
GPM Mission Status and NASA Decadal Survey Activities Related to Precipitation

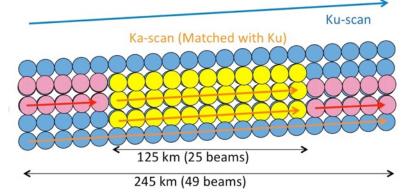
IMERG analysis for 07:30 UTC June 21, 2019

Scott Braun GPM Project Scientist

NASA Goddard Space Flight Center

12th International Precipitation Conference June 21, 2019

> www.nasa.gov/gpm Twitter: NASARain Facebook: NASARain


- Walt Petersen selected to be Science Research and Projects Division (SRPD) Deputy Division Chief
 - Joe Munchak (GSFC) will replace Walt as GPM Deputy for Ground Validation
- FCC auctioning off bandwidth near 24 GHz for 5G
 - Will impact all sensors flying 23.8 GHz
- IMERG V06 reprocessing of reprocessing for TRMM & GPM

Spacecraft and instrument status: All systems are fully functional

DPR switched to full scan on 5/21/18

Algorithms still need to be updated to process full scan for Ka

GPM Anomaly

Reaction wheel #2 (of 5) stopped rotating on May 30, 2019.

Flight operations team investigating cause.

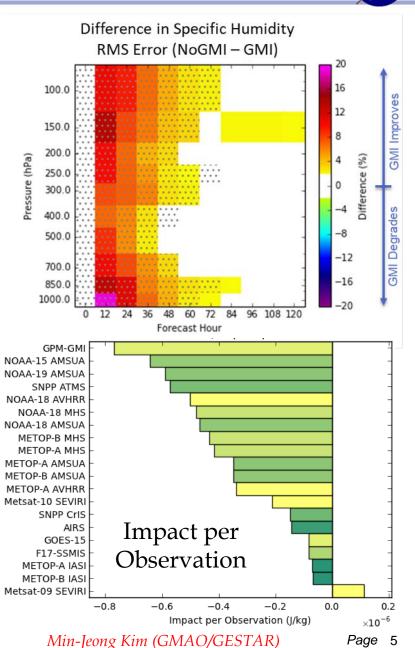
No data impact.

Fuel Predictions (w/controlled re-entry)

Prediction	Plus/ Early	Mean/ Nominal	Minus /Late	
June-2015	05/2029	11/2039	06/2043	
Nov-2015	03/2027	03/2035	08/2039	
May-2016	06/2032	04/2037	10/2047	
Nov-2016	08/2029	01/2035	10/2038	
May-2017	12/2034	05/2036	02/2037	
Nov-2017	08/2027	07/2032	08/2035	
May-2018	03/2033	05/2035	03/2037	
Nov-2018	11/2026	09/2033	11/2036	

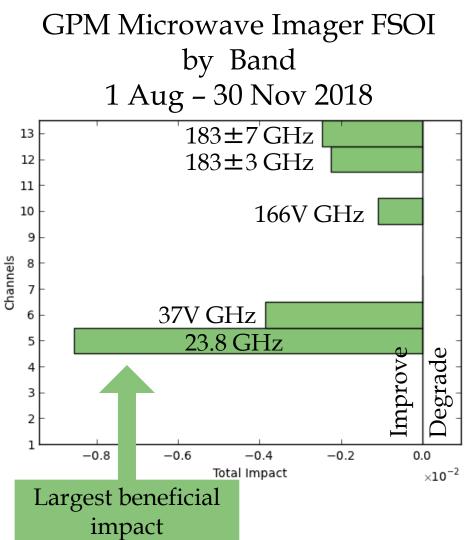
Fuel is unlikely to be the limiting factor

- All Level 2 GPM and TRMM products were reprocessed to V05 (passive microwave) and V06 (radar & combined) in 2018
- IMERG V06 reprocessing for TRMM & GPM
 - GPM data reprocessed, reprocessing back through TRMM
 - Corrupted input file recently discovered that requires reprocessing
 - Near real-time products to be reprocessed back through TRMM for applications users
- TRMM CSH latent heating reprocessing to begin soon.
- GPM V07 reprocessing no earlier than end of 2020. Algorithm priorities include:
 - Extending dual-frequency retrievals across the full Ku swath
 - Fixing low bias in TRMM PR and GPM Ku PR rainfall rates

