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Introduction 
The first NASA Workshop on Low Ice Adhesion Materials was held on Thursday, August 10, 2017, 

at the Ohio Aerospace Institute in Cleveland, Ohio. This meeting allowed government, industry, and 
academia to meet in a collaborative environment to discuss the future of “icephobics” research for inflight 
icing. NASA presented its ongoing research, and organizations that currently have partnerships with 
NASA presented their recent findings. Presenters from academia included Iowa State University, 
Mississippi State University, Pennsylvania State University, and the University of Michigan. Presenters 
from industry included United Technologies Aerospace Systems; Nanosonic, Inc.; and NEI Corporation. 
Researchers from NASA Glenn Research Center, NASA Langley Research Center, and the Office of 
Naval Research also shared their current research. There were over 60 participants who attended the 
conference plus more than 10 who participated remotely. The meeting was highly successful, and 
although a second such conference was proposed, it is anticipated that future technical presentations on 
the subject(s) will take place in other venues. Presentations from this workshop that are suitable for public 
release are included in this document. This effort supports both the Advanced Air Transport Technology 
(AATT) Project and the Revolutionary Vertical Lift Technology (RVLT) Project. 
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Ice Adhesion Research at NASA GRC

Andrew Work & Eric Kreeger
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GRC Goals

• Measure the adhesion of ice to aircraft materials
• Measure tensile properties of ice for modeling
• Develop a shedding model for use in LEWICE

– Rotorcraft, deicing equipment, engine icing

• Develop a quantitative method for testing the adhesion of 
ice to low-ice-adhesion surfaces (Icephobics)
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A Critical Review of the Measurement of the 
Adhesion of Ice to Solid Substrates

• Review of the literature on the measurement of the 
adhesion of ice
– Publication pending
– 110+ articles presenting adhesion testing on ice included

• Has references for data on the next two slides
• Each data point averaged set of >= 2 data points from 

literature
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Data in the Literature - Aluminum
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Data in the Literature - Steel
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Planned Methodology

• New IRT model (XT Model) to collect
samples of ice
– 48 per run
– Wrapped in airtight bags, carried to FASTLab

• Walk-in freezer
– Obtain 3D scans of ice
– Perform microscopy
– Microtome to cut ice
– Store ice long term to test for time-dependent

effects

• Test in temperature/humidity controlled
chamber
– Window & glove ports for strain imaging
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Our Lap Test

• Samples mounted on dovetail rails
• Potential problems:

– Melting and refreezing ice away from interface
– Handling could damage samples
– Temperature change in IRT test section and 

transit could damage samples

• Potential Advantages:
– Allows 2D/3D strain measurement
– Stress state at interface can be modified by 

rotating rig
– Testing under compression possible
– Preserves sample of ice for further 

measurements
– Could potentially pre-crack interface
– Flexible sample geometry
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FAST Lab

• Plan to develop ability to determine other material 
properties

• Compare to other test methods 
– Centrifuge test on order

• Plan to develop in-situ methods
• First IRT test October 2nd/3rd
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Questions?
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Effect of Hydrogen-Bonding Surfaces 
upon Ice Adhesion Shear Strength

Joseph G. Smith Jr. and Christopher J. Wohl

NASA Langley Research Center, Hampton, VA 23681, United States of America

NASA Workshop on Low Ice Adhesion Materials

Ohio Aerospace Institute, Cleveland, Ohio
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Background

Icing
• Ground problem during cold months

Freezing drizzle/rain
• In-flight problem year round

Results from supercooled water droplets impacting the aircraft surface while 
flying through a cloud
Most occurrences are between 0 and -20°C

Icing types encountered in-flight 
• Glaze/Clear, Rime, Mixed
• Dependent upon 

Air temperature (-5 to -20°C)
Liquid water content (0.3-0.6 g/m3)
Droplet size (median volumetric diameter of 15-40 m)

M.K. Politovich, “Aircraft Icing” in Encyclopedia of Atmospheric Sciences, Academic Press, Oxford, 2003, 68-75. 
H.E Addy Jr., M.G. Potapczuk, and D.W. Sheldon, “Modern Airfoil Ice Accretions,” NASA TM 107423, 1997.
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Accreted Ice Types

M.K. Politovich, “Aircraft Icing” in Encyclopedia of Atmospheric Sciences, Academic Press, Oxford, 2003, 68-75. 
H.E Addy Jr., M.G. Potapczuk, and D.W. Sheldon, “Modern Airfoil Ice Accretions,” NASA TM 107423, 1997.

Glaze/Clear Rime Mixed

• Small droplets
• Brittle and opaque, milky 

appearance 
• Rapid freezing after droplet 

impact with growth into the 
airstream

• Easier to remove than glaze

• Variable droplet size
• Combination of glaze 

and rime ice

• Large droplets 
• Clear, nearly transparent, 

smooth, waxy thus hard to see
• Gradual freezing after droplet 

impact can result in runback 
along surface generating raised 
edges (i.e. horns)

• Difficult to remove

NASA Workshop on Low Ice Adhesion Materials,  10 August 2017 
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Objective

Investigate IASS of coated surfaces having controlled chemical functionality and carbon 
chain length between the substrate surface and the chemical functionality 

Prepare and characterize substituted n-alkyldimethylalkoxysilanes containing 
hydrogen bonding and non-hydrogen bonding groups 
Prepare and characterize aluminum (Al) substrates coated with substituted 
n-alkyldimethylalkoxysilanes
• Receding water contact angle - First Ten Angstroms FTA 1000B goniometer 
• Surface roughness - Bruker Dektak XT Stylus Profilometer

Determine IASS of coated Al substrates in a simulated environment with comparison to 
uncoated Al as the control 

• Adverse Environment Rotor Test Stand (AERTS) 

To assess the effect of surface chemical functionalities upon ice adhesion shear 
strength (IASS) 

Approach

NASA Workshop on Low Ice Adhesion Materials,  10 August 2017 
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Adverse Environment Rotor Test Stand
Pennsylvania State University
Testing performed under simulated icing 
conditions within the FAR Part 25/29 Appendix 
C icing envelope    
• Supercooled water injected into test

chamber
• Tests conducted at -8, -12, and -16°C
• Icing cloud density (i.e. liquid water content)

of 1.9 g/m3

• Water droplet mean volumetric diameter of
20 m

J. Soltis, J. Palacios, T. Eden, and D. Wolfe, “Evaluation of Ice Adhesion Strength on Erosion Resistant Materials,” 54th 
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Apr 8-11, 2013, Boston, MA, AIAA 
2013-1509. 

Ice accumulation and subsequent shedding enabled determination of IASS after data 
analysis and visual assessment 

Credit: J. Palacios
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Surface Tension of Supercooled Water 

Graph created from data in P. T. Hacker, “Experimental values of the surface tension of supercooled water,” 
Technical Note 2510, National Advisory Committee for Aeronautics, 1951.
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Surface Energy at 0°C

Graph created from data in J. Kloubek, “Calculation of Surface Free Energy Components of Ice 
According to Its Wettability by Water, Chlorobenzene, and Carbon Disulfide,” J. Colloid Interf. Sci., 
Vol. 46, 1974, pp. 185-190. 

Upon phase change from water to ice, ice exhibits a high 
nonpolar characteristic even though it has a high total 
surface energy like water
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Substituted n-Alkyldimethylsilyl Coatings

NASA Workshop on Low Ice Adhesion Materials,  10 August 2017 
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Substituted n-Alkyldimethylsilyl Coatings

NASA Workshop on Low Ice Adhesion Materials,  10 August 2017 
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Substituted n-Alkyldimethylsilyl Coatings

NASA Workshop on Low Ice Adhesion Materials,  10 August 2017 
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Substituted n-Alkyldimethylsilyl Coatings
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Surface Properties of Neat Substituted 
n-Alkyldimethylsilyl Coatings

ASTM A480: Finish #7 

Surface
Mean Roughness (Ra), m Receding Water Contact Angle, °

Avg Stnd Dev Avg Stnd Dev
Control 0.326 0.048 58 14

non-Hydrogen-Bonding
C3A 0.324 0.078 87 2
C7A 0.282 0.105 88 2
C11A 0.702 0.298 78 5

Hydrogen Bonding (Donor/Acceptor)
C7H 0.512 0.013 73 3
C10H 0.708 0.100 24 2
C11H 0.320 0.040 31 2

Hydrogen Bonding (Acceptor)
C5MEG 0.390 0.199 79 1

NASA Workshop on Low Ice Adhesion Materials,  10 August 2017 

N
A

SA
/C

P—
2019-219576

24



Ice Adhesion Shear Strength of Substituted 
n-Alkyldimethylsilyl Coatings

NASA Workshop on Low Ice Adhesion Materials,  10 August 2017 
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Adhesion Reduction Factor

ARF  =
IASS of uncoated Al surface 

IASS of coated Al surface 

An Adhesion Reduction Factor (ARF) > 1 implies ice 
did not adhere as well to the coating relative to the 
uncoated Al surface, whereas values < 1 indicate 
greater adhesion. 
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Substituted n-Alkyldimethylsilyl Coatings:
non-Hydrogen Bonding
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Substituted n-Alkyldimethylsilyl Coatings:
non-Hydrogen Bonding

