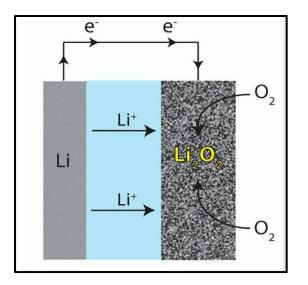
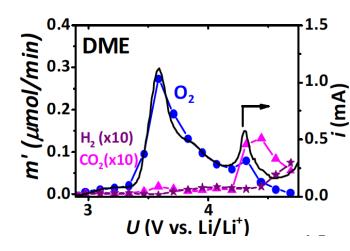

Transparent Conducting Oxides as Cathodes in Li-O₂ batteries: A First Principles Computational Investigation

Balachandran Radhakrishnan John W Lawson

Motivation


□ Li-O₂ electrochemistry


 $Li^+ + O_2(g) + 2e^- \leftrightarrow Li_2O_2^*$

- Parasitic reactions with electrode and
 electrolyte lead to capacity loss and abysmal
 cycles
- Carbon cathodes decay over the chargerecharge cycle

$$Li_2O_2 + \frac{1}{2}O_2 + C \leftrightarrow Li_2CO_3^*$$

Possible solution: Search for non-carbon cathodes with desired properties

J. Phys. Chem. Lett. 2012, 3, 3043–3047

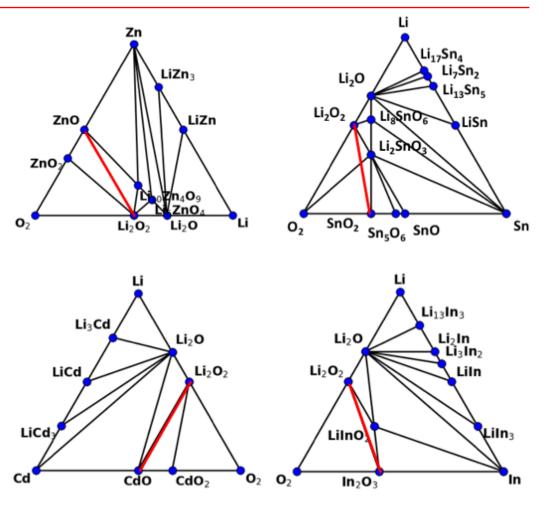
Preferred properties of cathode in Li-O₂ battery:

- 1. Stability against Li_2O_2 , the deposition product
- 2. No side reactions with electrolytes and intermediates in the electrochemistry
- 3. Electrochemical stability in the operating voltage range
- 4. Promoting formation of Li_2O_2

Transparent Conducting Oxides as cathodes

- 1. Stable in ether type electrolytes (DME, TEGDME etc)
- 2. Band gap controlled and commercially available
- 3. Stable in oxygen rich environment
- 4. Can they satisfy requirements of cathode in Li-O₂ battery?

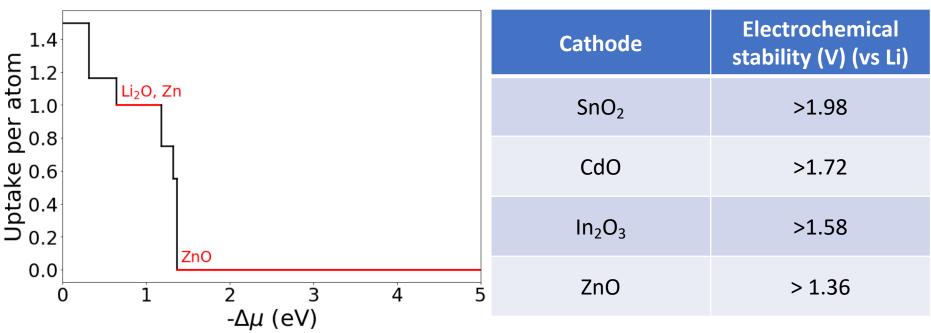
Chemical Stability: Phase Diagrams


Phase Diagram constructed using DFT energies from ¹Materials Project

Any chemistry that has a non-intersecting tie-line with Li_2O_2 is stable against it

Intersecting tie-line gives the reaction products with Li_2O_2

 SnO_2 reacts with Li_2O_2 to form Li_2SnO_3



$$\Delta E(\epsilon, Li_2O_2) = \min_{0 \le x \le 1} E_{x,\epsilon-(1-x).Li_2O_2} - x.E_{\epsilon} - (1-x).E_{Li_2O_2}$$