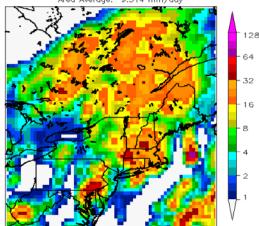

All-Sky GPM Data in GEOS Weather Forecasts

- Largest impact of GMI radiances in the Tropics
- Specific humidity improved in short term (0-72 hour) forecasts (top, hatched indicates significance)
- Similar improvements occur in tropical mid and lower tropospheric temperature and winds (not shown)
- Other modeling and initialization improvements included in the GEOS upgrade extend these improvements into the medium range

0


0

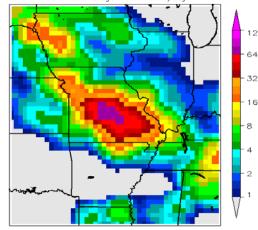
• GMI is seen to have the highest impact per observation of all the radiance observation types, and the total impact of GMI (bottom) is comparable to a single Microwave Humidity Sounder instrument (not shown)


The FSOI metric can be used to illustrate the importance of the 23.8 GHz band

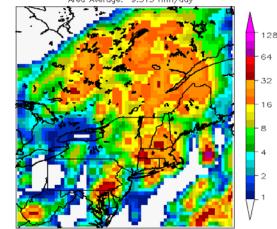
- For FSOI, negative (positive) values indicate that the observations contributed to a forecast error reduction (increase)
 - Negative is good
- Of the six bands used in our weather forecasting system, the 23.8 GHz band accounts for 47% of the total forecast impact from GPM/GMI

FSOI=Forecast Sensitivity-Observation Impact

Derived rain rate No 23.8 GHz data


GPROF Rainrates Missing 23 GHz Channels July 1st, 2015 from Sensors: GM/AMSZ/F16,F17,F18,F19 Area Average: 9.314 mm/day

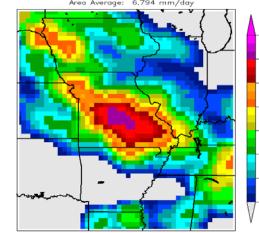
mm/day


mm/day

GPROF Rainrates Missing 23 GHz Channels July 1st, 2015 from Sensors: GMI/AMSR2/F16,F17,F18,F19 Area Average: 6.795 mm/day

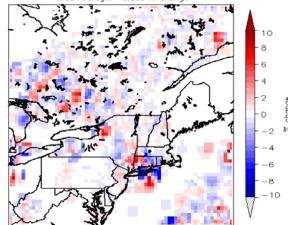
Derived rain rate Includes 23.8 GHz data

GPROF Rainrates Including All Channels July 1st, 2015 from Sensors: GMI/AMSR2/F16,F17,F18,F19 Area Average: 9.313 mm/day

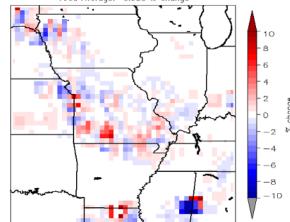

nm/day

128

64


nm/day

GPROF Rainrates Including All Channels July 1st, 2015 from Sensors: GMI/AMSR2/F18,F17,F18,F19 Area Average: 6.794 mm/day



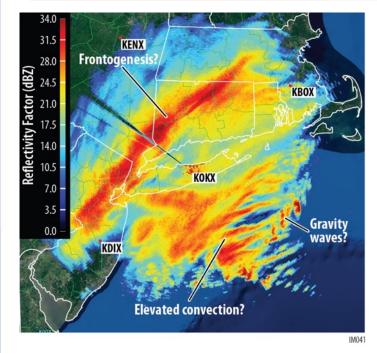
Percentage differences between the two estimates

GPROF Rainrates (Missing 23 GHZ - All Channels) July 1st, 2015 from Sensors: GMI/AMSR2/F15,F17,F18,F19 Area Average: -0.853 % change

GPROF Rainrates (Missing 23 GHZ – All Channels) July 1st, 2015 from Sensors: GMI/AMSR2/F16,F17,F18,F19 Area Average: 0.959 % change

Courtesy of C. Kummerow

Earth Venture Suborbital-3 Selection



IM055

- Investigation of Microphysics and Precipitation or Atlantic Coast-Threatening Snowstorms (IMPACTS)
 - PI Lynn McMurdie, University of Washington, deputy PIs G. Heymsfield (GSFC), J. Yorks, and S. Braun

IMPACTS Objectives

- CHARACTERIZE the spatial and temporal scales and structures of snow bands in Northeast US winter storms
- 2 UNDERSTAND the dynamical and microphysical processes that produce the observed structures
- APPLY this understanding of the structures
 and underlying processes to improve remote sensing and modeling of snow

GPM expecting to add the Dual-frequency, dualpolarized, Doppler radar (D3R) at location still TBD.