0.00 
0.20 
0.40 
0.60 
0.80 
1.00 
1.20 
1.40 
1.60 
1.80 
2.00 

-18 -16 -14 -12 -10 -8 -6 

A
dh

es
io

n 
R

ed
uc

tio
n 

Fa
ct

or
 

Temperature, °C 

C3A C7A Control 

Si

O

Aluminum

Si

O

Si

O

C3A + 4 (–CH2-) groups = C7A
C7A

NASA Workshop on Low Ice Adhesion Materials,  10 August 2017 

N
A

SA
/C

P—
2019-219576

28



Substituted n-Alkyldimethylsilyl Coatings:
non-Hydrogen Bonding
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Substituted n-Alkyldimethylsilyl Coatings:
Hydrogen Bonding (Donor/Acceptor)
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Substituted n-Alkyldimethylsilyl Coatings:
Hydrogen Bonding (Donor/Acceptor)
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Substituted n-Alkyldimethylsilyl Coatings:
Hydrogen Bonding (Donor/Acceptor)
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Substituted n-Alkyldimethylsilyl Coatings:
Hydrogen Bonding (Donor/Acceptor)
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Comparison of non-Hydrogen Bonding & 
Hydrogen Bonding (Donor/Acceptor) Coatings
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Comparison of non-Hydrogen Bonding & 
Hydrogen Bonding (Donor/Acceptor) Coatings
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Comparison of non-Hydrogen Bonding & 
Hydrogen Bonding (Donor/Acceptor) Coatings
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Comparison of non-Hydrogen Bonding & 
Hydrogen Bonding (Donor/Acceptor) Coatings
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Comparison of non-Hydrogen Bonding & 
Hydrogen Bonding (Donor/Acceptor) Coatings
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Comparison of non-Hydrogen Bonding & 
Hydrogen Bonding (Donor/Acceptor) Coatings

0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

-18 -16 -14 -12 -10 -8 -6 

A
dh

es
io

n 
R

ed
uc

tio
n 

Fa
ct

or
 

Temperature, °C 

C11A C11H Control 
Si

O

Aluminum

Si

O

Si

O

OH

Si

O

Aluminum

OH

Si

O

OH

Si

O

OH OH OH

C11A C11H

NASA Workshop on Low Ice Adhesion Materials,  10 August 2017 

N
A

SA
/C

P—
2019-219576

39



Comparison of non-Hydrogen Bonding & 
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Comparison of non-Hydrogen Bonding & 
Hydrogen Bonding (Donor/Acceptor) Coatings
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Comparison of non-Hydrogen Bonding, 
Hydrogen Bonding  (Donor/Acceptor), & 
Hydrogen Bonding (Acceptor) Coatings

NASA Workshop on Low Ice Adhesion Materials,  10 August 2017 

Si

O

Aluminum

Si

O

Si

O

C11A

0.00

0.50

1.00

1.50

2.00

2.50

3.00

-18 -16 -14 -12 -10 -8 -6

A
dh

es
io

n 
R

ed
uc

tio
n 

Fa
ct

or

Temperature, °C

C11A Control

N
A

SA
/C

P—
2019-219576

42



NASA Workshop on Low Ice Adhesion Materials,  10 August 2017 

Si

O

Aluminum

Si

O

Si

O

C11A

HO

Si

O

Aluminum

HO

Si

O

HO

Si

O

C10H

0.00

0.50

1.00

1.50

2.00

2.50

3.00

-18 -16 -14 -12 -10 -8 -6

A
dh

es
io

n 
R

ed
uc

tio
n 

Fa
ct

or

Temperature, °C

C11A C10H Control

Comparison of non-Hydrogen Bonding, 
Hydrogen Bonding  (Donor/Acceptor), & 
Hydrogen Bonding (Acceptor) Coatings

N
A

SA
/C

P—
2019-219576

43



NASA Workshop on Low Ice Adhesion Materials,  10 August 2017 

Si

O

Aluminum

Si

O

Si

O

C11A

HO

Si

O

Aluminum

HO

Si

O

HO

Si

O

C10H

0.00

0.50

1.00

1.50

2.00

2.50

3.00

-18 -16 -14 -12 -10 -8 -6

A
dh

es
io

n 
R

ed
uc

tio
n 

Fa
ct

or

Temperature, °C

C11A C10H Control

HO HO HO

Comparison of non-Hydrogen Bonding, 
Hydrogen Bonding  (Donor/Acceptor), & 
Hydrogen Bonding (Acceptor) Coatings

N
A

SA
/C

P—
2019-219576

44



NASA Workshop on Low Ice Adhesion Materials,  10 August 2017 

Si

O

Aluminum

Si

O

Si

O

C11A

HO

Si

O

Aluminum

HO

Si

O

HO

Si

O

C10H

O

O

Si

O

Aluminum

O

O

Si

O

O

O

Si

O

C5MEG

0.00

0.50

1.00

1.50

2.00

2.50

3.00

-18 -16 -14 -12 -10 -8 -6

A
dh

es
io

n 
R

ed
uc

tio
n 

Fa
ct

or

Temperature, °C

C11A C5MEG C10H Control

Comparison of non-Hydrogen Bonding, 
Hydrogen Bonding  (Donor/Acceptor), & 
Hydrogen Bonding (Acceptor) Coatings

N
A

SA
/C

P—
2019-219576

45



NASA Workshop on Low Ice Adhesion Materials,  10 August 2017 

Si

O

Aluminum

Si

O

Si

O

C11A

HO

Si

O

Aluminum

HO

Si

O

HO

Si

O

C10H

O

O

Si

O

Aluminum

O

O

Si

O

O

O

Si

O

C5MEG

0.00

0.50

1.00

1.50

2.00

2.50

3.00

-18 -16 -14 -12 -10 -8 -6

A
dh

es
io

n 
R

ed
uc

tio
n 

Fa
ct

or

Temperature, °C

C11A C5MEG C10H Control

O O O

O O OOO

Comparison of non-Hydrogen Bonding, 
Hydrogen Bonding  (Donor/Acceptor), & 
Hydrogen Bonding (Acceptor) Coatings

N
A

SA
/C

P—
2019-219576

46



Best Performing Coating from Each Class
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Neat Coating Summary
General 

• Coating performance dependent upon functional group, chain length, and
temperature

• Performance related to surface energy change (i.e., non-polar and polar)
during phase change of water to ice

• Trend (based on the best performer of each series)
HB (D/Ac) > non-HB > HB (Ac) 
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non-Hydrogen Bonding 
• Performance dependent upon alkyl chain length
• Moderate alkyl chain length (C7A) exhibited the best performance
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non-Hydrogen Bonding 
• Performance dependent upon alkyl chain length
• Moderate alkyl chain length (C7A) exhibited the best performance
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non-Hydrogen Bonding 
• Performance dependent upon alkyl chain length
• Moderate alkyl chain length (C7A) exhibited the best performance
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• Performance improved as temperature decreased
• Long alkyl chain (C10H, C11H) exhibited best performance as opposed

to non-hydrogen bonding analogs

Hydrogen Bonding (Acceptor)
• Inclusion in aliphatic chain improved performance relative to

non-hydrogen bonding composition of similar length (C11A)
• Performance with respect to hydrogen bonding (donor/acceptor)

composition (C10H) decreased with respect to decreasing temperature
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Lab-Scale Evaluation of Icephobic Surfaces

• Equipped with one NASA MOD 2 Nozzle

• Promising surfaces are tested in AERTS at PSU

“Dead”�Blade
“Live”�Blade

Rotor�with�Airfoils

NASA Workshop on Low Ice Adhesion Materials,  10 August 2017 

• Screening of experimental surfaces is conducted
on a lab-scale version of Adverse Environment
Rotor Test Stand (AERTS) called AERTS Jr

• Designed and fabricated by Dr. Jose Palacios
(The Pennsylvania State University, PSU)
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Ice Adhesion Shear Strength

ARF  =
IASS of uncoated surface 

IASS of coated surface 

Adhesion Reduction Factor (ARF)

Area = [Thickness x (H2 + H4)] + [0.5 x Thickness x (H1 – H2)] + [0.5 x Thickness x (H3 – H4)]

H4

H2

H2
H1

H1

H3 H3

Thickness
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Fc = micer 2 =
micev2

r
ice

v = r = r x rpm x 2 /60 s

Ice Adhesion Shear Strength (IASS) = Fc/Area
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Non-Hydrogen Bonding ARF at -12°C
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Multiscale Design of 
Low Ice Adhesion Materials
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Icephobic Material Design Research Plan

• We are developing a research plan for the multiscale
design of a low ice adhesion coating material
– The research plan will describe the computational, theoretical,

and experimental research tasks needed to develop the coating
material with the desired properties

• Document to be completed by December 1, 2017
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Icephobic Materials

