The Impact of Stable Layers on Downdrafts in Tropical Convection

Charles N. Helms NPP Postdoctoral Fellow NASA Goddard Space Flight Center 31 July 2019

Questions to be answered

- Can a stable layer be strong enough to stop downdrafts from reaching the surface?
- Do such stable layers exist in nature?
- Implications for interactions between dry air and tropical cyclones
 - Downdrafts inject low entropy air into the TC inflow layer (Tang and Emanuel 2012)

Prior Studies

REVIEWS OF GEOPHYSICS, VOI	L. 23, NO. 2, PAGES 183-215, MAY 1985	amics de- questions
Convective Cloud An Interpr Kevin R. Knupp an Department of Atmospheric Science	Downdraft Structure: retive Survey ND WILLIAM R. COTTON Colorado State University, Fort Collins	ing down- e effects of namics of s? ure forces the role of
	 entrainment in initiating and sustaining downdra 5. How do environmental wind shear and st files affect entrainment and downdraft structure. lar, how do downdrafts react to stable layers verist? 6. How do downdraft outflows affect storm and how do downdraft transports influence processes? 	the fold of fts? ability pro- In particu- which often structure, larger-scale

Poster at AGU

Storer, R. L., D. J. Posselt, and G. L. Stephens, 2018: Investigating the sensitivity of deep convection to small environmental changes. *2018 AGU Fall Meeting*, A11J-2371.

Origin Story

Cloud extent (0.1 g/kg)

Freezing level

CM1 Model Setup

Δx, Δy, Δz	250 m, 250 m, ~250 m
Domain	100 km x 100 km x 25 km
Microphysics	Morrison 2M w/ Graupel
Coriolis Force	No
Radiation	No
Surface Fluxes	Constant Moisture Surface Flux

Convection forced by ongoing surface convergence

Modified Gabrielle (2013) Dropsonde CAPE: 1708 J/kg CIN: 30 J/kg

Charles Helms NASA GSFC

Stopped Downdrafts

2-6-h Peak Downdraft Intesity

Cloud extent (0.1 g/kg)

Freezing level

CM1 Model Setup

Δx, Δy, Δz	250 m, 250 m, ~250 m
Domain	100 km x 100 km x 25 km
Microphysics	Morrison 2M w/ Graupel
Coriolis Force	No
Radiation	No
Surface Fluxes	Constant Moisture Surface Flux

Convection forced by ongoing surface convergence

Modified Gabrielle (2013) Dropsonde CAPE: 1708 J/kg CIN: 30 J/kg

Charles Helms NASA GSFC

Less of a Flood, More of a Trickle

2-6-h Total Downward Mass Flux

Cloud extent (0.1 g/kg)

Freezing level

CM1 Model Setup		
Δx, Δy, Δz	250 m, 250 m, ~250 m	
Domain	100 km x 100 km x 25 km	
Microphysics	Morrison 2M w/ Graupel	
Coriolis Force	No	
Radiation	No	
Surface Fluxes	Constant Moisture Surface Flux	

Convection forced by ongoing surface convergence

Modified Gabrielle (2013) Dropsonde CAPE: 1708 J/kg CIN: 30 J/kg

Charles Helms NASA GSFC

A Cause?

Charles Helms NASA GSFC

Same Model, Different Sounding

2-6-h Total Downward Mass Flux 14 12 10 Height [km] 8 6 4 2 0 -10 10 20 0 Distance [km] 25 30 35 40 50 55 60 45 5 10 15 20 Total Downward Mass Flux [10⁴ kg m⁻²]

Cloud extent (0.1 g/kg)

- Stability
$$\left(\frac{\partial \theta_v}{\partial z}\right) = 5 \text{ K/km}$$

CM1 Model Setup

Δx, Δy, Δz	250 m, 250 m, ~250 m
Domain	100 km x 100 km x 25 km
Microphysics	Morrison 2M w/ Graupel
Coriolis Force	No
Radiation	No
Surface Fluxes	Constant Moisture Surface Flux

Convection forced by ongoing surface convergence

Modified Dunion (2011) Moist Tropical Sounding CAPE: 3903 J/kg

CAPE. 3903 J/kg CIN: 1 J/kg

Charles Helms NASA GSFC

Stable Layers and Downdrafts

31 July 2019

Original Simulation

2-6-h Mean Hydrometeor Load Forcing on Vertical Velocity

Hydrometeor Loading Differences

New Simulation

2-6-h Mean Hydrometeor Load Forcing on Vertical Velocity

Charles Helms NASA GSFC

Microphysics Cooling Differences

Charles Helms NASA GSFC

Simulation Conclusions

- Stable layer can inhibit precipitation-free downdrafts
- Precipitation-laden downdrafts can penetrate the stable layer

Charles Helms NASA GSFC

- hydrometeor loading and evaporation/melting

Does this occur in nature?

