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Magnetic gears are an attractive alternative to mechanical gears for electrified aircraft 

drive systems due to their ability to transmit torque without mechanical tooth contact. 

Consequently, magnetic gears enable electrified aircraft to take advantage of the benefits of 

gearing without introducing most of the contact-related reliability concerns associated with 

mechanical gearing.  Magnetic gears however, have not been shown to match the specific 

torque (torque per unit mass) and efficiency of their mechanical counterparts in an aerospace 

application to date. In this paper, the design of a concentric magnetic gear for a NASA 

personal-air-transport reference vehicle is presented to demonstrate the feasibility of a 

magnetic gear for aerospace applications.  

I. Nomenclature 

𝐵 = magnetic flux density 

𝑙 = magnet axial lamination size 

𝑘1 = modified Stienmentz coefficient 

GR =  gear ratio 

M = iron mass 

Q = number of pole pieces 

PR = number of ring gear pole pairs 

PS = number of sun gear pole pairs 

t = time  

T = period of magnetic flux repetition 

w = magnet width 

V = magnet volume 

𝛼 = Stienmetz frequency coefficient 

𝛽 = Stienmetz Flux Density coefficient 

𝜌 = resistivity of magnet material  

II. Introduction 

agnetic gears are an attractive alternative to mechanical gears in electrified aircraft applications, because of their 

ability to transmit torque without mechanical tooth contact between gear bodies. The use of a gearbox in the 

drive system of an electrified aircraft has been shown to significantly reduce overall drive system weight (Ref 1). 

However, the numerous failure mechanisms associated with mechanical tooth contact in traditional gearing results in 

a significant reliability penalty (Ref 2-3). Magnetic gears’ ability to transmit torque without mechanical tooth contact 

eliminates these failure mechanisms, reducing maintenance costs and increasing reliability. To date, most of the 

development of magnetic gears has been focused toward wind energy, marine energy, and automotive applications 

where volumetric torque density (torque per unit volume) has been the primary objective (Ref 4-8). In contrast, 

electrified aircraft drives’ primary design objectives are specific torque (torque per unit mass) and efficiency (Ref 9-

10).  

 In 2016, NASA launched a program to develop magnetic gears for electrified aircraft applications (Ref 11-14). As 

part of this program, NASA has produced three prototype magnetic gears. The first (PT-1) was used as a proof of 

concept gear made of commercial-off-the-shelf parts (Ref 11). The second (PT-2) was designed to demonstrate the 

feasibility of making a magnetic gear as light weight as its mechanical counterpart (Ref 11-14). It currently is the 

highest specific torque magnetic gear prototype reported in the open literature. The third prototype (PT-3) was a high 

efficiency version of PT-2 meant to demonstrate the feasibility of magnetic gears to have efficiency similar to their 

mechanical counterparts. 

 This paper presents the design of NASA’s fourth prototype concentric magnetic gear (PT-4). It is meant to 

demonstrate the feasibility of producing a magnetic gear that is both as efficient and light weight as its mechanical 

counterparts. It also is the first known magnetic gear to be designed using a combined electromagnetic and structural 

design code.  PT-4 is designed specifically for NASA’s personal air transport reference vehicle designed within 

NASA’s Revolutionary Vertical Lift Technology (RVLT) project (Ref 15). The RVLT quadrotor reference vehicle, 

shown in Figure 1, is a single passenger, autonomous, all electric “air taxi” aircraft. It has four rotors that each spin at 
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680 RPM and require a shaft torque of 226 Nm. The required shaft power is 16.1 kW. In the initial aircraft concept 

design, each of these rotors is driven by a geared electric motor that spins at 8000 RPM. The gearboxes for this motor 

and rotor combination therefore have a gear ratio of roughly 12 to 1 (Ref 11). For PT-4, mass and efficiency targets 

where set at 4.5 kg (~50 Nm/kg) and greater than 97% efficiency respectively. Based on the promising specific torque 

results of NASA’s first three prototypes (Ref 11-14), the chosen magnetic gear configuration for PT-4 is a concentric 

magnetic gear. 

 In section three of this paper, a brief description of concentric magnetic gears will be provided. Section four will 

discuss the design code developed to produce PT-4’s preliminary design. Section five will discuss the final magnetic 

design and the projected efficiency of the gear. Section six will discuss the thermal design of the gear. Finally, section 

seven will discuss the structural design of the gear and the deviation of the final design from the design code results.  