• Search for a external surface material which minimize
wetting, accelerate water run-off, repel the ice and
minimize ice adhesion has been ongoing since the first
icing encounters during flight

• Many materials and coatings have been considered
over the years, including: paint, polymers, nano-
fluorocarbon, silicone coating, and slippery, liquid
infused porous surfaces (SLIPS)

• The search still continues today with many materials
and coatings being developed
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Existing Research Efforts - Icephobic Materials
• Super Hydrophobic Surface (SHS)

– Delayed ice nucleation and propagation

• Biomimetic Icephobic Material (Anti-Freezing Protein)
– Thermal hysteresis
– Recrystallization inhibition

• Slippery Liquid-Infused Porous Surface
– Low adhesion
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Desired Characteristics of Icephobic Materials

1. The icephobic material has to withstand erosion, wear, corrosion and 
other weathering conditions in terms of its structural integrity

2. The material has to be tested in a realistic and dynamic environment 
such as inside an icing tunnel at high velocity impact droplet, analogous to 
the conditions encountered during flight or in-situ test during actual flight

3. The material has to be inexpensive to manufacture and coherent with 
native structural materials, and environmentally friendly
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Research Challenges in Physical Experiments

• Test standardization
– Adhesion
– Durability

• In-situ measurement
– High-speed impacting droplet
– High-fidelity high-throughput
– Nanoscale characterization
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Existing Research Efforts – Simulation
• Molecular Dynamics

– Ice-water transition [Stillinger & Rahman 1972; Weber & Stillinger 1983; Kroes 
1992; and MORE]

– Hydrophobicity [Lee & Rossky 1994; Koishi 2009; and MORE]

– Anti-freezing protein mechanism [Wen & Laursen 1992; Haymet & Kay 1992;  
Jorgensen et al. 1993; Madura et al. 1996; Chen & Jia 1999; and MORE]  

– Quasi-liquid layer structure [Nada & Furukawa 2000; Hayward & Haymet 2001]

– Homogeneous nucleation [Matsumoto et al. 2002; Pluharǒvá et al. 2010; 
Zaragoza et al. 2015; Li et al. 2011; and MORE]

– Heterogeneous nucleation [Cox et al. 2015; and MORE]

– Calculation of surface adhesion [Landman et al. 1992; Miesbauer et al. 2003; 
Song et al. 2006; Kisin et al. 2007; and MORE]
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Existing Research Efforts – Simulation

• Quantum Mechanics
– Surface energy [Cheng et al. 2002; Liu et al. 2005; and MORE]

• Monte Carlo
– Wettability [Pangali et al. 1979; Swaminathan & Beveridge 1979; Kumar et al. 2011; 

and MORE]

– Ice growth [Dong et al. 2017]

• Computational Fluid Dynamics / Lattice Boltzmann Method
– Droplet impact [Zu & Yan 2016; Yuan & Zhang 2017; Yao et al. 2017]

– Droplet coalescence on SHS [Wang et al. 2017]
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Research Challenges in Modeling & Simulation

• Size and time scales
– Time scale mismatch

• Prediction credibility
– Lack of confidence

• Integration between simulation and experiment
– Computational simulation itself is NOT design
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Existing Research Efforts – Data-Driven Modeling
• Structure-Property Classification 

of Anti-Freezing Proteins (AFPs)

– Classification based on 
machine learning (random 
forest, support vector machine, 
etc.) [Kandaswamy et al. 2011; and 
MORE]

– Quantitative structure activity 
relationship classification [Briard
et al. 2016]

• Feature Identification of AFPs
– Dimensionality reduction based 

on principal component analysis
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Research Objective

• To systematically design and implement a coating 
material with low ice adhesion and high durability 
based on materials design principles and 
methodology 

N
A

SA
/C

P—
2019-219576

69



National Aeronautics and Space Administration

www.nasa.gov

A New Physics-Based Data-Driven Materials Design Framework

• Design is a systematic searching process to enumerate feasible 
solutions that meet the requirements and find the optimum from 
the feasible ones.

Design Methodology

Physics-Based Simulation Physical Experiments

Optimization

Multi-physicsMulti-scale

Uncertainty quantificationData analytics

Component-
level

System-level / 
In situ 

Low Adhesion
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Multiscale Materials & Process Design
• Establishment of Process-Structure-Property relationship

Atomistic Scale 
Configurations

Microscopic 
Geometry and 

Topology

Target
 Macroscopic Properties
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Materials Design Process
• Roughness (S) − Adhesion (P) relationship establishment

Roughness Descriptors

Materials Descriptors

Design 
Space

Simulations

Experiments Structure-
Property 
Relationship

Optimizations: min(Adhesion), max(Durability)
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Materials Design Process – Research Tasks

Simulation
• Atomistic

• nucleation 
• adhesion

• Mesoscale 
• phases

• Macroscale
• heat transfer 
• droplet impact

Materials
• Characterization

• chemistry
• surface roughness
• mechanical property

• Surface modification

Macroscopic Test
• Ice adhesion
• Frost inhibition
• Durability

• impact resistance
• abrasion

Structure-Property Relationship 
• Identify materials and roughness descriptors
• Metamodeling and statistical machine learning
• Multi-objective optimization
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Research Challenges & Opportunities 
– Design Parameter Identification

Short-Term Long-Term

Identification of 
Correlations

Structure-
Property 

Relationship

Lack of 
Fundamental 

Understanding
• Roughness

• Surface energy

• Adhesion

• Structure descriptor
 
 
• Property characterization
 

• Adhesion test protocols 

• Durability test protocols 

• Terminology

• Classification

Standardization Ontology
Test & 

Evaluation 
Standards
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Research Challenges & Opportunities 
– Modeling & Simulation 

Multiscale 
Simulation 
Integration

Multiphysics 
Modeling

Size & Time 
Scales

Sensitivity 
Analysis

Verification, 
Validation & 
Accreditation

Prediction 
Credibility

Reliable 
Simulation

• Quantum mechanics

• Molecular dynamics

• Mesoscale simulation

• Mechanical properties

• Multiphase fluid flow

• Crystallization

• Chemical 

• Local sensitivity 
analysis 

• Global sensitivity 
analysis

• Verification

• Validation

• Accreditation

• Verifiable simulation

Short-Term Long-Term
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Direct Probe of Surface Nucleation
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On-going: Inhibiting Frost Formation 
@Univ. of Akron

Plasma Modification of Surfaces Carbon Nanotubes Growth on Steel Surfaces
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(e) 4 min (f) 6 min (g) 9 min (h) 10 min 

30 μm 
 

30 μm 
 

30 μm 
 

30 μm 
 

30 μm 
 

50 μm 
 

100 μm 
 

100 μm 
 

Stable 
Cassie State  
on Plasma 
Coated 
Surfaces
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National Aeronautics and Space Administration
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On-going: Ice Adhesion Testing of Coating Materials 
@NASA Glenn

Adhesion Force Measured 
in environmental chamber 
using the newly developed 
NASA Glenn methodology

Coating exposed to Icing Conditions
FAA Part 25 Appendix C 
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National Aeronautics and Space Administration

www.nasa.gov

On-going: Process-Structure-Property Prediction 
based on Multiscale Multi-physics Simulations

@Georgia Tech
Scalable metamodeling and 
first-principles DFT phase transition prediction

Mesoscale multi-physics simulation of
fluid flow + thermal + phase change

Macroscale simulation of 
droplet impact and ice formation

Reliable molecular dynamics simulation
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National Aeronautics and Space Administration

www.nasa.gov

Expected Research Outcomes of the Proposed Research

• A detailed research plan will be developed
– Research tasks for each step of design process

– Detailed experimental and computational activities

• Expected research outcomes
– A generic icephobic materials design framework

• Experimental and simulation data integration tool

• Metamodeling and design optimization tools

– A demonstrative new coating material by design
• Synthesis and surface modification guideline

• Adhesion and durability test results

– Research reports and publications
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National Aeronautics and Space Administration

www.nasa.gov

Short Term Plans

• Begin collaboration with Glenn personnel already doing 
design of materials
– Participate in completing the plan and future activities

– Initial contact and conversations started

• Evolve the plan into a NASA Glenn initiative in
collaboration with other NASA Centers and Academia
– Explore funding sources (ex: CAS)
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National Aeronautics and Space Administration
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Questions?
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Measurement of Impact Ice 
Adhesion Strength

Jose Palacios
Assistant Professor Aerospace Engineering

The Pennsylvania State University, University Park, PA

NASA Workshop on Low Ice Adhesion 
8-10 2017
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Presentation Outline

Background & Objectives
Testing Facility & Procedure
Results 
– Material and Icing Parameter Effects
– Evaluation of erosion resistant materials
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Background & Motivation
Aircraft encounter adverse weather conditions, including 
icing events.
Ice accretion severely degrades aerodynamic performance 
and introduces vibration.
Active ice protection systems are costly, introduce 
complexity, and weight.
Glaze ice
– Characterized by water droplets splashing on impact & 

running before freezing
– Forms clear Ice
– Large particle size
– Warmer temperatures

Rime ice
– Characterized by water droplets Freezing on impact and 

trapping air in the ice
– Forms opaque Ice
– Small particle size
– Colder temperatures

Mixed ice
– Characterized by glaze main ice shape with rime feathers

Glaze

Mix

Rime

Would not it be great to have a passive coating that prevents ice t it be great to have a passive coating that pre
accretion for all varying icing conditions?!retion for all varying icing condition

Yes, an ICEPHOBIC COATING!!!