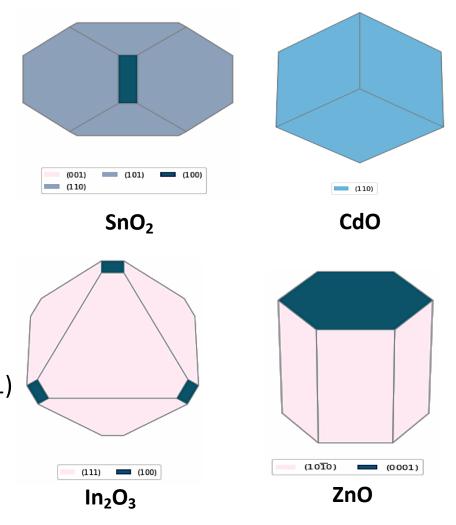
1. Comp. Mater. Sci., 68, 314–319 (2013) Ref: J. Phys. Chem. C 2019, 123, 8, 4623-4631

Electrochemical stability

Grand potential phase diagram is constructed to predict electrochemical stability range of the electrode

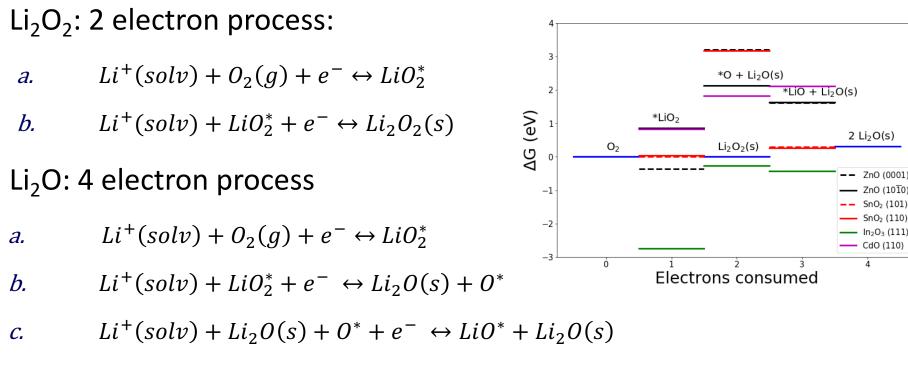
 $\phi = E - \mu_{Li} N_{Li}$

All the TCOs considered in this study are stable in the operating voltage of 2-4.5 V


APL Materials 1 , 011002 (2013); Comp. Mater. Sci., 68, 314–319 (2013) Ref: J. Phys. Chem. C 2019, 123, 8, 4623-4631

NASA Ames Research Center

Surface of interest


- Identify surfaces of interest using Wulff shape construction
- Surface energy is a function of chemical potential of oxygen
- Oxygen rich and oxygen deficient environments produce different crystal shapes
- □ ZnO can be synthesized as thin film (0001) as well as needle structures ($10\overline{1}0$)

$$\gamma_{surf} = \frac{1}{2A} \left[E_{slab}(N_M N_O) - \frac{N_M}{x} E_{bulk}(M_x O_y) + \left(\frac{N_M}{x} y - N_O\right) \mu_O \right]$$

Adsorption Studies

 $d. \qquad Li^+(solv) + Li0^* + Li_2O(s) + e^- \leftrightarrow 2Li_2O(s)$

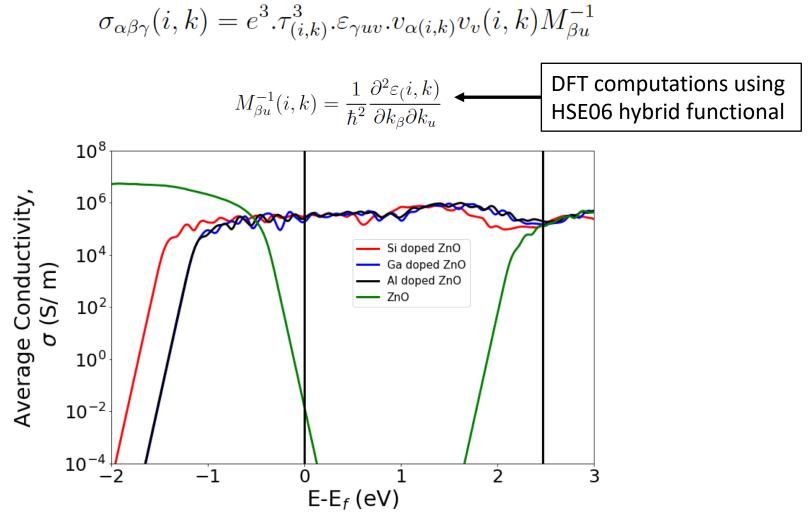
ZnO (0001) most suitable for Li₂O₂ formation
 SnO₂ will lead to mix of Li₂O and Li₂O₂ formation
 In₂O₃ and CdO promote Li₂O formation

ACS Energy Lett., 1, 162–168 (2016) Ref: J. Phys. Chem. C 2019, 123, 8, 4623-4631

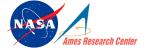
Doping TCOs

- **TCOs** are small band-gap materials in pristine condition
- Vacancy induced electronic conductivity observed
- Considered %~2 at. wt. doping in ZnO
- Used thermodynamic energetics to determine interstitial vs substitutive doping