 

Figure 1 NASA's RVLT Quadrotor Air Taxi Reference Vehicle 

III.   Concentric Magnetic Gears 

 

Figure 2 Cross-section of a simple concentric magnetic gear 

The concentric magnetic gear (CMG), shown in Figure 2, was first proposed in 2003 (Ref 16). Since then, it has 

been extensively studied because of its high volumetric torque density. A CMG consists of three concentric rotors: a 

sun gear, a ring gear, and a modulator. The sun gear is a low pole count permanent magnet rotor that is typically used 

as the high-speed input to the CMG. The ring gear is a high pole count permanent magnet rotor. The modulator is a 

rotor that consists of alternating sections of high magnetic permeability material (pole pieces) and low magnetic 

permeability material (air, plastic, carbon fiber, etc.). The modulator sits in-between the sun and the ring gear and 

spatially modulates both permanent magnet rotor’s magnetic fields so that they have the same spatial harmonic order 
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in both airgaps. With matching spatial harmonic order in both airgaps, the magnetic fields are able to couple and 

transmit torque continuously between all three rotors. In order to modulate the fields optimally, the number of pole 

pieces in the modulator is selected such that 

             𝑄 = 𝑃𝑅 ± 𝑃𝑆             (1) 

Where Q is the number of evenly spaced pole pieces in the modulator, PR is the number of ring gear pole pairs, and 

PS is the number of sun gear pole pairs. For a detailed explanation of how the modulator couples the sun and ring gear 

together, the reader is referred to references 11 and 12. 

 Either the ring gear or the modulator can be held stationary while the other one rotates. If the modulator is held 

fixed, the CMG’s gear ratio is given by 

               𝐺𝑅 =
𝑃𝑅

𝑃𝑆
             (2) 

If the ring gear is held fixed, the gear ratio is given by 

               𝐺𝑅 =
𝑄

𝑃𝑆
=

𝑃𝑅

𝑃𝑆
± 1           (3) 

A higher overall gear ratio with the same sun and ring gear pole counts can be achieved by selecting the number of 

pole pieces in the modulator to be the sum of the ring and sun pole pair counts, and holding the ring gear fixed, while 

using the modulator as the gear’s output. This configuration of the CMG was therefore selected for study by NASA, 

and is used for PT-4. 

IV. PT-4 Magnetic Gear Design Code 

Axial segmented magnets with electrically insulating epoxy between each segment, called magnet laminations in this 

paper, are often used in permanent magnet motor design to reduce rotor magnet eddy current loss. NASA’s third 

magnetic gear prototype, PT-3, demonstrated that >98% efficiency is achievable in a CMG if the sun and ring gear 

magnets are laminated sufficiently. Additionally, preliminary studies on the potential efficiency of a magnetic gear 

for the quadrotor concept vehicle showed that axial magnet laminations of less than 2 mm would allow the design to 

achieve higher than the targeted 97% efficiency. Section 5 of this paper discusses the effect of magnet lamination size 

on PT-4’s efficiency to illustrate this point.  

The bulk of the design work for PT-4 was therefore focused on achieving the 4.5 kg mass target. A combined 

electromagnetic and structural magnetic gear design code was developed to study the design space and create the PT-

4 preliminary design. A combined structural and electromagnetic design code had to be used in the preliminary design 

process, because of the high coupling of the electromagnetic and mechanical design consideration in a CMG. In 

particular, pole piece radial thickness and the size of the sun-to-modulator magnetic air gap are two highly influential 

design variables in the electromagnetics of a magnetic gear. Both dimensions are limited by structural considerations. 

Additionally, the size and radial location of the magnetic components contribute significantly to bearing loading and 

the mass of the structure needed to support the magnetic components.  

The architecture of the developed magnetic gear design code used for PT-4 is depicted in Figure 3. The code 

requires initial values for radius, gear ratio, output torque, sun gear pole pair count, and input speed. It then runs cases 

of the thicknesses of the electromagnetic component (sun gear magnets, pole pieces, and ring gear magnets) through 

the electromagnetic and structural analysis modules of the code to create a total gear mass estimate. A minimum search 

algorithm then uses these mass estimates to iterate the three magnetic component thicknesses and optimize the mass 

of the gear.  The different modules of the code will be discussed in the next 2 sections of this paper. A discussion of 

the codes results used for PT-4 follows.   
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Figure 3 Magnetic gear design code flow diagram 

A. Mechanical Components of the Design Code 

1. Bearing and Shaft Design Code 

 

Figure 4 Bearing and shaft design code flow diagram 

A flow diagram for the bearing and shaft design code is shown in Figure 4. In PT-4’s design, estimates of the 

aerodynamic, gyroscopic, thrust, and torque loads for the RVLT quadrotor were accounted for in the bearing and shaft 

designs. The estimates of those loads, along with the assumed required life are listed in table 1. 

Table 1 Estimated bearing loads and requirements in the design code 

Load Value 

Required Bearing Life (99% Reliability) 10,000 Hours 

Output Torque 226 Nm 

Input Torque 18.8 Nm 

Thrust Load 1400 N 

Propeller Mass  10.5 Kg 

Propeller Hub Moment (Worst Case) 1203 Nm 

Propeller Hub Moment (Nominal Case) 604 Nm 

Nominal Propeller Hub Drag 100 N 

Max Turning Acceleration 2 G's 

Nominal Yaw Rate 0.25 rad/s 

Nominal Pitch Rate  0.25 rad/s 

 

The layout of bearings and shafts for PT-4 is depicted in Figure 5. It was assumed that four bearings are used in 

the magnetic gear. Bearing one is assumed to be a double row bearing to counteract the moments and thrust from the 

propeller and avoid passing those loads through the modulator structure. The second bearing is also double row to 

minimize misalignment of the input and output shafts by increasing the area of contact between the two shafts. This 

minimization of misalignment is driven by a tight test rig shaft misalignment tolerance and may not be necessary in 

an actual gear box design. Bearing 3 is assumed to be a single row deep grooved ball bearing and bearing 4 is assumed 
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to be an angular contact bearing. Both shafts are assumed to be made out of steel with a max allowable stress of 300 

MPa.  