Maybe an ICE PROTECTIVE COATING aybe an ICE PROTECTIVE COATIN
(Low Ice Adhesion Strength)
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Freezer ice tends to have higher adhesion strength over impact ice

Moving ice from freezing camber to adhesion tester can damage the bond 
from unintended thermal changes and mechanical stress 

Surface roughness information is not published  

Author
Date (Reference)

Mechanical
Test
Type

Aluminum Shear 
Adhesion Strength Ice Type

psi kPa
Loughborough

1946 Pull 81 558 Freezer

Stallabrass and Price
1962 

Rotating 
Instrumented 

Beam
14 97 Impact

Itagaki
1983 Rotating Rotor 4 - 23 27 - 157 Impact

Scavuzzo and Chu
1987 Shear Window 13 - 42 90 - 290 Impact

Reich
1994 Pull 130 896 Freezer

Brouwers
2011 Pull 76 526 Freezer

Mechanical Aluminum Shear

Background & Motivation
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Objectives

Experimentally determine what environmental and material 
surface properties contribute most significantly to ice 
adhesion strength

Measure and compare ice adhesion strength of metallic 
erosion resistant materials used in aircraft manufacturing

Explore the capability of superhydrophobic materials to 
reduce ice adhesion strength 

Initiate the development of a model that could predict ice 
adhesion strength
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Testing Requirements

Ice accretion must be representative of aircraft environments by controlling:
- Liquid Water Content
- Water Droplet Median Volume Diameter
- Temperature
- Impact Velocity

Material surface characteristics must be known:
- Surface Roughness
- Surface Temperature during Accretion

The ice shear adhesion strength should be quantified

The accreted ice CANNOT BE TOUCHED, MOVED, OR EXCITED TRANSIENTLY:
- Must avoid undesired energy that could pollute shear ice adhesion strength 

data
- How?: CENTRIFUGAL TESTING SUBJECTED TO AN ICING CLOUD
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88
Schematic of Rotor Blade

5 ft.

Adhesion Strength Measurements

Strain Gauges 
Full Wheatstone Bridge
Encapsulated for water 

proofing

Centrifugal Bending Beam
Stallabrass 1962

Benefits
Ice is accreted and shed 

without outside interaction 
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Beam 
Fairing 

Test 
Coupon Ice 

Shield

10 ft.

Aerospace
Engineering

Adhesion Strength Measurements
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As ice accretes, strain gauges sense an increase in beam 
bending due to ice load 

Aerospace
Engineering

Adhesion Strength Measurements

N
A

SA
/C

P—
2019-219576

92



Aerospace
EngineeringTypical Voltage Output During Test

Voltage at 
Operational 

RPM

Spool Up Icing Cloud On

Ice Shed Event

Voltage at 
0 RPM

Spool
Down
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Aerospace
Engineering

Area Calculation

Side Front Top
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Experimental Uncertainty

Researcher Test Type % deviation

Soltis Rotor beam 20

Brouwers Rotor beam 23

Hassan Vibrating beam 40

Laforte Centrifuge 18

NASA Glenn Icing Research Tunnel Error

MVD 12

LWC 12

Aerospace
Engineering
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Environmental and Surface 
Parameters of Interest

Environmental Conditions
Cloud density (LWC) 

0.5 g/m3, 2.0 g/m3, 5.0 g/m3

Particle size (MVD) 
20 μm, 30 μm, 40 μm

Temperature
-5°C , -10°C , -15°C

Material Surface Characteristics
Surface roughness 

20 μin Ra, 50 μin Ra, 100 μin Ra
Grain direction 

0°, 90°

Test Material
Stainless steel 430

Impact velocity 70 m/sec
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Effect of Cloud Densityyyyyyy

Over the FAA LWC icing envelope, ice adhesion strength is constant

Higher LWC (not to exceed 2 g/m3) might be used to reduce testing time

Coalescence of Droplets:
Difficulty supercoiling to 

room temp
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Effect of Cloud Densityyyyyyy

At cloud densities above those specified in the FAA icing envelope, 
the super cooling of the drops is difficult due to coalescence.
The surface temperature of the coupon increases causing a 

decrease in adhesion strength (see effects of temperature).   

3.2°

water on

ice shed

5.0 g/m^3 LWC

Aerospace
Engineering
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Effect of Ambient Temperaturepppppp

Ice adhesion strength is linearly dependant with ambient temperature

600% reduction in adhesion strength from -15 °C to -5 °C 

Aerospace
Engineering
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Effect of Particle Size

Ice adhesion strength is linearly dependant with MVD

52% change in adhesion strength from 20 μm to 40 μm 

Aerospace
Engineering
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Aerospace
Engineering

Surface Roughness and Grain Directiongggggg

Ice adhesion strength is linearly dependant with surface roughness

246% increase in adhesion strength from 24 μin Ra to 105 μin Ra

14% increase in adhesion strength from 0° to 90° grain direction 

0° CF
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Aerospace
EngineeringEnvironmental and Surface Effects Summary 

Properties % Change Over Range

LWC 2

MVD 52

Temperature 600

Surface Roughness 246

Grain Direction 14

Temperature 600

Surface Roughness 246

The linear trends in adhesion strength with temperature and surface 
roughness could used to reduce test matrix size*. 
*Soltis, J., Palacios, J., Eden, T., & Wolfe, D. (2014). Ice Adhesion Mechanisms of Erosion-Resistant Coatings. AIAA 
Journal: 1-9, June 2014, 10.2514/1.J053208.
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Aerospace
Engineering

Erosion Background

During takeoff and landing propellers 
& rotors ingest dirt and debris 

The particles impact the rotor blades 
and material is removed

Life span of the blades is reduced
Shephard 3/16/12

Ductile erosionBrittle erosion
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Motivation Aerospace
Engineering

Hypothesis
Ice adheres to the substrate surface due to mechanical 
clamping

Increasing surface roughness increases adhesion strength 
supporting the hypothesis 

Surface Roughness
20 μin Ra to 100 μin Ra

Super Cooled Water Drop
60 μin to 2000 μin

Erosion Cap Surface
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Aerospace
EngineeringErosion Resistant Material Testing

Materials: Stainless steel 430
Inconel 625
Titanium grade 2
Titanium nitride (TiN )
Titanium aluminum nitride (TiAlN)

Surface Roughness (μin Ra): 20,50,100
Temperature (°C) : -8 , -12 , -16 
MVD (μm): 25
LWC (g/m3): 2.0
RPM: 400
Tip speed: 58.7 m/s, 193 ft/s
Cathodic arc physical vapor deposition
Coating thickness: 15μm  
Titanium grade 2 substrate

Goal 1: determine the impact ice adhesion strength of erosion resistant materials
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Aerospace
Engineering

Impact Ice Adhesion Strength for
Stainless Steel 430
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Ice Adhesion Comparisonpppppp

Un-optimized coatings have higher adhesion strength than uncoated material
Low surface roughness decreases ice adhesion… 
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50 nm Ra @-8°C

1700 nm Ra @ -8°C

Ice Adhesion Comparison

Aluminum 6061
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Four (4) coatings tested (polymer epoxy coat):
- Ra is the roughness average, or the arithmetic average of absolute values:

-

- Baseline: Nanometer scale smooth coating (Ra 10 nanometer)
- Three (3) Slotted coatings: Valley carved coatings

Laser Ablation 
Level Ra (um)

0.35 W 1.13
0.6 W 1.95
1.2 W 5.11

Surface Roughness Effect: 

F (4) ti t t d ( l

Further Exploration
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Baseline Epoxy
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0.35 W 0.6 W

1.2 W

Varying Laser Ablation Intensities 
Create Varying Topographies
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0.35 W 0.6 W

1.2 W

Varying Laser Ablation Intensities 
Create Varying Topographies
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1.2 W Ablated Sample

Average Slot Depth—22.5 μm

Average Distance between 
Slots—75 μm
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Results for Varying Surface Substrates 

No Ablation
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Results for Varying Surface Substrates 

0.35W Ablation
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Results for Varying Surface Substrates 

0.6W Ablation
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Results for Varying Surface Substrates 

1.2W Ablation
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Results for Varying Surface Substrates 

Increased Surface Roughness Corresponds to Increased Adhesion Strength
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Modeling based on Surface Roughness?