See L. McMurdie talk today!

SCIENCES · ENGINEERING · MEDICINE

CONSENSUS STUDY REPORT

THRIVING ON OUR CHANGING PLANET

A Decadal Strategy for Earth Observation from Space

- Identifies five designated foundational observations to be implemented as cost-capped medium- and large-size missions directed or competed at the discretion of NASA:
 - Aerosols.
 - Clouds, Convection and Precipitation.
 - Mass Change.
 - Surface Biology and Geology.
 - Surface Deformation and Change.

CCP Description

Observable Priorities

Desired Observable Capabilities

Coupled cloud-precipitation state and dynamics for monitoring global hydrological cycle and understanding contributing processes including cloud feedback. Radar(s), with multi-frequency passive microwave and sub-mm radiometer.

Aerosols Description

 Observable Priorities 	 Desired Observable Capabilities
Aerosol properties, aerosol vertical profiles, and cloud properties to understand their effects on climate and air quality.	Backscatter lidar and multichannel, multi- angle/polarization imaging radiometer flown together on the same platform.

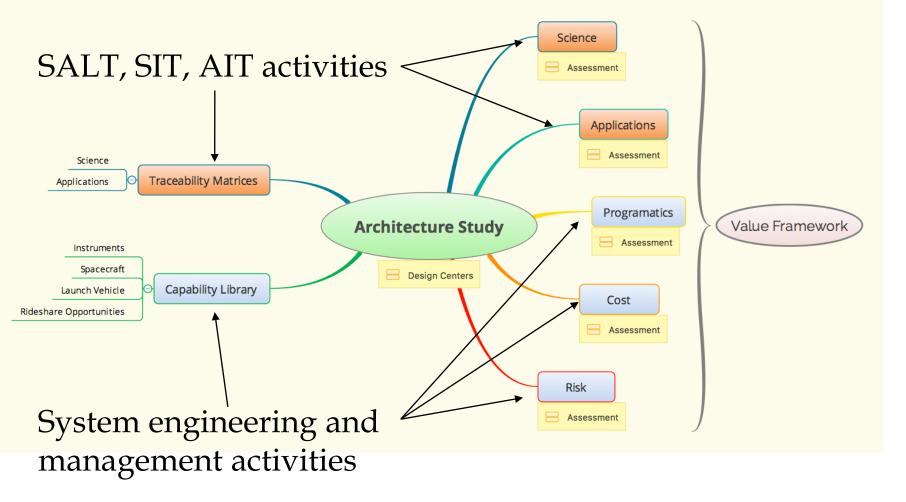
- In June 2018, NASA HQ called for multi-NASA Center study plans to develop concepts/architectures for the designated observables
- NASA HQ determined that instruments will be competed rather than designed to SATM (must be TRL-6 by PDR ca. 2023-2024)
 - SATM will define appropriate desired minimum capabilities (not requirements)
- Challenge to envision new science beyond the Program of Record (PoR) but ensure an implementable, costcapped observing system
- Finding an observing system that meets objectives is ultimately dependent on knowledge of available capabilities (Instrument Library)