- NOAA SHOUT field campaign
 - HIWRAP Ku/Ka-band radar
 - Dropsondes
- Vertical velocity from Dual-Doppler analyses
 - Multiple band/angles
- Remove fall speed via statistical bin method

Bin data by reflectivity and altitude

Average hydrometeor vertical velocity within each bin

Subtract bin-mean from hydrometeor vertical velocity for each bin

Charles Helms NASA GSFC

Charles Helms NASA GSFC

What about blocking a downdraft?

- Recall: Precipitation-laden downdrafts can penetrate the stable layer
- Can we find evidence of a reduction in downdrafts within stable layers?

Stable Layers and Downdrafts

31 July 2019

What about inhibiting a downdraft?

Charles Helms NASA GSFC

Stable Layers and Downdrafts

31 July 2019

Do stable layers inhibit downdrafts?

Charles Helms NASA GSFC

Do stable layers reduce downdrafts?

X = Statistically significant decrease

Charles Helms NASA GSFC

Charles Helms NASA GSFC

END

Charles Helms NASA GSFC

Simulation Details

- Base soundings
 - Gabrielle (2013) dropsonde from NASA HS3 field campaign
 - Located just west of disturbance
 - Dunion (2011) moist tropical sounding
 - Gabrielle sounding winds/location
- Modifications
 - Subtract mean 0–3-km wind
 - Set 0–3-km wind to 0 m/s
 - Above 10 km: blend with ERA5
 - Below 1 km: moisten until at least 95% RH
 - 1 12 km: moisten until at least 80% RH
 - Keep virtual temperature unchanged

|--|

Δx, Δy, Δz	250 m, 250 m, ~250 m
Domain	100 km x 100 km x 25 km
Microphysics	Morrison 2M w/ Graupel
Coriolis Force	No
Radiation	No
Surface Fluxes	Constant Moisture Surface Flux
Convection forced by constant surface convergence	

Same Model, Different Sounding

Side-by-side Comparison

2-6-h Mean Relative Humidity

2-6-h Mean Relative Humidity

22

2-6-h Downdraft (>10 cm s⁻¹) Frequency of Occurrence

charles.n.helms@nasa.gov

Stable Layers and Downdrafts

Side-by-side Comparison

2–6-h Mean Relative Humidity

Charles Helms NASA GSFC

23

The Search for Differences

Charles Helms NASA GSFC

The Search for Differences

Charles Helms NASA GSFC

Vertical Velocity Retrieval

- Radar measures hydrometeor velocity
- Must remove terminal fall speed to get vertical air velocity
- Statistical bin method
 - Categorize data points by reflectivity factor and altitude
 - Assuming updrafts and downdrafts are equally represented, bin average is terminal fall speed

Vertical Velocity Retrieval

Charles Helms NASA GSFC

Vertical Velocity Retrieval

Charles Helms NASA GSFC

Summary

- Simulations: Stable layers can block precipitation-free downdrafts
- Observations: Stable layers reduce precipitation-laden downdrafts
- Limitation: Radar unable to observe precipitation-free downdrafts

Origins

- Cloud extent (0.1 g/kg)
- Freezing level
- Horizontal winds (knots)

CM1 Model Setup

Δx, Δy, Δz	250 m, 250 m, ~250 m
Domain	100 km x 100 km x 25 km
Microphysics	Morrison 2M w/ Graupel
Coriolis Force	No
Radiation	No
Surface Fluxes	Constant Moisture Surface Flux

Convection forced by ongoing surface convergence

CAPE: 1708 J/kg CIN: 30 J/kg

Charles Helms NASA GSFC