ICE
Shear 

Force, S

Friction Force, Ff

Nt

=
Shear 

Force, S

FFFFFFFFFFFFFriction Force

Nt

=

Stress strain relationship

Thermal Coefficient of 
Thermal Expansion
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Temperature Dependency

The Coefficient of Thermal Expansion for Ice is dependent on Temperature*

T(K)

*Y. Yen, “Review of Thermal Properties of Snow, Ice, and Sea Ice,” Vol. 81 Issue 10 CRREL Report, 1981.
†T. Northwood, “Sonic Determination of the Elastic Properties of Ice,” Canadian Journal of Research Vol. 25, Sec A, 1947.
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Temperature Dependency

Young’s Modulus of Ice (Sea) is dependent on Temperature†

*Y. Yen, “Review of Thermal Properties of Snow, Ice, and Sea Ice,” Vol. 81 Issue 10 CRREL Report, 1981.
†T. Northwood, “Sonic Determination of the Elastic Properties of Ice,” Canadian Journal of Research Vol. 25, Sec A, 1947.
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Temperature Dependency

Coefficient of Static Friction also dependent on temperature, and measured in the AERTS facility.

*Y. Yen, “Review of Thermal Properties of Snow, Ice, and Sea Ice,” Vol. 81 Issue 10 CRREL Report, 1981.
†T. Northwood, “Sonic Determination of the Elastic Properties of Ice,” Canadian Journal of Research Vol. 25, Sec A, 1947.

Takes into account Chemical 
Adhesion!

It could be modeled…
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1. Obtain cross-sectional 
view using Scanning 
Electron Microscopy 
(SEM)
2. Digitize ablated 
surface 
3. Input (x,y) coordinates 
into computer model

Ablation Digitization

y

x
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Results

The digitized data is 
input into Matlab, 

and the slope is 
calculated between 

every point
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Results

Adhesion Strength is 
calculated for the valley 

and plateaus

An average error 
reduction to less than 9% 
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Superhydrophobic Test Results

Hoe do Hydrophobic coatings work?

Clamping to substrate, potential 
damage of coating

Aircraft Icing:
10 to 50 m typical
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Superhydrophobic Test Results
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Superhydrophobic coatings:
- ARE NOT ICE PROTECTIVE
- DEGRADE WITH CONSECUTIVE 

ICE SHEDDING EVENTS
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Example of Ice Protective Coating pppppp gggggg

-12°C, 70 m/sec, 20 m, 2 g/m3

~1.5 psi at -12°C
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New Testing Technique Being 
Explored 
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Issues with the Technique

Hand traced areas are not ideal: Discrepancies of 5% between readings

Large ice accretions of varying thickness (i.e. on airfoils) introduce bending 
moments at the ice interface 

Large ice accretion displaces the center of gravity of the beam bending system, 
and the calculation of the load requires knowledge of the ice thickness to re-
calculate the location of the center of gravity

This effects are small for “ice protective coatings” but could provide shear ice 
adhesion strength values up to 30% for eroded surfaces.

Original CG used for strain 
gauge calibration

New CG after ice accretion

Complex bending moment 
is hard to account for due 
to ice shape
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1 INCH

Flat Surface Ice Accretion

Prevents ice bridging
Sheds full surface (no need to measure)
Provides similar ice adhesion strength values for equal icing conditions as airfoils shapes
Eases taking into account CG motion due to ice accretion 

N
A

SA
/C

P—
2019-219576

134



Conclusions

1. The proposed rotor testing procedure is accurate with a
standard deviation of less than 20% (consistent with other
ice adhesion measurement techniques).

2. Erosion resistant materials must be optimized with low
surface roughness to be effective ice icing conditions.
– TiAlN has a 47% higher ice adhesion strength than the average of

uncoated metallic materials
– TiN has a 31% higher ice adhesion strength than the average of

uncoated metallic materials

Aerospace
Engineering
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Conclusions

3. Ambient temperature and surface roughness are the two
most influential parameters for impact ice adhesion strength.
– 600% reduction in adhesion strength from -15 °C to -5 °C
– 246% increase in adhesion strength from 24 μin Ra to 105 μin Ra

4. It is possible to extrapolate adhesion strength over ambient
temperature for a given surface roughness for metallic
substrates.

3. Modeling ice adhesion strength by taking into account
surface roughness/morphology is needed (not only chemical
adhesion)

Aerospace
Engineering
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Superhydrophobic coatings:
ARE NOT ICE PROTECTIVE

Questions?

Conclusions
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Multiscale Modeling of Ice Adhesion

NASA Workshop on Low Ice Adhesion Materials
August 11, 2017

Dr. David Thompson, Mississippi State University
Professor and Airbus Helicopters, Inc. Professor
Department of Aerospace Engineering
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Motivation
Goal: To facilitate prediction of icing mitigation on engineered surfaces using a physics-
based, multiscale model for impact ice adhesion stress.

Current adhesive stress model in LEWICE - Wright (2002)
• Based on experimental data of Scavuzzo and Chu (1987)
• Large reported error (±100%)
• Based on limited parameter set (purely a function of temperature)

Scavuzzo and Chu (1987) 

Multiscale Modeling of Ice Adhesion
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Background Summary
It is difficult to draw firm conclusions from previous studies due to inconsistencies in the 
data

These inconsistencies demonstrate: 

1. the challenges associated with accurate measurement of ice adhesion 
2. the relatively poor understanding of the effects of traditional surface characterization 

parameters, e.g., contact angle, on ice adhesion. 

Hypothesis: Attempting to identify correlations with other parameters might be 
an attractive alternative.

Multiscale Modeling of Ice Adhesion
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Challenges of Predicting Impact Ice Adhesion
Multiscale Modeling of Ice Adhesion

water dimers, clusters

Ab initio: QM

Atomistic scale: MD

Mesoscale: Continuum Mechanics (FEM)

H2O-substrate interactions; interfacial structure

crystal defects; structural anisotropy; substrate 
structure

ice density; structure porosity

pm nm um mm m 

Microscale: CG MD
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Multiscale Strategy for Predicting Impact Ice Adhesion
Currently, it is not feasible to predict the adhesive stress for an aircraft icing scenario based 
purely on first principles. Some type of modeling is necessary. 

Observation: The adhesive stress is a function of parameters at multiple spatial and temporal 
scales

`

represent the relevant macroscale parameters  
, represent the relevant mesoscale parameters 
represent the relevant nanoscale parameters

This effort seeks to combine different methodologies (experimental and numerical) at 
multiple relevant scales to estimate this functional dependency. 

When coupled with an ice accretion prediction code, such as LEWICE, such a relationship 
provides a pathway to á priori evaluation of the effectiveness of a surface designed for icing 
mitigation. 

Multiscale Modeling of Ice Adhesion
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Objectives

1. Perform experiments to characterize impact ice adhesion on variety of surfaces over 
a range of icing conditions

2. Develop a purely empirical model to predict ice adhesion based on the experimental 
database

3. Develop a hybrid model to predict ice adhesion that incorporates both experimental 
measurements and numerical predictions

4. Lay the groundwork for a purely predictive multi-scale model for impact ice adhesion

Multiscale Modeling of Ice Adhesion
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Outline of Presentation
1. Overview
2. Experimental Method
3. Ice Adhesion Stress: Empirical Model
4. Ice Adhesion Stress: Predictive Models
5. Summary

Multiscale Modeling of Ice Adhesion

N
A

SA
/C

P—
2019-219576

148



EU Horizon 2020 project “Phobic2Ice“
Multiscale Modeling of Ice Adhesion

Why it matters
Energy efficient anti-/de-icing systems
Icing-detection sensors & early warning 
systems
Ice accretion models depending on material 
properties

SoA & Gaps – Used & developed 
technologies

Numerical Ice accretion tools need constant 
amelioration. No satisfactory tool exists 
combining aerodynamics, thermodynamics, 
and material properties
No fabrication technology for obtaining a 
durable, erosion resilient icephobic coating is 
currently existing 

Expected Results
List of use cases, substrate materials, 
definition of technical requirements and 
specifications 
Modelling and simulation of ice accretion 
Coating development   
Characterization and testing, development 
of ice detection sensors
Coating application on prototype 
component & full-scale testing

Coating Development Icing Simulations Wind Tunnel Testing

www.phobic2ice.com

Super-IcePhobic Surfaces to Prevent Ice Formation on Aircraft 

Develop a new generation of icephobic surfaces to be used in aeronautic applications
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Measurement of Impact Ice Adhesion
Multiscale Modeling of Ice Adhesion

Test Method & Protocol 
Excitation of ice-metal composite beam with a sinusoidal 
stimulus by an electromagnetic (EM) shaker
• Bond strain gauge to back of cantilever
• Fix bare or coated cantilever to head of EM shaker, cantilever

has one face exposed to airstream in test section
• Determine resonance frequency of bare cantilever by 

performing a resonance sweep with EM shaker
• Turn on airstream, cooling, and icing cloud and let ice 

accrete on exposed face of cantilever at set icing condition
• Turn off fan, cooling, and icing cloud for avoiding interferences

with measurement
• Increase vibration amplitude of cantilever until ice layer 

debonds from the surface
• Read strain gauge measurement to determine interfacial 

shear stress at time of debonding

Advantage: in situ ice adhesion measurement

Strain gauge
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Measurement of Impact Ice Adhesion
Multiscale Modeling of Ice Adhesion

