

VERIFICATION OF THE SMAP LEVEL-4 SOIL MOISTURE ANALYSIS USING RAINFALL OBSERVATIONS IN AUSTRALIA

<u>*R. Reichle*<sup>1</sup>, Q. Liu<sup>1</sup>, G. De Lannoy<sup>2</sup>, W. Crow<sup>3</sup>, L. Jones<sup>4</sup>, J. Kimball<sup>4</sup>, and R. Koster<sup>1</sup></u>

<sup>1</sup>Global Modeling and Assimilation Office, NASA/GSFC, Greenbelt, MD, USA
<sup>2</sup>KULeuven, Leuven, Belgium
<sup>3</sup>Hydrology and Remote Sensing Laboratory, USDA/ARS, Beltsville, MD, USA
<sup>4</sup>University of Montana, Missoula, MT, USA

#### IGARSS 2019

Yokohama, 28 July – August 2, 2019





# SKILL OF THE SMAP LEVEL-4 PRODUCT IN A DATA-SPARSE REGION.

#### <u>*R.* Reichle</u><sup>1</sup>, Q. Liu<sup>1</sup>, G. De Lannoy<sup>2</sup>, W. Crow<sup>3</sup>, L. Jones<sup>4</sup>, J. Kimball<sup>4</sup>, and R. Koster<sup>1</sup>

<sup>1</sup>Global Modeling and Assimilation Office, NASA/GSFC, Greenbelt, MD, USA <sup>2</sup>KULeuven, Leuven, Belgium <sup>3</sup>Hydrology and Remote Sensing Laboratory, USDA/ARS, Beltsville, MD, USA <sup>4</sup>University of Montana, Missoula, MT, USA

#### IGARSS 2019

Yokohama, 28 July – August 2, 2019



# Motivation

SMAP

(1.4 GHz)

radiometer

L-band



Launched

31 Jan 2015

Sensitive only to **surface** soil moisture (~0-5 cm)

GMAO

Key Objectives of the <u>Level 4 Surface & Root-Zone Soil Moisture</u> (L4\_SM) product:

- 1. Root-zone soil moisture (0-100 cm)
- 2. Spatially & temporally complete

# L4\_SM Algorithm Overview





*Reichle et al.* 2017a, JHM, doi:10.1175/JHM-D-17-0063.1 *Reichle et al.* 2017b, JHM, doi:10.1175/JHM-D-17-0130.1

GMAO

## L4\_SM Monitoring (Nov 2018, Vv4030)



RMS(O-F) > 20 K: 21z on 6 Nov 2018 21z on 20 Nov 2018

System prevents operators from exporting L4\_SM data until approved by scientist.

GMAO Global Modeling and Assimilation Office gmao.gsfc.nasa.gov

# Tb Analysis in Australia (6 Nov 2018, 21z)



Global Modeling and Assimilation Office gmao.gsfc.nasa.gov

GMAC

## Events with std-dev(O-F)>20 K (through Dec 2018)



Global Modeling and Assimilation Office gmao.gsfc.nasa.gov

**GMAO** 

### **Disappearing CPCU Gauges**



During the first few months of SMAP, there was a considerable drop in the number of gauges that contribute to the CPCU product.

Subsequent analysis is for Aug 2015 to Jul 2018.



# From Case Study to Systematic Investigation

#### **Objective:**

Quantitatively relate soil moisture analysis increments to precip errors.

#### Assuming that

1) BoM precip is correct and L4\_SM precip is wrong,

2) soil moisture errors result *only* from precip errors, and

3) seasonally varying *climatological* bias in L4\_SM precip does *not* result in soil moisture increments (b/c of L4\_SM calibration):

→ L4\_SM soil moisture increments should be correlated with errors in L4\_SM precip anomalies (w.r.t. BoM).





### From Case Study to Systematic Investigation



#### **Objective:**

Quantitatively relate soil moisture analysis increments to precip errors.

#### Assuming that

1) BoM precip is correct and L4\_SM precip is wrong,

2) soil moisture errors result *only* from precip errors, and

3) seasonally varying *climatological* bias in L4\_SM precip does *not* result in soil water increments (b/c of L4\_SM calibration):

→ L4\_SM soil moisture increments should be correlated with errors in L4\_SM precip anomalies (w.r.t. BoM).





### From Case Study to Systematic Investigation



Expect **high** correlation where BoM has good gauge coverage and CPCU has little or none.

Expect **low** correlation where <u>both</u> CPCU and BoM have sufficient gauges or <u>both</u> do <u>not</u> have gauges.





# National Aeronautics and Space Administration How Can We Explain the Correlation Pattern?





**GMAO** 

**Global Modeling and Assimilation Office** gmao.gsfc.nasa.gov

## How Can We Explain the Correlation Pattern?

#### New approach:

 BoM precipitation is bad if distance from nearest gauge > 1.5°

 L4\_SM precipitation is ok where there is agreement with BoM: R (BoM<sub>anom</sub>,CPCU<sub>anom</sub>)>0.7





→ SMAP soil moisture analysis increments are consistent with known errors in L4\_SM precipitation forcing.

# Evaluating L4\_SM Using ASCAT Soil Moisture

- Triple collocation (TC) can estimate the (anomaly) skill of a soil moisture product (w.r.t. <u>unkown truth</u>), provided <u>two</u> independent products are available.
  Typical triplet: Model / Passive / Active
- However, L4\_SM merges modeling and passive microwave observations.
- Dong et al. (2019), GRL, introduced a method to compute skill <u>improvement</u> using only <u>one</u> independent product (e.g., ASCAT):

R\_ratio $\equiv$  $R_{L4,\theta}$  /  $R_{OL,\theta}$ (ratio of L4 and OL skill vs. truth  $\theta$ )(after some math) =  $R_{L4,ASC}$  /  $R_{OL,ASC}$ (ratio of L4 and OL skill vs. ASCAT)

where R is the anomaly correlation coefficient and OL is a model-only simulation.



# National Aeronautics and Space Administration Skill Improvement from SMAP Data Assimilation





#### Greatest skill improvement from SMAP assimilation in otherwise data-sparse regions.

Verification with in situ measurements suggests that ASCAT-based metric underestimates true skill improvement (not shown).



# **Summary and Conclusion**

Using independent BoM precipitation data, we find that SMAP assimilation corrects known errors in L4\_SM precipitation forcing in Australia.

Using independent ASCAT soil moisture retrievals, we find that soil moisture skill improvement from SMAP assimilation is greatest in otherwise data-sparse regions.

The patterns of corrections/improvements are highly consistent, which further confirms the value of SMAP in data-sparse regions.