Internal to NASA

Science/Applications Leadership Team

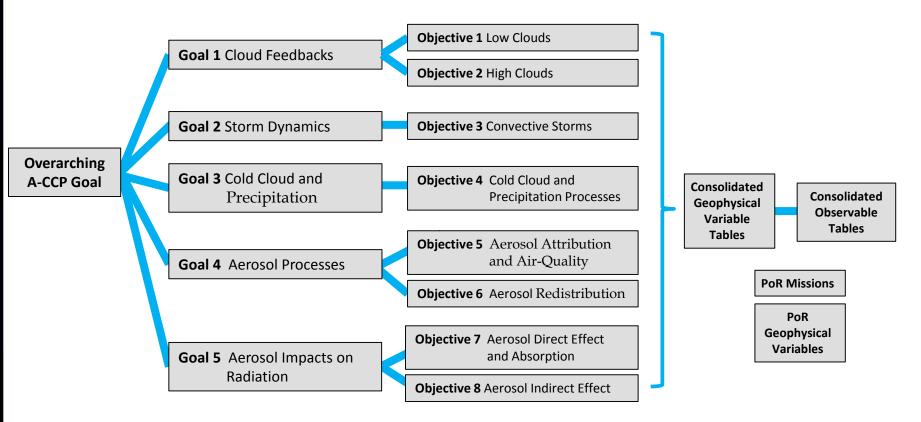
Da Silva, Braun (GSFC), Stephens, Waliser (JPL), Ferrare, Winker (LaRC), Petersen (MSFC), Kacenelenbogen (ARC), Kirschbaum (GSFC), Omar (LaRC)

Science Impact Team Co-Chairs Mace (U of UT), Redemann (U of OK)


Applications Impact Team Co-Chairs Kirschbaum (GSFC), Omar (LaRC)

> Value Framework Team Ivanco (LaRC)

External to NASA


Science Community Cohort Co-Chairs van den Heever (CSU), Carmichael (Iowa)

A-CCP Study Activities

NASA

Schematic of A-CCP SATM flow from goals to objectives to desired capabilities

Framing Assumptions for Minimum Desired Capabilities

- A-CCP is a combined Aerosols and CCP process-oriented Earth Observing System, although mapping capabilities highly desired.
- A-CCP is an Earth Observing System potentially consisting of
 - a) A space-based mission (payload, spacecraft, launch vehicle)
 - b) A fully integrated, sustained sub-orbital component
 - c) PoR, models, data assimilation, synergistic algorithms needed to extract maximum benefits from the A-CCP measurements
- Payload may consist of:
 - a) Active sensors (lidars and radars)
 - b) Several passive sensors (passive MW radiometer, polarimeter, spectrometer)

- Science and Applications Traceability Matrix (SATM) is maturing, but still under development.
- Exploring partnerships/contributions with JAXA, CNES, CSA, DLR, South Korea
- RFI responses form an instrument library
 - Contains radars, passive micro. radiometers, lidars, polarimeters, spectrometers, and others.
 - Includes a range of capabilities from cubesat to larger class instruments

- May Architecture Construction Workshop (ACW)
 - Explored potential polar-orbiting observing system architectures for single and two-satellite (non-smallsat) solutions
 - Explored GPM train of complementary sensors
 - Examined a range of active instrument capabilities as well as international contributions
- June ACW (the last 3 days)
 - Explored smallsat (<190 kg) solutions, including various constellations
 - Polar orbit smallsat train or hybrid smallsat/largesat
 - GPM orbit smallsat train
 - Lower-inclination orbit constellation of cubesats for diurnal sampling

- Summer 2019: Qualitative assessment of science benefit of architectures from recent workshops
- Selection of first two architecture options for more detailed collaborative design center (CDC) studies starting in October
- Value framework scoring of architectures following each CDC
- Suborbital workshop in March 2020 time frame
- Final report to NASA HQ in September 2021
- Notional launch date in 2028 time frame

Questions?

A-CCP

2

4

۵.

0

а.

AGU Fall meeting session announcement

H123 "Space-based Precipitation Observations, Estimation and Applications: a Centennial Perspective".

This session build on the traditional Global Precipitation Measurement (GPM) mission session with a broad perspective at the intersection of history and the future.

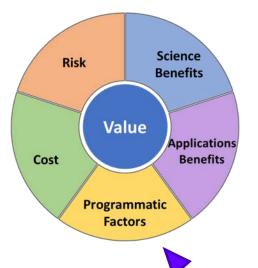
Abstract submission: https://agu.confex.com/agu/fm19/prelim.cgi/Session/80639 Deadline: July 31.

BE 水积 副目 - B

· · **



Extra slides


ECIPITATION MEASU

Science Benefits in the Value Framework

For each **Observing System (OS)**, a **Science Benefit (B)** score is determined for each **Science Objective** and incorporated in the OS's "Baseball Card".