Model employed 
Maximum adhesion shear strength corresponds to the reading from the 
strain gauge signal at the end of stage 1; it represents the maximum 
shear stress at interface ice/substrate just before ice debonding

Interfacial shear stress of cantilever, , is calculated by

• : strain measured by the strain gauge
• : distance between center of strain gauge and fixed end 

of cantilever
• : total length of composite beam
• , : thickness of ice layer and of cantilever
• : Young’s modulus for ice
• : eccentricity (function of and )
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Preliminary Results
Multiscale Modeling of Ice Adhesion

Samples

Sample 
No. Material Surface Treatment Water CA Water 

RoA

Surface
Roughness, 
Ra / Rz (μm)

3 Al 2024 Polished + TSA1 60° >90° 0.01 / 0.16

1 Al 2024 Polished + TSA + Episurf2 122° >90° 0.02 / 0.16

0 Ti6Al4V Anodized3 + Episurf 155° 20° 0.58 / 4.40

1 Tartaric Sulphuric Acid Anodizing
2 Commercially available perfluoropolyether phosphonate compound in a HFO solvent
3 TiO2-Nanotube Layer

Do the samples exhibit the same trend in ice adhesion over a range of freezing fractions?
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Preliminary Results
Multiscale Modeling of Ice Adhesion

Samples

Sample 
No. Material Surface Treatment Water CA Water 

RoA

Surface
Roughness, 
Ra / Rz (μm)

3 Al 2024 Polished + TSA1 60° >90° 0.01 / 0.16

1 Al 2024 Polished + TSA + Episurf2 122° >90° 0.02 / 0.16

0 Ti6Al4V Anodized3 + Episurf 155° 20° 0.58 / 4.40

1 Tartaric Sulphuric Acid Anodizing
2 Commercially available perfluoropolyether phosphonate compound in a HFO solvent
3 TiO2-Nanotube Layer

Do the samples exhibit the same trend for ice adhesion over a range of freezing fractions?
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Preliminary Results
Test Matrix

The Icing time was sufficient to obtain the desired ice thickness. 

Multiscale Modeling of Ice Adhesion

Icing conditions with 
supercooled droplets  

Total Air 
Temperature 

(TAT)
Airspeed

Liquid Water 
Content 
(LWC)

Mean effective 
droplet 

diameter 
(MVD)

Approx. 
Freezing 
Fraction

Ice type (°C) (m/s)  (g/m3) (μm)
Rime -20 50 0.3 20 1.00
Mixed -20 50 0.8 20 0.55
Mixed -5 50 0.3 20 0.7
Glaze -5 80 1.0 20 0.2
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Preliminary Results
Test Matrix

The Icing time was sufficient to obtain the desired ice thickness. 

Multiscale Modeling of Ice Adhesion

Icing conditions with 
supercooled droplets  

Total Air 
Temperature 

(TAT)
Airspeed

Liquid Water 
Content 
(LWC)

Mean effective 
droplet 

diameter 
(MVD)

Approx. 
Freezing 
Fraction

Ice type (°C) (m/s)  (g/m3) (μm)
Rime -20 50 0.3 20 1.00
Mixed -20 50 0.8 20 0.55
Mixed -5 50 0.3 20 0.7
Glaze -5 80 1.0 20 0.2
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Preliminary Results
Test Matrix

Multiscale Modeling of Ice Adhesion

Icing conditions with 
supercooled droplets  

Total Air 
Temperature 

(TAT)
Airspeed

Liquid Water 
Content 
(LWC)

Mean effective 
droplet 

diameter 
(MVD)

Approx. 
Freezing 
Fraction

Ice type (°C) (m/s)  (g/m3) (μm)
Rime -20 50 0.3 20 1.00
Mixed -20 50 0.8 20 0.55
Mixed -5 50 0.3 20 0.7
Glaze -5 80 1.0 20 0.2

1.60 mm

hice
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Preliminary Results
Test Matrix

Multiscale Modeling of Ice Adhesion

Icing conditions with 
supercooled droplets

Total Air 
Temperature 

(TAT)
Airspeed

Liquid Water 
Content 
(LWC)

Mean effective 
droplet 

diameter 
(MVD)

Approx. 
Freezing 
Fraction

Ice type (°C) (m/s)  (g/m3) (μm)
Rime -20 50 0.3 20 1.00
Mixed -20 50 0.8 20 0.55
Mixed -5 50 0.3 20 0.7
Glaze -5 80 1.0 20 0.2

Reference (Sample 3) Superhydrophobic (Sample 0)
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Preliminary Results
Strain gauge data analysis – identification of crack initiation

Multiscale Modeling of Ice Adhesion
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Preliminary Results
Strain gauge data analysis with HSC video

Multiscale Modeling of Ice Adhesion
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Preliminary Results
Strain gauge data analysis with HSC video

Multiscale Modeling of Ice Adhesion
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Preliminary Results
Strain gauge data analysis with HSC video

Multiscale Modeling of Ice Adhesion
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Preliminary Results
Strain gauge data analysis with HSC video

Multiscale Modeling of Ice Adhesion

CRACK 
INITIATION 

(look closely)
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Preliminary Results
Strain gauge data analysis with HSC video

Multiscale Modeling of Ice Adhesion
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Preliminary Results
Strain gauge data analysis with HSC video

Multiscale Modeling of Ice Adhesion
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Preliminary Results
Multiscale Modeling of Ice Adhesion
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Outline of Presentation
1. Overview
2. Experimental Method
3. Ice Adhesion Stress: Empirical Model
4. Ice Adhesion Stress: Predictive Models
5. Summary

Multiscale Modeling of Ice Adhesion
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Empirical Modeling
Strategy: Surface fitting of experimentally-determined data

• Develop a parametric representation of the adhesive as a function of the macroscale 
parameters 

– represent the relevant macroscale parameters  

– is an -dimensional hypersurface. 

• Determine significant parameters through a study of the correlation of the experimentally-
measured adhesive stress to measured macroscale parameters

• Functional form depends on experimental data
• Smooth and continuous curves (at least -continuous)
• Non-monotone (implies non-linear function)

Multiscale Modeling of Ice Adhesion
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Outline of Presentation
1. Overview
2. Experimental Method
3. Ice Adhesion Stress: Empirical Model
4. Ice Adhesion Stress: Predictive Models
5. Summary

Multiscale Modeling of Ice Adhesion
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Predictive Modeling
Central question
How does the adhesive shear stress measured in experiments (a macroscopic property) relate to the 
properties of ice-substrate interface @ multiple length scales (such as chemical composition, structural 
features, wetting profiles, etc.).

Perspective
We cast this problem into category of research on heterogeneous materials, where the behavior at the solid-
solid interface (ice-substrate interface) is a key factor in determining overall performance.

Scope
The investigation of the interface involves its chemical stability, physical compatibility, microstructures, 
intra/inter-phases, mechanical failure, …

Goals
1. Elucidate the roles played by each of the above mentioned phenomena in determining mechanical 

properties of the ice-substrate interface. 
2. Make a first attempt at developing a unified approach (a surrogate model) for incorporating multiscale 

factors.
3. Provide important considerations for the next generation model.

Multiscale Modeling of Ice Adhesion
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The Multiscale Nature of Ice Fracture
Multiscale Modeling of Ice Adhesion

water dimers, clusters

Ab initio: QM

Atomistic scale: MD

Mesoscale: Continuum Mechanics (FEM)

H2O-substrate interactions; interfacial structure

crystal defects; structural anisotropy; substrate 
structure

ice density; structure porosity

pm nm um mm m 

Microscale: CG MD
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Hybrid Multi-scale Model
Hypothesis: Measurable macroscopic quantities, i.e., the ice adhesion stress can be correlated 
with computed nanoscale and mesoscale parameters, i.e., surrogate parameters
Macroscale quantities – easily measured but not easily predicted 
Atomistic scale and microscale properties – readily predicted but not easily measured
• The atomistic and microscale MD simulations reveal characteristics that provide an alternative 

to phenomenological parameters such as contact angle
– Atomistic MD simulations characterize interfacial molecular bonding, interfacial crystal 

structure, mechanics of interfacial debonding under shear.
– Microscale MD simulations characterize crystal interfacial defects, grain boundaries, and 

their roles in fracture mechanics. 

Multiscale Modeling of Ice Adhesion
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Hybrid Multi-scale Model
Proposed functional variation

`

represent the relevant macroscale parameters  
, represent the relevant mesoscale parameters 
represent the relevant nanoscale parameters

Hybrid Strategy
• Measure macroscale parameters.
• Predict mesoscale and nanoscale parameters.
• Systematically determine significant parameters through a correlation study relating the 

experimentally-measured adhesive stress to measured macroscale parameters and computed 
mesoscale and nanoscale parameters.

• Use a fitting strategy similar to the one employed for the purely empirical model to estimate the 
functional relationship.