 

Figure 5 Cross-sectional view of PT-4 showing bearing and shaft layout 

In each iteration of the design code, the bearing code takes in the current design’s axial length, rotor masses, and 

radius. In the bearing code, the min required shaft thicknesses for both the input (sun gear) and the output (modulator) 

shafts are calculated. A static structural analysis is then used to calculate the peak and nominal loads on the four 

bearings. The peak loads are checked against the static load ratings of a set of bearings in a bearing database created 

from a manufacturer’s catalog (Ref 17). Fatigue lives at the nominal loading are also calculated for every bearing in 

the database. Bearings whose bore diameter is not greater than the minimum shaft diameter, do not have static load 

ratings greater than the bearing peak loads, or do not have the required fatigue life are disqualified. The set of four 

bearings that minimize bearing mass are then selected from the remainder. Using the bore diameters of the selected 

bearings as the outer diameter of the sun and modulator shafts, the max inner diameters of both shafts are then 

calculated. Using the nominal loading and bearing efficiency equations from Reference 17, the frictional power loss 

in each of the four bearings is calculated. The bearing code then outputs a mass and power loss estimate for the 

bearings and the shaft sizes to the system-level design code. 

2. Rotor Mass Estimation Code 

Two-dimensional finite element analysis of a representative rotor section (Figure 6) was used to estimate the 

mechanical mass of the sun rotor, modulator end caps, and ring gear end caps. The ring and modulator end caps are 

defined in this paper as the axial end sections of both rotors that span the radial distance from the rotors’ magnetic 

components to the gear’s shafts and bearings. For the analysis of the ring and modulator rotors’ axial caps, outer radii 

were set to the rotor outer radius and then the rotor rim thickness, rotor spoke thickness, and fillet radius were 

optimized to minimize the rotor mass at an axial length of less than 10 mm. The 10 mm limit was used to avoid 

optimum rotor cap designs that had unreasonable axial lengths. The sun rotor was optimized in a similar manner once 

the axial length of the active section of the gear was determined by the electromagnetic analysis. Mass estimates for 

the rotor structures were created with each design code iteration of the three magnetic component thicknesses to 

include in the code’s estimate of total gear mass. 
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Figure 6 Example 2D rotor structural FEA 

3. Hoop Stress Code 

In order to set the magnetic airgap between the sun gear and the modulator, an iterative solver was used to estimate 

the required carbon fiber hoop thickness needed to contain the sun magnets for each design code iteration. The carbon 

fiber plies in the hoop were assumed to have a max allowable tensile stress of 600 MPa in the tangential direction. 

Centripetal loading of the hoop was calculated using the mass and rotational speed of the sun magnet. A non-linear 

analytical equation was used to calculate hoop stress. An initial hoop thickness was assumed equal to the thickness of 

two carbon fiber plies (0.25 mm). Hoop stress was calculated and the initial thickness was iteratively increased by the 

thickness of one carbon ply until the hoop stress was below the assumed max allowable tensile stress. The resulting 

hoop thickness was added to the assumed mechanical airgap to set the sun-to-modulator magnetic airgap in the 

electromagnetic simulations.   

4. Modulator Post Structural Analysis 

It was assumed that the modulator structure for PT-4 would be identical to the modulator structure used for PT-3. PT-

3’s modulator is depicted in Figure 7. It uses unidirectional carbon fiber posts between each of its pole pieces to 

transmit the load on each pole piece to the two end caps of the modulator. The stress in these posts typically limits the 

thickness of the pole pieces for a given axial length. The magnetically-optimum pole piece thickness is typically less 

than the mechanical limit. To account for this in the design code, with each iteration of the design the stress in the 

support posts was estimated. Electromagnetic forces were calculated for each pole piece in the electromagnetic 

simulations. The maximum of these forces was added to the centripetal forces on the pole pieces at operating speed. 

Euler-Bernoulli beam bending equations were then used to estimate the stress in the support posts assuming a 

trapezoidal cross-section, fixed-fixed boundary conditions, and a uniform distributed load. A stress limit for the posts 

of 800 MPa was set and designs that exceeded this limit were eliminated from consideration in the code’s mass 

optimization.  

 

Figure 7 NASA's third prototype magnetic gear (PT-3) modulator (second end cap not shown). 
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B. Electromagnetic Analysis 

The electromagnetics were simulated using a parameterized magnetic gear model in a commercial multiphysics finite 

element analysis (FEA) package. An example of the geometry used in the FEA simulations and the resulting magnetic 

field distribution for that geometry is shown in Figure 8. In this model, an integer gear ratio of 12:1 was used to make 

the ring magnets symmetric across a single sun pole arc. Using this symmetry, only an arc segment of the gear spanning 

one full sun pole pair was simulated, reducing computational cost. Integer gear ratios do however lead to large amounts 

of torque ripple and cogging torque in magnetic gears (Ref 19 and 20). The final gear design therefore should be 

updated from the design code results to have a non-integer gear ratio as is done in Section IV. 

