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Questions to be answered

 Can a stable layer be strong enough to
stop downdrafts from reaching the
surface?

Do such stable layers exist in nature?

 Implications for interactions between dry
alr and tropical cyclones

— Downdrafts inject low entropy air into the TC
inflow layer (Tang and Emanuel 2012)
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Prior Studies

REVIEWS OF GEOPHYSICS, VOL. 23, NO. 2, PAGES 183-215, MAY 1985

Convective Cloud Downdraft Structure:
An Interpretive Survey

KEvIN R. Knuprp AND WILLIAM R. COTTON

Department of Atmospheric Science, Colorado State University, Fort Collins
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entrainment in initiating and sustaining downdrafts?

5. How do environmental wind shear and stability pro-
files affect entrainment and downdraft structure. In particu-
lar, how do downdrafts react to stable layers which often

exist?

processes?

6. How do downdraft outflows affect storm structure,
and how do downdraft transports influence larger-scale

Poster at AGU

31 July 2019

Storer, R. L., D. J._Posselt, and G. L. Stephens, 2018:
Investigating the sensitivity of deep convection to small
environmental changes. 2018 AGU Fall Meeting, A11J-2371.

Charles Helms NASA GSFC charles.n.helms@nasa.gov




Stable Layers and Downdrafts 31 July 2019

Origin Story
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Stopped Downdrafts

2—6-h Peak Downdraft Intesity

31 July 2019
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Less of a Flood, More of a Trickle

2—6-h Total Downward Mass Flux
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A Cause?

2—6-h Total Downward Mass Flux
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Same Model, Different Sounding

2—6-h Total Downward Mass Flux
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= Cloud extent (0.1 g/kg)

= === [reezing level

86, _
™ = 5 K/km)

CM1 Model Setup

Ax, Ay, Az 250 m, 250 m, ~250 m
Domain 100 km x 100 km x 25 km
Microphysics Morrison 2M w/ Graupel
Coriolis Force No
Radiation No

Surface Fluxes Constant Moisture

Surface Flux

Convection forced by ongoing surface convergence

Modified Dunion (2011) Moist Tropical
Sounding

CAPE: 3903 J/kg

CIN: 1 J/kg

charles.n.helms@nasa.gov



= (Cloud extent (0.1 g/kg) ===== Freezing level

Stable Layers and Downdrafts 31 July 2019

Hydrometeor Loading Differences

I New Simulation I I Original Simulation I

2—6-h Mean Hydrometeor Load Forcing on Vertical Velocity 2—6-h Mean Hydrometeor Load Forcing on Vertical Velocity
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Microphysics Cooling Differences

I New Simulation I
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Simulation Conclusions

o Stable layer can inhibit precipitation-free
downdrafts

* Precipitation-laden downdrafts can
penetrate the stable layer

— hydrometeor loading and evaporation/melting

Hydrometeor Loading Differences Microphysics Cooling Differences
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Does this occur In nature?

« NOAA SHOUT field campaign
— HIWRAP Ku/Ka-band radar
— Dropsondes

» Vertical velocity from
Dual-Doppler analyses
— Multiple band/angles

e Remove fall speed via
statistical bin method

Bin data by Subtract bin-mean from

reflectivity and > Average.hydr.or_neteor ve_rtlcal == hydrometeor vertical
: velocity within each bin : :
altitude velocity for each bin

Photorealistic Aircraft

A~
&
&
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layers in TCs?
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What about blocking a downdraft?

I Vertical Velocity of Air I

Forward-look inner-beam Ku-band vertical velocity :: 1652 UTC 1 September 2016 — 1730 UTC 1 September 2016

14 — L q
L E % .
10 — , _’.’ .| i
: 0 2 2% 8 10 0 2|6 8.10

= : 1 | ‘ w

= R ,fﬁ ‘; - S
43 €733 <’¢>
2 5 5 e - I o ,

- ,,,1,":,—:-,7,',‘;“31,,-,4’ = e i [ S P S SV S — ,,i,zﬁ?:‘,',,"l:,,,: L —
%OO 250 300 350 400

Along-track distance [km]
4 T
-4 -3 -2 -1 0 1 2 3 4

Vertical Velocity [m s™]

* Recall: Precipitation-laden downdrafts can
penetrate the stable layer

e Can we find evidence of a reduction In
downdrafts within stable layers?
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downdraft?

1 What about inhibiting a

Mean Radar-derived Vertical Velocity

Dropsonde-derived Stability Profile (d6,/dz)
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Do stable layers inhibit downdrafts?
—I Within Stable Layer I— —I <1 km Above Stable Layer F
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Do stable layers reduce downdrafts?
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A Schematic Summary

Precipitation-free
downdrafts can be mostly
\ blocked by stable layer

r
Precipitation-laden <] I ]

downdrafts can I
_ -IIIIIIIII-—

penetrate stable Iayer

Observations suggest stable layers
reduce precipitation-laden downdrafts

A

\N

Charles Helms NASA GSFC charles.n.helms@nasa.gov



Stable Layers and Downdrafts 31 July 2019

END
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Simulation Detalls
. Base soundings

— Gabirielle (2013) dropsonde from Ax, Ay, Az 250 m, 250 m,
NASA HS3 field campaign 250 m
» Located just west of disturbance
— Dunion (2011) moist tropical Domain 100 km x 100 km
sounding X 25 km

» Gabrielle sounding winds/location

* Modifications WETelEles '\cvc;rgsrgg 2e|\l/|
— Subtract mean 0-3-km wind — P
— Set 0—3-km wind to 0 m/s Coriolis Force No
— Above 10 km: blend with ERAS Radiation No
B ggcl)/oovle%lkm: TGLEE Wl &4 e Surface Fluxes Constant Moisture

— 1 —12 km: moisten until at least Surface Flux

80% RH Convection forced by constant
» Keep virtual temperature unchanged surface convergence
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Same Model, Different Sounding

2—6-h Total Downward Mass Flux
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Side-by-side Comparison
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Side-by-side Comparison
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The Search for Differences

2—6-h Mean Stability (Virtual Potential Temperature)
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Stable Layers and Downdrafts

The Search for Differences

= Cloud extent (0.1 g/kg)
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Vertical Velocity Retrieval

 Radar measures hydrometeor velocity

 Must remove terminal
fall speed to get vertical
air velocity

e Statistical bin method

— Categorize data points by
reflectivity factor and altitude

— Assuming updrafts and downdrafts are equally
represented, bin average is terminal fall speed
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Vertical Velocity Retrieval
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Vertical Velocity Retrieval

I Air Vertical Velocity I
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Summary

o Simulations: Stable layers can block
precipitation-free downdrafts

* Observations: Stable layers reduce
precipitation-laden downdrafts

e Limitation: Radar unable to observe
precipitation-free downdrafts
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Stable Layers and Downdrafts

Origins

31 July 2019

= Cloud extent (0.1 g/kg)
= === [reezing level

— Horizontal winds (knots)

CM1 Model Setup
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