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Planetary Geomorphology

m Use observations of topography and geology:

m To understand the physical processes that affect planet surfaces;

m To infer geologic history and environment:

m To help set boundary conditions for future exploration.




Rates and Ages

m Remote Sensing: Orbital Exploration

Geochronology from impact crater density...
...Relative age interpretations, done carefully, are reliable.
...Absolute ages on Moon, extrapolated elsewhere.

m Fieldwork: In Situ Exploration

In situ geochronology in a few places. Future might be bright:
many new concepts and instruments

m Experimental work + Sample Analysis

Best example: Dating of lunar sample collection from well-
characterized field sites




Motivating science questions

1.  How does the topography and regolith of the Moon evolve?

2. Can we constrain the age of features and surface from their
topography?

3. Can we understand future landing sites?




The Moon’s Surface

1. Ubiquitous regolith, extremely rare bedrock.

2. Sizable rocks on the surface are almost always
associated with fresh craters or very steep slopes.




Frequency, Rock fractional area

The Moon’s Surface
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The Moon’s Surface

3. Hillslopes (and craters) are rounded unless they are
very fresh.

Swann Ridge, Apollo 15, the Moon North Massif, Apollo 17



Rounded Hillslopes

Dietrich and
Perron, 2006
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Swann Ridge, Apollo 15, the Moon Columbia Hills, MER Spirit, Mars




Landform Evolution

Diffusion Advection
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Diffusion and Cratering

“...[impact cratering] is analogous, but generally at a larger scale,
to the effect of a raindrop ...”

Alan Howard, 2007 (Geomorphology)

Soderblom (1970)
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Fig. 2. The geometry of the ejecta trajectories of North Massif, Apollo 17
a crater eroding a surface with slope ®.
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‘Zap pits’ D~1 mm
(Apollo sample 64455)

Tycho Crater D=90 km
(Kaguya Terrain Camera)
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Lunar Craters

Linné Crater D=2.2 km
(LROC NAC)
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Craters at all scales, but small
craters form much more often.



Simple Craters:
Known, self-similar initial forms
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Fig. 1. Apparent depth (R, )/apparent diameter (I),) relation for 170 fresh lunar craters,

See text for explicit descriptions of variables and their mensuration. All data from

maps and profiles compiled photogrammetrically from Apollo 15, 16, and 17 pictures.

Distribution separates into two major fields at an apparent dismeter of roughly 15 km

{equivalent o a rim-crest diameter of about 18 km). Crosses are four upland craters

with transitional morphology, discussed in text, Craters below 900 m I}, may be a third
field. Data available from the author upon request.

Pike 1977 Linné Crater, 2.2 km diameter
(LROC; Garvin et al., 2011)



Elevation (m)

Topographic Diffusion & Crater Degradation

3 km crater

1 km crater

Distance (m) Distance (m)

Topographic evolution oh

of elevation field h, = N?h
with diffusivity «: Ot




Two Sources of Topography Data: LOLA Laser
Altimetry and Kaguya TC Stereo Imaging
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LOLA 512ppd (~59m/px) versus
Kaguya Terrain Camera Stereo Data (7-20 m/px )




Methodology and Data Analysis

Map all craters D 800m to 5 km Extract topography for each crater

Mare inside Tsiolkovsky Crater



Methodology and Data Analysis
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Fitting Diffusion Profiles

m Mapped, extracted topography, and
fit diffusion profiles (in 2D) for

13000+ craters.

m Solve for three parameters:
11 ” .
m H,: “zerovalue for surrounding

elevation

m D, initial diameter
m kt: Degradation state

m Typical fitting uncertainties:

m ktis ~2.5%
m D,is~0.5%

(larger and more degraded craters

have worse fits)
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Crater Density on the Lunar Maria
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Crater Density (Detail)
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Degradation State versus Crater Density
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Degradation State versus Age
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Tagging craters with an age
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Tagging craters with an age

Age (billions of years)



Application: Evolution of
the Regolith

m S-band (12.6 cm) radar
measurements is sensitive
to rocks + roughness ~1 m
depth.

