trajectory : . . .
e 6,000 kg delivered mass was the focus, but opportunities to optimize the flight system mass can cimulations Stagnation Point Aerothermal Environments
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Trajectory search for an SLS Block 1B launch with Jupiter flyby Trajectory search for a Falcon Heavy launch with multiple flybys E c00 ] E cop - 3 g g
e The ~6,000 kg delivered mass region contains trajectories with e The ~6,000 kg delivered mass region contains trajectories with E ] E : . o ° 5
flight to Neptune in ~9 years. flight to Neptune in ~11.5 years. < 300 ] < 300 ] ) S z g g :’%
* Arrival V-infinity of ~16 km/s results in conventional chemical * Arrival V-infinity of ~18 km/s results in conventional chemical : : :% § 3 £ o
propulsion orbit insertion delta-v of ~5 km/s, which is likely not propulsion orbit insertion delta-v of ~6 km/s, which is likely not 100 - 100 1 % N g g s %’ %
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e Comparable chemical propulsion trajectories exist for 12-13 year ¢ Comparable chemical propulsion trajectories do not exist for 1E-11 1E-09 1E-07 1E-05 1E-03 1E-01  1E+01 1€-13  1E-11  1E-09  1E-07  1E-05  1E-03  1E-01 ~ ;E = Zﬁ . S %
flight time. Aerocapture starts science mission 3-4 years sooner. reasonable flight times. Aerocapture is the only way to achieve Mass density/kg.m™ Mole fraction (volume mixing ratio) : \ 5 S §
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DMA for small and large missions across the solar system Open Questions and Future Work
Distributed Aerothermal Environments (at Peak Heating Point)
o . * Exploration of expected orbit targeting accuracy with the drag modulation system at
L“ge"""“"‘““. .N;.stune / . \ Neptune in the presence of uncertainties (previous work has shown that orbit » Distributed aerothermal environments using DPLR (v4.04) > ) o
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* Assessment of science instruments and mission objectives (eg Triton observations for rigid nose, and carbon fabric (ADEPT skirt) E
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