 

Figure 8 Example electromagnetic analysis used in the design code. 

 

 Both the sun and the ring gear magnetic arrays were Halbach arrays. The sun was assumed to have eight magnets 

per pole pair in its Halbach arrays, and the ring was assumed to have four magnets per pole pair in in its Halbach 

arrays. Each magnet was assumed to have a 0.5 mm thick non-magnetic wall between it and its neighbors for assembly 

considerations and to avoid dependence on glue bonds for torque transmission from the magnets to the structural 

components. A non-linear magnet model was used based on magnet B-H curves at the anticipated operating 

temperature.  

The modulator pole piece geometry was created through the use of three pole piece span angles: outer, min, and 

inner. The definition of these span angles is shown in Figure 9. The three span angles were held fixed in the design 

code at values that had been determined by previous parametric simulations. Outer span angle and mid-span angle 

were both set to be equal to 120% of the ring gears’ pole to pole distance. The inner pole piece span angle was set to 

be half that value. An example of this pole piece geometry used in these simulations is shown in Figure 8. The 

geometry used in the code is not the same as the final designs pole piece geometry, because the code’s pole piece 

geometry does not enable a mechanical interlock between the pole pieces and their neighboring carbon fiber support 

posts. Nevertheless, the simplified geometry was used in the design code, because it was found to scale well with 

different input variables (Radius, Gear Ratio, etc.) and give reasonable estimates of the maximum achievable specific 

torque. As is described in Section V, the pole piece geometry is re-designed after preliminary design is complete to 

enable the mechanical interlock with the support posts.  
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Figure 9 Pole piece span angle and component thickness definitions used in the design code. Some sun gear 

magnets are hidden and a simplified array are used for clarity. 

 

Two-dimensional electromagnetic analysis always overpredicts the output torque of a CMG, because three-

dimensional axial flux leakage effects are neglected (Ref 18).  Axial leakage was accounted for in the code based on 

the aspect ratio of the gear (active axial length divided by diameter) using the leakage-effect estimates presented by 

Gerber in Reference 18. This estimation of axial leakage may not accurately predict PT-4’s output torque. However, 

it is the only available correlation in the open literature for magnetic gear 3D leakage effects, and the use of 3D FEA 

simulations was determined to be too computationally expensive for the design code.  

 

C. Design Code Results 

In preliminary executions of the design code for an operating temperature of 100℃, gear designs using NdFeB magnet 

grades N48SH and N50H in their ring and sun gears were found to be incapable of meeting the mass target for the 

gear (4.5 kg). The targeted operating temperature was therefore lowered to 80℃. NdFeB grade N52M magnets are the 

highest grade NdFeB that has a specified operating temperature greater than 80℃. Thus, it was assumed that grade 

N52M would produce the highest specific torque gear at a gear operating temperature of 80℃ and the design code 

was only run for N52M at 80℃. This assumption was incorrect, as is shown in table 2, discussed in Section V, because 

N52M is significantly more susceptible to demagnetization at 80℃ than grade N50H and N48SH. However, PT-4’s 

preliminary design was selected based on the results of the design code sweeps for N52M at 80℃. The total, 

mechanical, and magnetic mass results from the design code as a function of gear outer radius and sun gear pole pair 

count for grade N52M magnets at 80℃ are shown in Figure 10.  
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  a) Total Gear Mass Results from the Design Code Parametric Sweeps of Radius and Sun Gear Pole Pair 

Count 

 

  b) Gear Mechanical Mass Results from the Design Code Parametric Sweeps of Radius and Sun Gear Pole 

Pair Count 
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c) Gear Magnetic Mass Results from the Design Code Parametric Sweeps of Radius and Sun Gear Pole Pair 

Count 

Figure 10 Design code results for preliminary design of PT-4 

The results in Figure 10a show that a gear with five, six, and seven sun gear pole pairs and a radius greater than 

approximately 92.5 mm is capable of achieving the mass requirement for PT-4. Smaller radii do not achieve the 

required mass because the magnetic components are put at less of a mechanical advantage. Sun gear pole pair counts 

less than five have higher mass, because, at the radii studied, they have larger pole-to-pole distances. Larger pole-to-

pole distances both lower the specific flux of the magnetic arrays and requires additional pole piece thickness to create 

effective flux modulation.  

 High sun gear pole pair counts (seven or eight), at the radii studied, have higher masses, because of ring gear pole 

to pole magnetic flux leakage. Ring gear pole-to-pole leakage flux is flux that couples between ring gear poles through 

the ring gear-modulator airgap rather than coupling to the sun gear’s flux through the modulator and producing torque. 