Multiscale Modeling of Ice Adhesion
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Predictive Modeling (1 m-100 m)
Motivation
1. In the previous methods, correlation studies are employed to bridge the gap between scales, i.e., relate 

parameters predicted from simulations with experimental measurements
2. Our simulations provide a deeper understanding of fracture mechanics at the lower length scales. With 

these insights, a rationally-designed “purely” predictive model can be formulated that better incorporates 
lower length scale details, in place of the correlation studies. 

Proposed Strategy
1. At the length scale from 1 m-100 m, ice density as a result of structure porosity needs to be considered. 

However, predicting the pore size and distribution is beyond the capability of current microscale 
simulations. However, this information can be available from experimental measurements (e.g. in 
research on catalysis, gas adsorption models can be used for estimating such information).

2. Provided with the micronscale structure, a finite element method can be employed to construct an ice-
substrate model, with the spatially varying elastic modulus delivered by microscale simulations.    

Multiscale Modeling of Ice Adhesion
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Microscale (MD) Simulations (10nm-1000nm)
Objective
Investigate nanoscale structural features (e.g. due to crystal defects, 
surface roughness, etc), and their effects on fracture mechanics. The 
“chemical ingredients” are incorporated through coarse grain parameters 
guided by atomistic simulations. 

Scope of study
1. Characterize structure and structural defects at interfaces, such as

crystal grain size and boundaries, as the result of nanoscale surface
roughness.

2. Investigate effects of droplet impingement speed on the wetting behavior of super cooled droplets on a
surface with nanoscale roughness, and the subsequent crystallization structure (Wenzel vs. Cassie).

3. Investigate fracture mechanics of ice-substrate interface @ nanoscale,
which involves failure of grain boundary networks and crack propagation.

Methods of study
1. Equilibrium molecular dynamics simulations employing coarse grained (CG) models for water and

substrates. New CG models may be needed in order to extend length scales of simulations.
2. Non-equilibrium molecular dynamics simulations based on CG models under shear/deformation.

Multiscale Modeling of Ice Adhesion
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Atomistic-scale (MD) Simulations (0.1nm-10nm)
Objective
Characterize the structure and failure mechanics of ice-substrate interface at 
the atomistic scale, with the effects of molecular details fully captured.

Scope
1. Characterize ice-substrate interfacial structure and its dependence on

molecular ordering and chemical composition.
2. Investigate effects of droplet impingement speed on ice crystallization at

interface (e.g. shock-induced crystallization, fluctuations in molecular
distribution near interface).

3. Quantify respective contributions to the “interfacial bonding” from molecular interactions such as H-bond,
electrostatics and van der Walls.

4. Investigate the mechanics of “interfacial bond breaking” at the heterogeneous ice-substrate interface
under shear and active deformation

Methods
1. Equilibrium MD simulations using all-atom models for water (TIP3P, TIP4P, SPC/E) and substrate (Al,

steel, polymers).
2. All-atom, non-equilibrium molecular dynamics simulations under shear/ active deformation.

Multiscale Modeling of Ice Adhesion
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Preliminary Results: Force Field Calibration Liquid State
Multiscale Modeling of Ice Adhesion

TIP4P/ice water model simulation compared well with experimental results. 
TIP4P/ice Water Model- Simulation result- 300K * A. K. Soper, Chem. Phys. 258, 121 (2000)
TIP4P/ice Water Model- Published result- 298KAbascal et al. J. Chem. Phys. 122, 234511 (2005)
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Preliminary Results: Equilibrated ih Ice Structure
Multiscale Modeling of Ice Adhesion

Perfect Crystal  Structure at 0K NPT Simulation at 200K and P = 1.0 atm
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Preliminary Results: Ice Nucleation by ”Seeding”
Procedure

Embed a spherically-shaped ice nucleus in super-cooled liquid water;
Measure change in size of solid-state (ice) cluster with time. The size of solid-state cluster
can be characterized fully by the q6 order parameter.

Multiscale Modeling of Ice Adhesion
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Preliminary Results: Ice Nucleation by ”Seeding”
Solid-state Population Change with Time Measured by q6 (work in progress)

Multiscale Modeling of Ice Adhesion

Peak corresponds to 
embedded nucleus
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Outline of Presentation
1. Overview
2. Experimental Method
3. Ice Adhesion Stress: Empirical Model
4. Ice Adhesion Stress: Predictive Models
5. Summary
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Summary
Multiscale Modeling of Ice Adhesion

water dimers, clusters

Ab initio: QM

Atomistic scale: MD

Mesoscale: Continuum Mechanics (FEM)

H2O-substrate interactions; interfacial structure

crystal defects; structural anisotropy; substrate 
structure

ice density; structure porosity

pm nm um mm m

Microscale: CG MD
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Experimental Aerodynamics/ Icing Tunnel 
Hui Hu
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(1) Development of in situ adhesive and cohesive measurement system for impact
ice:

(2) Development of multiscale physics-based modeling of ice adhesion:

Quantify the performance of IPS over ice accretion surfaces under different
conditions:
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Dr. Huii HU

BIO-INNSPIRED ICEPHOBIC MATERIALS/COATINGS FOR

AIRCRAFT

D H

ICING

ii HUH

MITIGATION
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IISU INITIATIVEE FORR ICINGG PHYSICSS ANDD ANTITTTT -TI /DEE-E ICINGG (I3-PAD)

ISU CCCENTERR FORR IR ICINGG PPPHYSICSCS & U CCENCCC
AAAANTI

NTERNN
TTTTNTNTNT -
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ICCINGG RESEARCHH TUNNELEL @ IOWAWAWAA STATETE UNIVERSITYTYYY (ISU-IRT)
• ISU Icing Research Tunnel (ISUU-U-IRT), ), originally donated ISU Icing Research Tunnel (ISUU RT)RIR ), riginally donated or

by UTC Aerospace System ( formerly Goodrich Corp.), is by UTC Aerospace System ( for
a new refurbished, research

( for
chch-

rmerly Goodrfor
hh--grade multi

ood
ltlt -

rich Corp.), drod
titi--functional a new refurbish

icing tunnel. 
• The working parameters of the ISUU-U-IRT include: Thee working parame 

Test section:
of the IS

0.4m
IS

mm×
RT inRIRUSUU

mm×××0.4m
RT in
mm×

clude: ncT in
mm××2.0m Test section:

Airflow Velocity: 
0.4
VVVV∞ 

mmm 4m0.0 mm 0m 2.24
∞ =  5 ~ 100 m/s;Airflow Velocity: 

Air Temperature: 
VV
TTTTT∞ 

V∞VV∞ 

∞ = 
  5

= == -
5  15  5

-- 25 55
00 m/s; 1

55 C ~ 20 00
;m/s;;/ ;

00 C;Air Temperatur
Droplet size: 

T∞TT∞ 
DDDDDDdroplet

252255 C  20CC 00 
et = 10 ~ 100 

C;C;CC
00
C;C;C

m;Droplet size: 
Liquid Water Content:

D opledro et  10  1000 m;mmDD
:: LWC = 0.1 ~ 10 g/m

;;
mmm3

The large LWC range allows ISUU-U-IRT tunnel to be run The large LWC range allows ISUU RT tunnel to be run RIR
over a range of conditions from dry rime icing to wet over a range 
glaze icing.

N
A

SA
/C

P—
2019-219576

233



AAAAAAIIRCRAFTFT IT ICINGG PPPPPPPHYSICSCS:  RRIMEMME IE ICEEEEE ANDD GGGGGGGGGLAZEZE IE ICE
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DDIP MEASUREMENTSS OFOOOOOOF SHAPEPE CHANGESS OFOOOOOOF IF MPINGINGG DROPLETS
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QUUANTIFICATIONSS OFOOOOOOF DYNAMICSS OFOOOOOOF DROPLETT IMPINGINGG PROCESS
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TRRANSIENTNT BEHAVIORR OFOOOOOOF WINDND–D DRIVENN FILMLMMM/RIVULETET FLOWS
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TTIMEMME EEVOLUTIONN OFF THEHE WWWWWWINDND-D-DDDDDDRIVENEN DDDDDROPLETETTTTTTTTT/RRRRIVULETET FFLOW
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WIINDND–D DRIVENN FILMLMMM/RIVULETETTT FLOWSWS (DRYRYYYY SURFACECE CONDITIONON)
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•• Test Conditions:TeTeest Conditions:es
Angle of attack: αα ≈≈≈ 0.0 deg. Angle of attackAA
Temperature:

αα 0.0 d0
T ≈ 20 

.0 d
00 °

egde0 d
00 °C.Temperature:

LWC Level : 
T  2000 C.C
LWC =5.0 g/mm3LWC Level : LL

Frame rate : 
LWC 5.0 g
f = 30 Hz

Airflow velocity

V=20m/s
Airflow velocity

VV =15m/s

Airflow velocity

VVV =20m/s

Airflow velocity

VV =25m/s

VV =15m/s

VV =20m/s

VV =25m/s

DYNAMICC WATERR RUNBACKK OVERR ANAN AIRFOILIL SURFACE
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DDYNAMICC GGGGGGGGGLAZEZE IE ICECEEEEE AAAAAACCRETIONN OVERR ANAAAN AAAAAAIRFOILIL SSSSSSSSURFACE

