

Overview of the optomechanical design of the LUVOIR instruments

James Corsetti¹, Matthew Bolcar¹, Julie Crooke¹, Brian Fleming², Kevin France², Joseph Generie¹, Qian Gong¹, Tyler Groff¹, Jason Hylan¹, Andrew Jones¹, Lia Sacks¹, Garrett West¹, Kan Yang¹, Neil Zimmerman¹

¹NASA Goddard Space Flight Center ²University of Colorado, Boulder

SPIE Optics + Photonics 12 August 2019

Overview

- LUVOIR is one of four concepts being submitted for the 2020 Decadal Survey in Astronomy and Astrophysics
- Two architectures studied by NASA GSFC
 - LUVOIR-A
 - LUVOIR-B
- Three Instruments
 - ECLIPS
 - LUMOS
 - HDI

LUVOIR-A

15-m, on-axis telescope

- 120 segments, 1.223-m flat-to-flat
- 155 m² collecting area

Four instruments

- Extreme Coronagraph for Living Planetary Systems (ECLIPS)
- LUVOIR UV Multi-object Spectrograph (LUMOS)
- High Definition Imager (HDI)
- Pollux (CNES-contributed instrument design)

LUVOIR-A

LUVOIR-B

8-m, off-axis telescope

- 55 segments, 0.955-m flat-to-flat
- 43.4 m² collecting area

Three instruments

- Extreme Coronagraph for Living Planetary Systems (ECLIPS)
- LUVOIR UV Multi-object Spectrograph (LUMOS)
- High Definition Imager (HDI)

LUVOIR-B

LUVOIR

Extreme Coronagraph for Living Planetary Systems (ECLIPS)

- High-contrast (10⁻¹⁰) coronagraph
- Inner working angle (IWA): 3.5λ/D
- Outer working angle (OWA): $64\lambda/D$
- Three channels w/ modules
 - 1. UV (200 525nm)
 - a. Camera w/ filter wheel
 - 2. VIS (515 1030nm)
 - a. Camera
 - b. Integral Field Spectrograph (IFS)
 - 3. NIR (1000 2000nm)
 - a. IFS
 - b. Single point-source spectrometer (SPSS)

ECLIPS, optical design

Coronagraph design provides both pupil image planes and intermediate image planes for various masks:

Element	Element Size	Resolution	Mode		
Deformable Mirror	50 x 50 mm	128 x 128 elements	Reflective (MEMS)		
Apodization masks	100 mm diameter	10 µm pitch	Reflective		
Focal plane masks	Depends on λ	f/15 beam at mask	Transmissive		
Lyot Stop mask	~20 mm diameter	N. A.	Transmissive		

After Lyot stop, light enters individual channel modules

ECLIPS, block diagram

ECLIPS-A block diagram above, HDI-B's identical save folding scheme pre-DMs

ECLIPS-A, optical design

ECLIPS-B, optical design

LUVOIR Ultraviolet Multi-Object Spectrograph (LUMOS)

Three channels/capabilities

- 1) Multi-object Spectroscopy (MOS)
- 2) Imaging
- 2 x 2 arcmin full FOV
- 100 1000nm waveband
- R between 500 and 55,000
- Only instrument w/ significant architectural differences between A and B versions

LUMOS-A, block diagram

LUMOS-A, optical design

LUMOS-B, block diagram

LUMOS-B, optical design

1. FUV multi-object spectrograph 2. NUV/VIS multi-object spectrograph

3. FUV imager

High Definition Imager (HDI)

Observatory's primary instrument for imaging over wide FOV

Two waveband channels

- UV-visible (UVIS) 200 1000 nm
- Near-infrared (NIR) 800 2500 nm

Five operational modes

- NIR transmissive
- UVIS reflective
- 50/50 beamsplitter (full bandpass)
- Dichroic beamsplitter (400 800 and 800 – 1600 nm)
- Optimized UV reflective (maximum reflectance, 200 400 nm)

HDI – Block Diagram

- HDI-A block diagram shown above, HDI-B's identical save fold mirror (FM)
- Pupil relay and channel mirrors are freeform surfaces (xy polynomial) 12 August 2019