The percent of a ring gears’ flux that leaks pole-to-pole is governed by the radial size of the ring gear-modulator airgap 

and the pole-to-pole distance on the ring gear. As the pole-to-pole distance on the ring gear gets smaller and becomes 

closer in size to the airgap, more and more flux leaks pole-to-pole because the reluctance of the pole-to-pole path 

becomes similar to the reluctance of the path across the airgap. Per Equation 3, gear ratio and sun gear pole pair count 

determine the ring gear pole pair count and therefore controls the ring gear pole-to-pole distance at a given radius. For 

a sun gear pole pair count of eight, at all radii studied, and for a sun gear pole pair count of seven at the smaller radii 

studied, ring gear leakage results in less torque being produced per unit axial length of the gear, and therefore a 

required longer axial length as compared to lower-pole-count gear designs. A steeper mass reduction with radius 

increase is seen for sun gear pole counts of seven and eight than for lower pole counts in Figures 10A and 10C. This 

steeper mass reduction with radius increase results from increased radius increasing the pole-to-pole distance on the 

ring gear and correspondingly reducing the ring gear pole-to-pole leakage flux that is significant in the higher sun gear 

pole count designs.  

 Mechanical mass has a significant step increase at a radius of about 83 mm in Figure 10b because of a required 

step change in the bearing selection resulting from higher gyroscopic bearing loads and a shorter axial length available 

to react moments. Except for that step change, there is a small, downward trend in mechanical mass in Figure 10b 

until a radius of 100mm resulting from reduced axial length with increased radius. Beyond the 100 mm radius size, 

mechanical mass grows due to the increased distance from the magnetic components to the shafts.  

Based on the preliminary design code results, a 104 mm outer radius gear with five sun gear pole pairs was selected 

for PT-4. A sun gear pole pair count of five was selected because it was the lowest pole count to achieve the mass 

target. The 104 mm radius was selected because it was near the minimum for the five pole pair designs and had 

reasonable modulator and ring magnet thicknesses. To reduce torque ripple, the pole pair count of the ring was 

increased to 56 pole pairs from 55 and the modulator pole piece count was increased to 61 from 60 to create a non-

integer gear ratio (Ref 19-20).  Static electromagnetic, efficiency, thermal, and structural analysis was then performed 

to finalize the design.  
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V.  PT-4 Electromagnetic Design and Efficiency 

A. Static Electromagnetic Analysis 

Static electromagnetic analysis was carried out on the selected design with the updated pole piece and ring gear 

pole pair counts in order to redesign the pole piece span angles. This re-design was done to enable a mechanical 

interlock between the pole pieces and the carbon fiber modulator support posts. Fillets were added to the corners of 

the pole pieces to eliminate sharp corners for manufacturing considerations. 2D FEA simulations of the selected design 

were run for parametric sweeps of the three pole piece span angles, shown in Figure 9, and a design was selected that 

maximized 2D specific torque. Figure 11 shows the final pole piece geometry.  

 

 

Figure 11 Electromagnetic simulation of final PT-4 design showing final pole piece geometry 

Once the pole pieces were redesigned, demagnetization of the magnets was checked at an assumed 80℃ 

operating temperature. Figure 12 shows a plot of the magnetization magnitude in the magnets assuming N52M 

NdFeB ring magnets. A significant amount of demagnetization can be seen in the tangentially orientated magnets of 

the ring gear’s magnetic Halbach arrays. In the design code, minimum ring magnet radial thickness of 3 mm had 

been held to avoid demagnetization of the ring gears radial magnets. However, with the high pole and magnet count 

of the ring gear, the width of each magnet was below this minimum value. Thereby, the length scale of the tangential 

magnets in their magnetization direction was less than 3 mm and significant demagnetization was possible. In order 

to correct for this, rather than re-optimize the gear, alternative grades of NdFeB that had higher maximum operating 

temperatures were substituted in for both the ring gear and the sun gear. Figure 13 show the resulting magnetization 

values for grade 48SH NdFeB ring magnets with N52M sun magnets. Compared to Figure 12 no significant ring 

gear demagnetization is noted. Table 2 shows the resulting torque values for various changes of ring and sun gear 

magnetic material. The table shows that an error was made in assuming that the highest-grade magnet with a 

specified operating temperature greater than the assumed maximum temperature would produce the highest specific 

torque magnetic gear. Due to the magnetic environment of a magnetic gear, magnets are much more likely to 

demagnetize than they would be in a synchronous permanent magnet machine where the demagnetizing field comes 

from a typically weaker electromagnet rather than a second set of permanent magnets.  
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For the final magnetic design grade N52M sun magnets and N48SH ring magnets were selected. Table 3 lists the 

magnetic design parameters for PT-4.  

 

 

Figure 12 Demagnetization of tangentially oriented N52M ring gear magnets at 80℃ 

 

 

Figure 13 Plot of magnetization with N48SH ring gear magnets and N52M sun gear magnets at 80℃ 

operating temperature. No significant demagnetization is observed in the ring gear magnets. 