Science Benefit is one of five contributions to an OS's Value

Example Baseball Cards for OS 1-5

	OS 1	OS 2	OS 3	OS 4	OS 5
O1: Low Clouds	0.37	0.13	0.37	0.64	0.33
O2: High Clouds	0.22	0.34	0.89	97	0.11
O3: Convective Storms	0.45	0.67	0.53 0.53 0.53 0.53 0.53 0.53	es .	0.19
O4: Falling Snow Processes	0.08	0.59	otional sco for examp	only	0.59
O5: Aerosol Redistribution	0.95	0.67	ionalinp	0.24	0.29
O6: Aerosol Attribution	0.14	0.0/	othexan	0.42	0.83
07: Air Quality	0.66	0.44	40 ¹ .17	0.13	0.36
O8: Absorbing Aerosols	0.71	0.86	0.34	0.75	0.40
O9: Aerosol Direct Effect	0.89	0.77	0.88	0.20	0.06
O10: Aerosol Indirect Effect	0.55	0.47	0.04	0.09	0.19

Example comparison of Science Benefit (B) across OSs 1-5

For a given OS and Science Objective

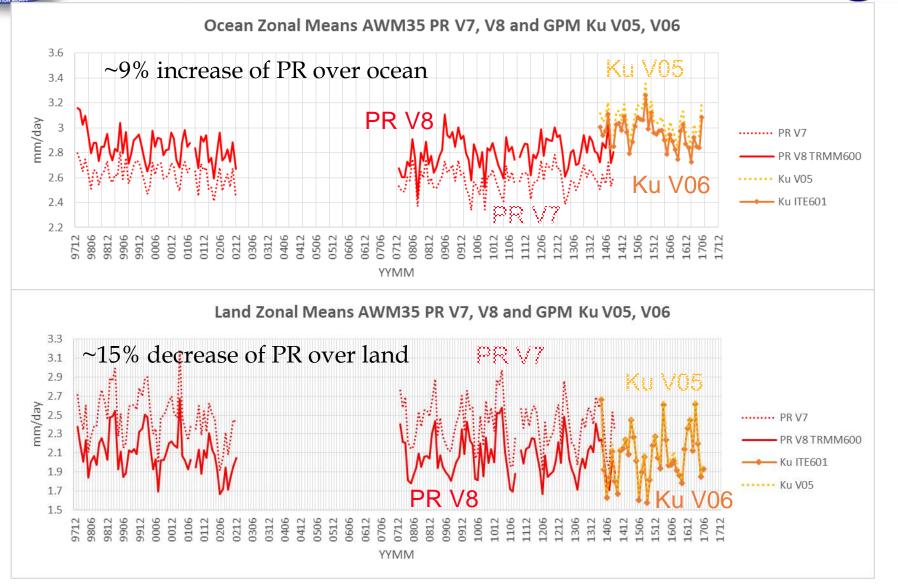
$$B = \sum Utility * Quality$$

23

$B=\sum UQ$

B = Family/Customer Satisfaction

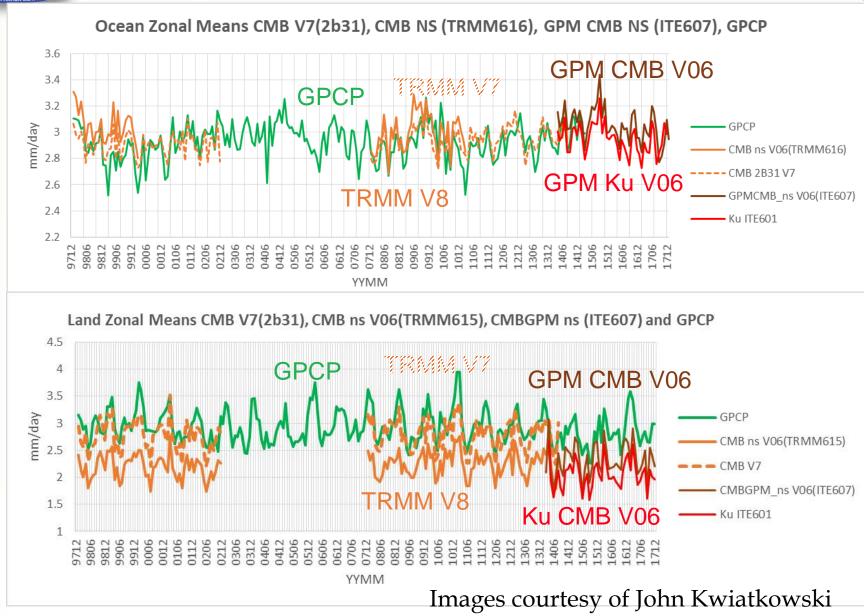
I KADI HONAL HAWIDUKGEK KECH E						
Ingredients	Utility	Quality				
Patty	0.60	1.0 = ½ lbs, 100% Angus Beef, Charbroiled 0.4 = vegan "Impossible" burger				
Bun	0.20	0.8 = sesame seed topped whole wheat bun 0.4 = small, white bread bun				
Cheese	0.10	0.9 = Cheddar 0.6 = American 0.3 = Mozzarella				
Tomato	0.04	etc				
Lettuce	0.04	etc				
Onions	0.01	etc				
Ketchup	0.01	etc				