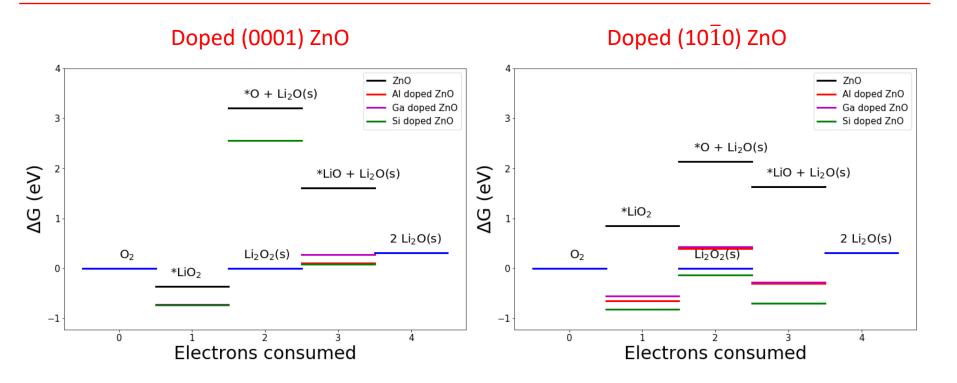
Substitutional dopant		Interstitial dopant	
$48 \text{ ZnO} + \text{X} \rightarrow \text{Zn}_{47}\text{XO}_{48} + \text{Zn}$		$48 \text{ ZnO} + \text{X} \rightarrow \text{Zn}_{48}\text{XO}_{48}$	
Doped Chemistry	Dopant Formation Energy (eV)	Doped Chemistry	Dopant Formation Energy (eV)
$ m Zn_{47}AlO_{48}$	-1.75	$ m Zn_{48}AlO_{48}$	2.153
$ m Zn_{47}GaO_{48}$	0.83	$ m Zn_{48}GaO_{48}$	4.417
$ m Zn_{47}GeO_{48}$	2.56	$ m Zn_{48} m GeO_{48}$	5.502
$Zn_{47}InO_{48}$	1.97	$ m Zn_{48} InO_{48}$	5.182
$ m Zn_{47}SiO_{48}$	-1.608	$ m Zn_{48}SiO_{48}$	2.536
$ m Zn_{47}SnO_{48}$	4.15	$\rm Zn_{48}SnO_{48}$	7.52


Al, Si and Ga substitutional doping was considered for further studies

Ref: J. Phys. Chem. C 2019, 123, 8, 4623-4631


NA SA Ames Research Center

Effect of Doping


Boltzmann semi-classical equations

BoltzTraP: Computer Physics Communications 2006, 175, 67-71 Ref: J. Phys. Chem. C 2019, 123, 8, 4623-4631

Effect of doping

Doping leads to better adsorption of LiO₂^{*} intermediate

- \Box (1010) surface, on doping, promotes formation of Li₂O
- Doped (0001) surface binds LiO₂* favorably while maintaining a viable path to Li₂O₂ formation

Other oxides...

Only those oxides that are chemically stable against $\mathrm{Li}_2\mathrm{O}_2$ were considered

Ì	Chemistry	Electrochemical stability range (V) (vs Li/Li ⁺)	Notes	
	BeO	≥ 0	Toxic	
	MgO	≥ 0.64	Insulator	
	K_2O_2	≥ 2.4	Prone to Li ⁺ attack	
	CaO	≥ 0	Promising candidate with doping	
	$ m SrO_2$	≥ 2.89	Prone to Li ⁺ attack	
	BaO_2	≥ 2.68	Prone to Li ⁺ attack	
	CsO_2	≥ 2.88	Conductor	
\bigcap	Y_2O_3	≥ 0	Promising candidate with doping	
	La_2O_3	≥ 0	Promising candidate with doping	
	${\rm CeO}_2$	≥ 1.22	Used as $coating^{42}$	
	Sm_2O_3	≥ 0	Rare earth mineral	
	Gd_2O_3	≥ 0	Rare earth mineral	
	$\mathrm{Tb}_{2}\mathrm{O}_{3}$	≥ 0	Rare earth mineral	
	Dy_2O_3	≥ 0	Rare earth mineral	
	$\mathrm{Er}_{2}\mathrm{O}_{3}$	≥ 0	Rare earth mineral	
	Tm_2O_3	≥ 0	Rare earth mineral	
	Lu_2O_3	≥ 0	Rare earth mineral	
	HgO	2.45	Toxic	

Future studies

- Extend to other classes of chemistries
 - Nitrides
- Effect of electrolyte on adsorption
 - Non-interacting dielectric medium (VASPSol)
 - Explicit role in adsorption energetics
- Effect of doping at various levels
 - Dopants considered in this study stay in the bulk
 - Will surface exposed dopants alter the adsorption profile?