Ring Gear Magnet 

Demagnetization 
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Table 2 Resulting torques from different magnet grade selection at 80℃ 

Sun Magnet Material Ring Magnet Material Torque at 80℃ (Nm) 

N52M N52M 278 

N50H N50H 304 

N48SH N48SH 303 

N52M N50H 300 

N52M N48SH 301 

N50H N48SH 311 

 

Table 3 Electromagnetic design parameters for PT-4 

PT-4 Electromagnetic Design Parameters 

Sun Pole Pairs 5 

Modulator Pole Pieces 61 

Ring Pole Pairs 56 

Magnetic OD (mm) 104.1 

Axial Length (mm) 52 

Sun Magnet Thickness (mm) 7.878 

Modulator Thickness (mm) 2 

Ring Magnet Thickness (mm) 3.302 

Inner Pole Piece Span Angle 4 

Mid Pole Piece Span Angle 2.3 

Outer Modulator Span Angle 5.44 

Pole Piece Fillet Radius (mm) 0.127 

Sun Magnet Mass (kg) 1.732 

Ring Magnet Mass (kg) 0.687 

Pole Piece Mass (kg) 0.287 

Magnetic Mass (kg) 2.705 

2D EM Specific Torque at 80C (Nm/kg) 108 

2D EM Specific Torque at 20C (Nm/kg) 137 

 

B. Electromagnetic Efficiency Analysis 

In order to reduce computational cost and avoid having to do a simulation for each operating point of PT-4, PT-4’s 

efficiency was modeled using a collection of 2D static FEA simulations and post processing equations rather than 

time-dependent FEA. Using this method, an approximation of the losses is made as the bidirectional coupling of the 

magnetic and electrical fields is neglected. For PT-4, 224 evenly spaced static simulations evaluated over one fifth of 

a sun gear rotation (the period of repetition for the sun gear) and the corresponding modulator rotation were used. 

Magnetic flux density data as a function of sun gear angular position was extracted from the simulations and post 

processed using the iron and magnet eddy current loss models described in the appendix.  
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1. Magnet Lamination Size Selection 

 
                                              (a)                                                                                        (b) 

Figure 14 Effects of Sun and Ring Magnet Lamination Size on Sun and Ring Gear Magnetic Eddy Current 

Losses 

The variation in sun gear and ring gear magnet eddy current loss with respect to sun and ring magnet lamination size 

is shown in Figure 14. Comparing sun gear losses in 14a to ring gear losses in 14b at similar magnet lamination sizes, 

the ring gear losses are an order of magnitude lower. This large difference in loss exists for three reasons.  

The first reason is the width of the sun magnets (about 12 mm) is significantly larger than the width of the ring 

gear magnets (about 2 mm). In the absence of axial magnet laminations, the width is the smallest length scale in the 

magnets of the sun and ring gear and therefore the effective resistance of the magnets to eddy current generation is 

highly dependent on it. When the width of a magnet is much less than its length, the loss in that magnet scales with 

the width cubed. As a result, the effective resistance of the ring gear magnets is much higher than the resistance of the 

sun gear magnets when the lamination size is large. Magnet lamination size does not affect losses until it is close to 

the width of the magnet. Figure 14, shows this phenomenon as ring loss is essentially constant with lamination size 

until the laminations are about 10 mm in size. 

The second reason sun gear loss is higher than ring gear loss is the larger volume of the sun gear magnets relative 

to the ring gear magnets. Eddy current loss scale linearly with magnet volume if the electrical potential generated is 

constant. The total volume of the sun gear magnets is 2.5 times the volume of the ring gear magnets. 

The third reason is the relative frequencies of pole passage for each member.  The frequency of ring gear pole 

passage on the sun is 11.2 times the frequency of the sun gear pole passage on the ring. Eddy currents in magnets scale 

with both the square of the frequency and the square of the magnitude of the time varying magnetic field. Because 

PT-4’s modulator is only 2 mm in thick, unmodulated flux from both the sun and ring gear reaches the opposite magnet 

rotor. The magnitude of the unmodulated ring gear flux that reaches the sun is lower than the magnitude of the 

unmodulated sun gear flux that reaches the ring, however it is only lower by a factor of about 6. The ring gear, 

therefore, because of its 11.2 times higher frequency, produces more electrical potential on the sun gear in PT-4 as a 

result of its higher electrical frequency. 

How the losses in Figure 14 translate to efficiency values is shown in Figure 15. As would be expected, efficiency 

does not appear to vary with ring magnet lamination size. For manufacturing simplicity, PT-4’s ring gear magnets 

were therefore left unlamented. Sun magnet lamination size is shown to have a significant effect on efficiency in 

Figure 15. Based on manufacturing difficulties experienced with PT-3’s magnets that had a 1 mm lamination 

thickness, a 2 mm lamination thickness was selected for PT-4 sun’s magnets. This selection results in a predicated 

electromagnetic efficiency for the gear of 98.89%. If 1 mm or 1.5 mm laminations were used, efficiencies of greater 

than 99% would be achieved.  
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Figure 15 PT-4 efficiency vs magnet lamination size. Little dependence on ring gear magnet lamination size is 

shown.  

2. Final Design Efficiency and Losses 

An efficiency map for PT-4 at an operating temperature of 20℃ is shown in figure 16. The efficiency map shown in 

Figure 16 includes windage and bearing loss estimates calculated with analytical equations. The nominal operating 

point for the gear is marked with an X. The predicated efficiency at this operating point is ~98.5%. This efficiency 

exceeds the targeted 97% efficiency.  