• Test Conditions:
Oncoming airflow velocity : V ≈ 35 m/s
Angle of attack of the airfoil: α ≈ 5 deg. 
Airflow Temperature : T ≈ -8 C.
Liquid water content (LWC) : LWC =3.0 g/m3

Image acquisition rate  f = 150Hz, 10X replay

Lower surface

Upper surface
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DYYNAMICC GLAZEZE IE CECEEEE ACCRETIONN OVERR ANAN AIRFOILIL SURFACE

N
A

SA
/C

P—
2019-219576

242



UNNSTEADYDY HEATAAAATAATTAA TRANSFERR PROCESSS OVERR ANAN ICECCCEEEE ACCRETINGG AIRFOIL

Time (s)

T
 (

C
)

Time (s)

T
 (

C
)
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HYDROPHILICIC, HYDROPHOBICIC,C ANDD SUPERER-R HYDROPHOBICC SURFACE
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Birdrd-d-Feathere -r-Inspired Technology
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Hydrophilic  (baseline ) Goose feather SLIPS
(Pitcher-plant-inspired)Pitcher(P plant inser

Hydro-bead SHS
(Lotus-leaf-inspired)

Comparison of Testedd Surfaces
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Icece-e-phobic Coatings for Antit -ti-Frosting  vs.  Impact Icing

Upper surface

Lower surface
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DYYNAMICC IC MPACTSS OFOOOOOOF WATERR DROPLETSS ONTOTO AIRFOILIL SURFACES

Typical parameter pertinent to aircraft icing phenomena:Typiical paic
D 

meter
= 

r per
10 
pertinperti
00

neninrti
mD 

VVVVimpact

 
= 

100 mmm
100 m/sVV pacimpVV

We
 100 m/s

1,250We
Re

1,250
500Re

Oh
500
0.071

D    =  3.0 mm
V    =  10 m/s
Re  =  1,500
We =  3,000
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DYYNAMICC DROPLETET IT MPINGEMENTT ONTOO DIFFERENTNT SURFACES
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Hydrophilic, Hydrophobic and d Superhydrophobic
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Measuring Advancing and Receding Angles of Water Droplets
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Measurements of Ice Adhesion Force over  Different Surfaces
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EFFECTSS OFOOOOOOF BIOIO-O INSPIREDD COATINGSS ONN IMPACTCT IT CECEEEE ACCRETION
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EFFECTSS OFOOOOOOF BIOIO-O INSPIREDD COATINGSS ONN IMPACTCT IT CECEEEE ACCRETION
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After 15 icing-and-deicing cycles.
(Each icing-and-deicing would include 120s icing testing in 

ISU-IRT, and  then warm-up to room temperature for de-icing)

DURABILITYTY TESTINGG OFOOOOOOF BIOIO-O INSPIREDD ID CEPHOBICC COATINGS

SHS
Surface

Hydrophilic 
Surface

Right after the coating was applied. 

Phase-locked
imaging technique
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DURABILITYTY TESTINGG OFOOOOOOF BIOIO-O INSPIREDD ID CEPHOBICC COATINGS

Test rig for durability testing of surface coatings

Water droplets, s, MVDDdropletet = 10 ~ 100 0 mWater dropletss, MVDM D opledro et  10  1000 
Ice crystal generation will come soon
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ICEPHOBICC SOFTFT SURFACESES FORRRRRRR AIRCRAFTFT IT CINGG MITIGATIONON?

De-icing process causes structural failure for textured icephobic surface

De-icing process sacrifices liquid for lubricated icephobic surface

• Consider mechanical durability, are there any better icephobic materials?
• Icephobic Soft Surfaces?

• Schematic illustrating the separation of ice 
from the PDMS gels via separation pulses. 
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ICCEPHOBICC SOFTFT MATERIALAL (PDMS) WITHH ADJUSTABLELE STIFFNESS

The shear modulus of the PDMS gels can be tuned by adding 
non-active trimethyl-terminated PDMS (t-PDMS) with the 
concentration from 10% to 80%. 
Constant thickness of 500 m of PDMS gels can be ensured by 
controlling the spin coating speed. 

Research collaboration with Dr. r. Arunn Kota @ Colorado State University
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Compared Surfaces Ice adhesion strength 
at 
ce ad
at TTTTTTTTwall

dhesiod
allallaa = 

esio
== -

n stonesio
= -10 0 o

tren st
0 oC [KPa]

Std. deviation @ Std
TTTTTTTTwall

d. devd
allallaa = 

dev
== -

viativdev
= -10 0 o

ioniati
0 oC [KPa]

Al, 220 Grit 450 70
Al, mirror finish 130 60

Enamel 1400 130
Teflon 420 60

Hydrobead SHP 370 90
SLIPS 60 10

PFA plastic 570 60
Stainless steel 550 130

NeverWet 420 40

Concentration
(%)

TTTTTTTwallall =  = = - -5 55 o5 oC TTTTTTTTwallall = == -= -10 0 o0 oC

Mean 
Adhesion
Strength

(
g

((KPa
g

PaPa)

Std. 
deviation

(((KPaPaPa)

Mean 
Adhesion
Strength 

(
g

((KPa
g

PaPa)

Std. 
deviation

(((KPaPaPa)

20 5.3 0.9 16 2.2
40 4.7 1.2 13.6 1.7
60 3.6 0.5 7.0 2.2
80 1.4 0.5 4.3 0.5

ICEPHOBICC SOFTFT MATERIALAL (PDMS) WITHH ADJUSTABLELE STIFFNESS
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DYYNAMICC IC MPACTSS OFOOOOOOF DROPLETSS ONTOO SOFTFT PDMS SURFACES
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DYYNAMICC IC MPACTSS OFOOOOOOF DROPLETSS ONTOO SOFTFT PDMS SURFACES
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IMPACTCT IT CECEEEE ACCRETINGG PROCESSS OVERR ICEC -EEEE PHOBICC SOFTFT SURFACES

t-PDMS=50%

t-PDMS=60%

Baseline

t-PDMS=50%

t-PDMS=60%

Baseline
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EXXPERIMENTALAL SETUPP FORR AERORRRRO-O ENGINENE IE CINGG STUDY
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Ice shape after 600 seconds of Icing test

DYNAMICC IC CECEEEEE ACCRETINGG PROCESSS OVERR FANANNN BLADES
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Ice shape after 150 seconds of Icing test

DYNAMICC IC CECEEEEE ACCRETINGG PROCESSS OVERR FANANNN BLADES
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Antint -ti-/DeDDe-e-Icing with DBD Plasma Actuators

Glaze ice condition
AOA = 5 deg.
T∞=-5ºC;
LWC = 1.5 
g/m3; 
V∞=40 m/s) 
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THHANK YOU VERY MUCH FOR YOUR TIME!
QUESTIONS?
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Distribution Statement A: Approved for Public Release, Distribution Unlimited.      UNCLASSIFIED
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Durable Low Ice Adhesion Anti-Icing &
Ice-Phobic Surfaces

(ONR STTR Program N14A-T013)

10 August 2017

Brief to 
NASA Workshop on Low Ice Adhesion Materials

Dr. Ki-Han Kim
Program Officer
Ship Systems and Engineering 
Research Division (Code 331)
Office of Naval Research
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Distribution Statement A:  Approved for Public Release.                                      UNCLASSIFIED

Objectives

• Develop and demonstrate robust and affordable anti-
icing surfaces (prevent ice formation) that are also 
ice-phobic (reduce ice adhesion to substrates) for 
superstructure ice protection of surface ships 
operating in polar regions with no unacceptable ship 
and environmental impacts  
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Performance Requirements
(Major)

• Ice adhesion strength less than 30 kPa that will be 
proven by independent government laboratory 
through repeated tests.

• Operate effectively in temperatures down to -30 deg
in fresh and salt water.

• Durable and abrasion resistant in simulated 
operational environments, warm and cold.

• Affordable manufacturing techniques for covering 
ship superstructures and above-water hull surfaces

• Ease of application to ship structures and other deck 
equipment, including recoat over existing coating.
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• Resistant to corrosion, mild acids, UV,
organisms and organic phosphates

• Operational transparency (>80% in the visible
regime)

• Low slipperiness on decks
• Compatibility with current low solar absorbing

ship paints
• RF transparency

Performance Requirements
(Additional)
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Participants

• Agiltron Inc. (Woburn, MA) & Dartmouth College (Hanover,
NH)

• Luna (Roanoke, VA) & MIT (Cambridge, MA)
• HygraTek & U. of Michigan (Ann Arbor, MI)
• NanoSonic (Pembroke, VA) & Virginia Tech (Blacksburg, VA)

Phase I (Aug 2014 – Feb 2015)

Phase II (Aug 2016 – Dec 2017)
• HygraTek & U. of Michigan (Ann Arbor, MI)
• NanoSonic (Pembroke, VA) & Virginia Tech (Blacksburg, VA)
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