TRADITIONAL HAMBURGER RECIPE

Utility is the importance of the Ingredient to the Recipe
Quality is the quality of the given ingredient relative to a best possible (NOTE: Utility is probably more subjective than Quality)
OS is the approach to acquiring the ingredients, e.g. 1-N trips to store, which store, who goes, rely on what's in fridge (POR)...

From Duane Waliser (JPL)

PR Time Series Of Global Mean



Images courtesy of John Kwiatkowski

Combined Algorithm Ocean and Land Time Series

Proposed Names (US) Science Expe						rtise	Application Expertise		
First	Last	Institution	Science Interests	Α	Cl	Cv	Pr	Α	ССР
			Data Assimilation, GAW						
Greg	Carmichael	Iowa	perspective	\checkmark				\checkmark	
Sue	van den Heever	CSU	CCP, aerosols	\checkmark	\checkmark	\checkmark	\checkmark		
Tristan	L'Ecuyer	U Wisc	clouds		\checkmark	\checkmark	\checkmark		
Ana	Barros	Duke	CCP/Hydrology			\checkmark			
Andy	Dessler	Texas A&M							
Graham	Feingold	NOAA	Clouds, aerosols		\checkmark				
Andrew	Gettleman	NCAR	Climate Modeling		\checkmark	\checkmark			
Colette	Heald	MIT	aerosol modeling						
Steve	Klein	LLNL	cloud feedbacks						
Mark	Kulie	Mich.Tech	CCP(snow, microwave)		\checkmark	\checkmark	\checkmark		
Ruby	Leung	PNNL	precip, convection		\checkmark	\checkmark			
Yang	Liu	Emory	Air Quality						
Johnny	Luo	CCNY	UTLS						
Allison	McComiskey	DOE/BNL	aerosols, radiation	\checkmark					
Steve	Nesbitt	Illinois	ССР			\checkmark	\checkmark		
Jeff	Reid	NRL	Aerosols, modeling						
Lynn	Russell	Scripps	aerosol chemistry						
Courtney	Schumacher	Texas A&M	radar, convection			\checkmark			
Armin	Sorooshian	U Arizona	aerosols, clouds						
Rob	Wood	U Wash	Clouda-erosol interactions	\checkmark	\checkmark				

0

œ

A=Aerosol, Cl=Clouds, Cv=Convection, Pr=Precipitation

A-CCP Goals

Overarching A-CCP Goal	A+CCP	A	ССР	2017 DS Most Important Very Important	Goals
Understand the processing of water and aerosol through the atmosphere and develop the societal applications enabled from this understanding.				C-2a, C <mark>-2g</mark> , W-1a, W-2a	G1 Cloud Feedbacks Reduce the uncertainty in low- and high-cloud climate feedbacks by advancing our ability to predict the properties of low and high clouds.
				C-2g, C-5c, H-1b, W-1a, W-2a, W-4a	G2 Storm Dynamics Improve our physical understanding and model representations of cloud, precipitation and dynamical processes within deep convective storms.
				H-1b, W-1a, W-3a, S-4a	G3 Cold Cloud and Precipitation Improve understanding of cold (supercooled liquid, ice, and mixed phase) cloud processes and associated precipitation and their coupling to the surface at mid to high latitudes and to the cryosphere.
				W-1a, W-5a, C-5a	G4 Aerosol Processes Reduce uncertainty in key processes that link aerosols to weather, climate and air quality related impacts.
		D		C-2a, C-2h, C-5c	G5 Aerosol Impacts on Radiation Reduce the uncertainty in Direct (D) and Indirect (I) aerosol- related radiative forcing of the climate system.