 

Figure 16 PT-4 Efficiency Map at 20℃ Operating Temperature 
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For magnetic gears, as operating temperature increases the efficiency of the gear increases as long as the gear can 

still achieve the desired torque at the operating speed. This increase in efficiency results from a decrease in the 

remanent flux density of magnets with increased temperature. The reduction in remanent flux in turn results in less 

time varying flux in the gear and therefore less magnetic loss. Additionally, NdFeB’s resistivity increases with increase 

temperature and correspondingly leads to an additional drop in the magnitude of the eddy currents generated in the 

magnets. This drop-in magnet losses caused by the resistivity increase, is small compared to the loss reduction caused 

by the reduced remanent flux however. Figure 17 below shows a comparison of the magnetic losses at 20℃ and 80℃.  

Overall the drop-in losses with increase temperature results in an increase of efficiency to >99%. It should be noted 

that the drop-in magnet remanent flux density with temperature also reduces the max torque the gear can produce. The 

decrease in achievable 2D torque for PT-4 verses temperature is shown in Table 4.  

 
Figure 17 Comparison of PT-4 magnetic losses at 20℃ and 80℃ 

 

Table 4 PT-4 2D torque versus temperature 

Temperature (℃) Maximum 2D Output Torque (Nm) 

20 370 

80 303 

100 270 

 

VI. Thermal Analysis 

A centripetal pumping cooling flow scheme was selected for cooling PT-4. Conduction of heat from the modulator 

and sun gear magnets to the outer surface of a CMG is severely limited because of their rotational speed relative to 

the ring gear. Internal cooling flow is therefore required to cool the modulator and sun gear of a CMG. Centripetally 

pumped flow was selected because it makes use of the radial fluid flow produced by the high-speed rotation of the 

sun rotor and does not induce additional windage losses like axial flow through the gear’s airgaps would.  

A coupled fluid flow and thermal FEA model was built using a commercial FEA package to analyze this cooling 

approach. Symmetry was used across the gears’ axial mid-plane and tangential arc to reduce model size. The geometry 

of PT-4 was de-featured and simplified to reduce computational cost. A conservative ambient temperature of 40℃ 

was assumed. A few iterations of the solidity of the modulator rotor cap geometry were completed to improve the 

radial flow through the axial gap between the sun rotor and modulator caps. Additionally, the pole piece support post 

carbon fiber selection was switched from IM7 fibers assumed in the code to a pitch-based carbon fiber with a thermal 

conductivity of >100 W/m*K. The resulting thermal results are depicted in Figure 18. Table 5 lists the max 

temperature of the three magnetic components. Both magnet arrays are kept below their assumed design operating 

temperature. The pole pieces have a slightly higher temperature due to the high concentration of losses in PT-4’s pole 

pieces.  
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Figure 18 Temperature results for PT-4 thermal analysis 

 

Table 5 Max Magnetic Component Temperatures from Thermal Analysis 

Magnetic Component Max Temperature 

Sun Gear Magnets 80℃ 

Pole Pieces 85℃ 

Ring Magnets 77℃ 

 

VII.  Structural Design 

The structural design of PT-4 is depicted in Figure 19. Most of the structure is composed of 3D printed carbon fiber 

reinforced nylon plastic. Retaining hoops and the modulator pole piece support posts are composed of unidirectional 

carbon fiber composite. The predicted mass for the design is 4.6 kg. This mass is only 8% higher than the mass 

predicted by the design code and 0.1 kg above the targeted mass for PT-4 (4.5 kg). The discrepancy between the 

design code predicted mass and the final mass mostly results from structural features that were added in the final 

design but not accounted for in the design code. For example, as can be seen in Figure 19, a number of shaft features 

(step changes, rotor connections) were required in the final mechanical design that were not accounted for in the design 

code’s hollow shaft mass estimate. A margin factor needs to be added to the code going forward to account for these 

features. Additionally, the axial and radial loads from the bearings were not accounted for in the design code’s 

estimation of the ring gear’s mechanical support structure’s mass. A more detailed analysis of the ring gear’s structure 

needs to be built into the code. 
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Figure 19 Final structural design of PT-4. 

 

One other discrepancy between the design code’s mechanical design and the final mechanical design is in the 

modulator’s structure. As discussed in references 11-14, NASA has found modulator mass and thereby modulator 

radial thickness to be a main driver of a CMG’s specific torque. The optimum modulator thickness, for electromagnetic 

specific torque, is often much thinner than is mechanically possible to achieve because of the large magnetic forces 

on the modulator. Figure 20 shows the variation in force on a single pole piece of PT-4 during one period of repetition. 

To account for these large loads, the design code assumed that PT-4’s modulator posts where unidirectional IM-7 

carbon fiber, and the calculation of the stresses in the posts were included as a key part of the design code. However, 

the initial structural FEA of PT-4’s modulator indicated that the deflection in those posts was greater than 0.5 mm 

(over half of the unloaded airgap) despite a peak stress of around 350 MPa (only 44% of the stress-based design limit). 

As a result, alternative structural options were explored during the detailed design phase with the goal of maximizing 

the remaining physical gap between the ring gear and the modulator when the modulator is fully loaded.  