m Circular Polarization Ratio,
CPR =SC/0OC

m Strategy:

m Look at craters of
estimated age, see how
their surface materials
evolve.

id=13209

KappaT=5525
T~470 Ma
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Radial Distance (R)




Application: Evolution of the Regolith
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Diffusivity and Erosion History

Young Craters: Middle Lunar History: >~3.1 Ga
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m Typical diffusivity (at km-scale) over last ~3 Gyris k~5 m?/Myr.
Diffusivity is ~¥200 x less than what is measured in the western US
(e.g. k~1000 m?/Myr; Colman and Watson 1983).

m Reminder: Erosion Rate, dh/dt = kV2h. Median rate of change of
topography driven by km-scales: 0.3 mm/Myr.




Application: Crater Erosion

After 3 Gy, a D=1 km crater is reduced to 50%
of its original depth.
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Application: Erosion Rate

Maximum local h/dt estimated at 100-m baseline
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Erosion & deposition at rates ~2-3 cm/Myr in areas with greatest
topographic relief.
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Age
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Application: Lunar Rilles

AS15-85-11398/AS15-85-11399
Photo Credit: Jim Irwin




Application: Lunar Rilles

LROC NAC Stereo Digital Terrain Model
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Application: Lunar Rilles
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Application: Lunar Rilles =~

= Many tens of meters of fill over age of % &

= Even after ~3 Gy of erosion, wall still
is eroding back at ~3 cm/Myr.

= Consistent with exposures of g
numerous new rocks. e
99% of >2m rocks destroyed in 150 to 300 |
Myr (Basilevsky et al., 2013). (s

m Deviation from diffusive shape near
rim may be due to weathering
limitation imposed by breakdown of
boulders and bedrock.




2015-2019: Insights into diffusive forcing

NASA/GSFC/ASU/LROC team

o

\\g;/ Soderblom (1970)
\
\

O AL
\ . "‘ - :
T oo * s |
e . vy
) ,
¥
- . ‘ % 3 oy 5 . >
Fig. 2. The geometry of the ejecta trajectories of . ‘ BN & ) o O LR
a crater eroding a surface with slope ®. : SN ¢ SR % “
m Local proximal crater ejecta gL e MO
. . . . q“btkt \:‘ » )
alone is totally insufficient. $ L SRR T
. . . ' J
Enhanced micrometeorite flux T M I -
. . . . a S 3
also insufficient. PN o VRN
m |ndirect motions of material March 17, 2013 impact crater

triggered by distal Before and After

ejecta/secondaries matters more

than local ejecta. See Speyerer et al., 2016
Minton et al., 2019



2015-2019: Diffusion is Anomalous,
or, what | missed in 2014

m Effective k experienced by
smaller craters is less than

larger ones.

B K~ Kos DY where n is the
slope of the CSFD and n.-3.1

for craters <~100m.

m Crater lifetime:
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Degradation State (kt)

2015-2019: Diffusion is Anomalous,
or, what | missed in 2014
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Summary so far

m Topographic evolution of craters 055
and other landforms can be | , BVTE o
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at which the Moon’s surface
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— Estimate the age of surfaces
in @ manner complementary
to crater statistics.




Summary so far

m Topographic evolution of craters
and other landforms can be
modeled as a diffusive process.

New calibration for the rate
at which the Moon’s surface
topography changes.

m It's complicated, but with
topography of craters, we can:

— Estimate the age of
individual craters & landforms;

— Estimate the age of surfaces
in @ manner complementary
to crater statistics.

Age (billions of years)



Why do we care?

On March 26, NASA was directed to land
American astronauts on the Moon by 2024.

"We, the people of NASA, accept this

challenge. We will go to the Moon in a way

we have never gone before.... This time,

when we go to the Moon, we will stay.” .
F

"And then we will use what we learn on the
Moon to take the next giant leap - sending
astronauts to Mars.”

Jim Bridenstine, NASA Administrator



Where to?

Image from JAXA Kaguya



Conclusions

m We are converging on a model for how the topography and regolith
of the Moon evolves, including process and rate.

m This understanding provides a framework for constraining the age
of individual craters, features, and surfaces.
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