# **Lunar Development Lab (LDL) Concept**

**Leading to the First Human Lunar Outpost** 

Dr. Allison Zuniga NASA Ames- Space Portal Office ISDC Conference- June 6-9, 2019





### **Background - NASA Frontier Development Lab (FDL)**



- FDL is an applied AI research accelerator that uses interdisciplinary teams to solve challenging problems for space science and exploration.
- FDL is a PPP between NASA, SETI and the commercial sector with key partners in AI/ML such as, Google, Intel, IBM, and Nvidia.
- FDL is in its 4<sup>th</sup> year and has established an impressive success rate for research output.
  Research outcomes are regularly accepted to respected journals and scientific conferences.
- Over this time, FDL has developed 17 Al applications in heliophysics, exoplanet discovery, lunar exploration, astrobiology, earth science and planetary defense.





## **Al for Lunar Development and Exploration**



# NASA FDL has a growing suite of AI tools for lunar development and exploration:

- Automated crater identification for lunar mapping
- Rover localization using onboard cameras
- Co-operative robotic methodologies for polar prospecting/traverse planning

# Challenges are chosen to identify closely with the National Space Exploration Campaign's strategic goals, specifically:

 Lead the emplacement of capabilities that support lunar surface operations and facilitate missions beyond cislunar space

#### Partners in FDL's past Lunar AI projects included:

- Intel, Google and HP
- Luxembourg Space Agency/Space Resources
- XPRIZE Foundation













# **Lunar Resource Mapping Challenge for 2019**



#### **FDL Opportunity**

- It is estimated that billions of tons of metal (nickel-iron-cobalt) meteorite fragments could exist on the Moon. There also have not been any missions that specifically looked for evidence of M-class impactors.
- These lunar resources may be exploited through ISRU capabilities to build infrastructure on the Moon, such as lunar habitats.
- Higher resolution resource maps can aid mission planners to locate resources for ISRU in future robotic and human lunar missions.

#### FDL Challenge

Investigate existing data sets from multiple missions to develop a high-resolution resource map of potential metallic deposits from M-class impactors.

- LRO's LROC WAC and NAC visible images
- LRO's Diviner imaging radiometer datasets
- LRO's Mini-RF data
- Clementine's UV-VIS dataset
- CNSA Change'E-1 and Chang'E-2 microwave radiometer data
- ISRO Chandrayaan-1 Mini-SAR
- JAXA Kaguya Radar Sounder





Lunar Thermal Anomaly Distribution shows 266 hot/cold spots, from 60N to 60S (Zheng, et al, 2014)



## **Lunar Development Lab (LDL)**



#### **Purpose:**

 To bring together experts from academia, industry and NASA in an accelerator environment to advance lunar development sufficiently that leads to a sustainable and economical human lunar outpost as well as the creation of a new thriving, cislunar economy.

#### **Approach:**

- Generate new design solutions, technologies and architectures leveraging lunar resources as much as possible.
- Develop design solutions and architectures for infrastructure systems including power generation and storage, communications, navigation, surface mobility and life support systems
- Build and test prototype hardware in a simulated environment to reduce technical and operational risk.
- Use Al and machine learning technologies and other advanced tools to quickly process data and optimize design solutions
- Use economic analysis tools to compare designs and architectures to work towards economic and sustainable solutions







## **Draft Challenge Areas**



- 1. Lunar architecture designs which integrate lunar resources into the design of surface systems, human habitats and life support systems.
- 2. Infrastructure system designs for power generation, communications, navigation, thermal management, landing pads and radiation shielding.
- **3.** Lunar mining techniques and resource production estimates for key raw elements, e.g. H2O, O2, Si, Ti, Al
- **4. High-definition lunar resource mapping** and modelling of minerals, metals and rare-earth elements.
- **5. Economic analysis of resource production techniques** and competing lunar architectures
- **6. Lunar base radiation 'safe haven' architectures** which uses supercomputer simulations of lunar magnetic anomalies





## **Road From LDL to First Human Lunar Outpost**



### Integrated <u>Design Solutions</u>







# Prototype Hardware and Ground Testing







# Low-Cost Flight Demonstrations







# **Buildup of Initial Elements Human Lunar Outpost**





### **Next Steps**



- Define lunar resource challenge areas for initial LDL 1.0
- Establish public-private partnerships to help sponsor teams in an accelerator environment
- Select Pl's to lead research objectives challenge problems and technical team.
- Solicit highly-qualified and motivated researchers and mentors to participate in LDL 1.0
- Prepare data and tools that researchers will need to address challenge problems
- Implement LDL research sprint sessions by FY 2020





#### For more info:

Dr. Allison Zuniga

NASA Ames -Space Portal Office

Email: allison.f.zuniga@nasa.gov