 

Figure 20 Electromagnetic force on a single modulator pole piece vs sun gear rotation 

The final solution selected, shown in Figure 19, uses a carbon fiber hoop on the outer diameter of the modulator and 

stiffer pitch-based carbon fiber in the pole pieces. This solution enables a remaining ring-modulator airgap of 0.67 

mm under full load. Overall, the results of this analysis point to the need to account for both stresses and deflections 

of the modulator support posts in future revisions of the design code 
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VIII. Conclusion 

In this paper, the design of a magnetic gear (PT-4) for NASA’s RVLT project’s vertical lift quadrotor reference vehicle 

was presented. PT-4 is designed to be a demonstrator of a high specific torque and high efficiency magnetic gear for 

electrified aircraft. It is also NASA’s step towards a higher technology readiness demonstrator for an electrified aircraft 

magnetic gearbox as all the propeller and flight loads for the quadrotor reference vehicle are accounted for in its 

design. The preliminary design of this gear was created with the use of a new magnetic gear design code that combines 

structural and electromagnetic analyses. With the guidance of the design code, the completed final design achieves a 

predicted mass of 4.6 kg (49 Nm/kg) and a predicted efficiency of 98.5% at the nominal operating condition. The high 

efficiency of PT-4 is enabled by the use of Halbach arrays and sun gear magnet laminations. A centripetal pumped 

cooling flow scheme was implemented for self-cooling. Even with the additional design constraints for PT-4 compared 

to PT-2, PT-4 is expected to exceed the specific torque record set by PT-2 and set the new state of the art for the 

achievable specific torque in a CMG.   

The newly developed design code enables selection of a preliminary design in less than a week.  The mass of the 

preliminary design was heavier than the final design mass by only 8%. This 8% difference resulted from multiple 

reasons as was discovered during the detailed design phase of this project. Recommendations for improving the 

preliminary design produced by the code include the following: 

1. In the design of a magnetic gear with Halbach array magnet rotors, minimum ring magnet width as well as 

minimum magnet thickness needs to be set to avoid significant demagnetization, 

2. At a given temperature the highest magnet grade that can operate at that temperature does not necessarily 

produce a magnetic gear with the highest specific torque, 

3. The modulator support structure’s stiffness becomes equally as important as its strength when the 

modulator’s thickness is minimized to minimize mass, 

4. Assuming straight shafts and not accounting for their complex attachment features can lead to an 

underestimate of the shafts’ mass 

5. The ring gear’s structure needs to be analyzed more thoroughly in the design code, because of the 

significant loading the propeller imparts on it. 

IX. Appendix 

A. Magnet Eddy Current Model 

Eddy currents in the magnets were predicted using the eddy current model for general periodic waves found in Ref 

21. The model defines volumetric loss in a component experiencing a periodically varying magnetic field as  
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1
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Where 𝑃𝑐 is the volumetric loss, w the tangential thickness of the magnet, l is the axial length of a magnet segment or 

lamination, V is the volume of the magnet, 𝜌 is the resistivity of the material, T is the period of repetition, and B is 

magnetic field magnitude.  

Using numeric integration, the above equation can be written as 
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Where N is the number of time steps and ∆𝑡 is the length of the time step. Because ∆𝑡 is constant this equation can be 

simplified to  
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B. Pole Piece Iron Loss Model 

Modulator loss was predicted using the Improved Generalized Stienmetz Equation (IGSE) with minor loop separation 

method found in reference 22. The IGSE is a modification to the Stienmetz Equation that allows for accurate prediction 

of core loss when the magnetic field is not sinusoidal. The Stienmetz Equation defines the specific core loss (loss per 

Kg of material) in electrical steel subjected to a sinusoidal varying magnetic field as 



20 

 

𝑃𝑣 = 𝑘 ∗ 𝑓𝛼𝐵𝛽  

Where 𝑃𝑣 is specific core loss, 𝑓 is the frequency of the sinusoidal varying magnetic field, 𝐵 is the peak value of the 

field, and 𝑘, 𝛼, and 𝛽 are material constants.  𝑘, 𝛼, and 𝛽 can generally be determined from core loss information 

provided by electrical steel manufacturers. The IGSE uses these parameters to predict core loss for non-sinusoidal 

waves as 
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Where 𝑇 is the period of repetition of the field, ∆𝐵 is the peak to peak flux density, and 𝑘1is an updated loss coefficient. 

The algorithm for numerically implementing this equation with minor loop separation is discussed in detail in 

reference 20. This algorithm was implemented on the magnetic flux density versus rotor position data from the 

simulation. By a similar method as used for the magnet loss, modulator loss can also be written 

𝐿𝑜𝑠𝑠𝑚𝑜𝑑 = 𝐶𝑚𝑜𝑑 ∗ (
1

∆𝑡
)𝛼 

Where 𝐿𝑜𝑠𝑠𝑚𝑜𝑑  is the modulator losses and 𝐶𝑚𝑜𝑑 is the modulator loss coefficient.  

This loss prediction is only meant to serve as a minimum baseline for modulator loss in the gear as the IGSE most 

likely under predicts the losses. The IGSE is only accurate for unidirectional fields and therefore it doesn’t account 

for the losses from the rotating fields (Ref 23). Therefore, iron loss is most likely under predicted.  
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