SPIE Optics + Photonics

HDI Specifications

Paramotor		HD	I-A	HDI-B		
Falametei	UTIILS	UVIS	NIR	UVIS	NIR	
Bandpass	μm	0.2 - 1.0	0.8 - 2.5	0.2 - 1.0	0.8 - 2.5	
Aperture Diameter (D)	m	15	15	8	8	
<i>f</i> -number		26	20	26	20	
Focal Length	m	390	300	208	160	
Field of View	arcmin	2.93 x 1.94	2.97 x 1.96	2.73 x 1.80	2.75 x 1.81	
Platescale	mas / pixel	3.43	6.88	6.45	12.89	
DLSS	μm	31.72	48.80	31.72	48.80	
RMS Pointing Stability	1-σ mas	0.43	0.86	0.81	1.61	
RMS Wavefront Error	nm	< 35	< 71	< 35	< 71	
Detector Type		CMOS	HgCdTe	CMOS	HgCdTe	
Pixel Size	μm	6.5	10.0	6.5	10.0	
Detector Format	pixels	8192 x 8192	4096 x 4096	8192 x 8192	4096 x 4096	
Array Tiling		6 x 4	6 x 4	3 x 2	3 x 2	
Total Number of Pixels	Gigapixels	1.611	0.403	0.403	0.101	

HDI-A, optical design

HDI-B, optical design

HDI-A, RMS wavefront performance

	HD	I-A	HDI-B			
	UVIS	NIR	UVIS	NIR		
Requirement	< 35	< 71	< 35	< 71		
Average	25.8	25.7	28.3	29.3		
Maximum	53.5	59.0	104.6	104.9		
Minimum	9.5	9.9	6.6	9.4		

12 August 2019

HDI-B, RMS wavefront performance

	HD	I-A	HDI-B			
	UVIS	NIR	UVIS	NIR		
Requirement	< 35	< 71	< 35	< 71		
Average	25.8	25.7	28.3	29.3		
Maximum	53.5	59.0	104.6	104.9		
Minimum	9.5	9.9	6.6	9.4		

12 August 2019

Thank you for your attention!

For more information:

https://asd.gsfc.nasa.gov/luvoir/ Twitter: @luvoirtelescope

Backup

LUMOS Specifications

Instrument Parameter	G120M	G150M	G180M	G155L	G145LL	G165LL	G300M	G700L	FUV Imager
Optimized Spectral Bandpass (nm)	100 - 140	130 - 170	160 - 200	100 - 200	100 - 200	110 - 200	200 - 400	400 - 1000	100 - 200
Actual Spectral Bandpass (nm)	93 - 159	111 - 189	141 - 219	93 - 267	93 - 210	110 - 270	193 - 460	340 - 1000	100 - 200
Field of View (FOV)	2' x 2'	1.5' x 2' (A) 2' x 2' (B)	1.5' x 2' (A) 2' x 2' (B)	1.2' x 2' (A) 2' x 2' (B)					
Spectral Resolving Power (Objective: $\lambda/\Delta\lambda$)	30,000	30,000	30,000	8,000	500	500	20,000	15,000	
Imaging Resolution (Objective: mas)	50	50	50	50	50	50	50	50	50
			LUMOS A						
Effective Area (Peak, cm ²)	311,540	136,780	160,610	304,300	184,880	311,545	324,950	302,750	~ 100,000
Effective Area (Central Wavelength, cm ²)	293,270	102,750	160,610	91,250	31,460	91,240	247,630	266,690	~ 100,000
Grating Ruling Density (groove/mm)	1,950	2,050	2,020	815	21	43	450	150	
Average Resolving Power (All Microshutters)	29,875	35,990	40,991	14,063	408	820	20,531	14,466	
Average Resolving Power (Best 1' x 1')	39,276	47,004	54,812	17,508	583	1,170	28,431	19,950	
Average Angular Resolution (All Microshutters)	37	43	39	42	38	38	31	33	50
Average Angular Resolution (Best 1' x 1')	28	32	30	34	26	26	19	21	42
LUMOS B									
Effective Area (Peak)	86,140	37,820	44,410	84,140	51,120		89,850	83,710	~ 27,500
Effective Area (Central Wavelength)	81,090	28,410	44,410	25,230	8,700		68,470	73,740	~ 27,500
Grating Ruling Density (groove/mm)	2,555	2,630	2,610	1,060	50		865	349	
Average Resolving Power (All Microshutters)	29,422	36,863	49,699	13,699	455		19,983	17,604	
Average Resolving Power (Best 1' x 1')	40,264	52,223	59,310	17,414	537		32,745	28,223	
Average Angular Resolution (All Microshutters)	41	42	43	48	28		25	48	48
Average Angular Resolution (Best 1' x 1')	31	32	33	39	23		23	41	40

12 August 2019