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Spatially-resolved observations from the IRIS, SDO/AIA, and other space mission and ground-based telescopes, coupled with realistic 3D RMHD

simulations, are a powerful tool for analysis of processes in the solar atmosphere. To better understand the dynamical and thermodynamic properties in

the simulation data and their connection to observations, it is essential to determine similarities in the behaviors of the synthesized and observed

emission. However, the complexity of observational data and physical processes makes comparison of observations and modeling results difficult. In

this work, we show the initial results of application of K-Means clustering (unsupervised machine learning) algorithm to two different problems: 1)

recognition of the typical spectroscopic line profiles observed by IRIS during solar flares and their typical dynamic behavior; 2) recognition of shocks

and heating events in synthetic AIA emission data obtained from StellarBox quiet-Sun simulations. The average silhouette width technique for the K-

Means algorithm is utilized in different ways to obtain optimal numbers of clusters. We discuss application of the emission clustering to visualizations

of the computational volume, understanding its evolutionary trends and behavior patterns, and inversion (reconstruction) of physical properties of the

solar atmosphere from synthesizes emission data.
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Description of data processing and clustering algorithms Recognition of shocks and heating events from synthetic AIA emission
• Statistical moments of line profiles. The zeroth moment will represent the maximum or the

integrated line intensity. The first (Doppler shift), second (line width), third (line asymmetry),
and higher statistical moments can be computed as:

• K-Means clustering. The K-Means takes the number of clusters as an input parameter, and
initially seeds the cluster centers randomly among data points. After this, K-Means assigns the
points to belong to the nearest cluster center (i.e. labels them), recomputes the cluster centers as
the means among the points of the same labels, and repeats the procedure until there are no
changes in labels for points.

• Average silhouette width. The silhouette is defined for data i point as ,

where a(i) is the average distance from the point i to points of the same cluster, b(i) is the
average distance from the point i to points of another closest cluster. The average s(i) across the
points indicates how well the points lye within their clusters.

• The optimal number of clusters can be estimated by maximization of the s(i).

• When s(i) < 0, the points no longer “belong” to their clusters.

• The Interface Region Imaging Spectrograph (IRIS, De Pontieu et al. 2014) has observed
hundreds of flares of ≥ C1.0. However, statistical studies of atmospheric response to the flare
heating by IRIS are hard to perform because of the complexity of imaging spectroscopy data:
their high dimensionality, large data volumes, optically-thick nature of the lines.

• Finding compact illustrative representation of the atmospheric response to the flare heating
using unsupervised machine learning (clustering) techniques can simplify the analysis of large
observational data sets and increase their understanding.

• An example of clustering of C II 1334.5 Å line profiles for the M1.0 flare of June 12, 2014, is
presented in Figure 1. The maps of the line profile representatives indicate that most of the
southern part of the flare region exhibits redshifts of the C II line profiles, while the northern
part does not show any strong Doppler shift with respect to unperturbed gray line profile. Line
clustering was previously used by Panos et al. (2018) and Sainz Dalda et al. (2019).

• Figure 2 illustrates the typical evolution of Mg II k 2796 Å line profiles during the M1.8 class
solar flare of February 13, 2014. The K-Means clustering was performed simultaneously for
the line intensity, Doppler shift, and line width evolution, with equal contribution from each
considered statistical moment. The red, blue, and black clusters are of special interest: while
red cluster behaves as typically expected during “explosive” chromospheric evaporation, blue
and black clusters revealed slight redshift followed by a strong blueshift of the spectral lines.

How many clusters to select? Inverse problem POV.

• The number of clusters depends on the problem type: some problems (e.g. recognition of tiny features in line profiles) may require
selection of more clusters than dictated by the maximization of the average silhouette width.

• In the example above, synthetic AIA emission is a function of the Differential Emission Measure (DEM, Cheung et al. 2015) of the
computational domain. Reconstruction of the DEM from AIA emission is an example of ill-posed inverse problem.
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• “StellarBox” code solves the fully compressible MHD equations with radiative transfer solved by ray-tracing and opacity binning
techniques, and large-eddy simulation (LES) treatment of subgrid turbulent transport (Wray et al. 2018). The current version of the
code supports option to extend of the computational domain to corona and deeper convective layers and in horizontal directions.

• The computational domain of 12.8 x 12.8 x 15.2 Mm includes a 10-Mm layer from the photosphere to the low corona. The grid-
size is 25km in the horizontal directions; a variable grid-spacing of similar size is used in the vertical direction. The lateral boundary
conditions are periodic. For initial conditions of the chromosphere and corona, the model by Vernazza et al. (1981) has been used.
The 176 simulation snapshots delivered with 2s temporal cadence are analyzed.

• Synthetic top-view AIA emission is computed for each snapshot for each column separately, using SDO/AIA temperature response
functions available from SSW IDL. Strong impacts (“shocks” hereafter) are observed in AIA running difference images.

• K-Means clustering is performed for sparse selection of columns and snapshots for all AIA channels together. The contribution of
each channels was normalized. Seven clusters are used (the reason is explained below).

• Preliminary result: one of the clusters (cyan) correlates well with the shock signatures. The corresponding differential emission
measure profile (DEM, cyan) shows the peak at ~1MK and contribution from ~400kK plasma.

• Figure 3n illustrates that, if more than 7
clusters are selected in AIA emission
space, the corresponding DEMs of these
clusters strongly mix with each other. The
average silhouette computed in DEM
(generating parameter) space becomes
negative, i.e. the points no longer
correspond to their clusters in that space.

• In general, the combination of
unsupervised clustering in image space
and measure of how well the data is
clustered in generating parameter space
can increase understanding and provide
diagnostics of any inverse problem solely
based on the known forward modeling
results (see Figure 4)

Future plans and ideas.

• Recognition of typical line profiles and dynamical responses of the
atmosphere to flare heating from IRIS data based on large statistics of
flare events.

• Correlation of appearance of certain line profile shapes and dynamical
behavior with properties of hard X-rays (from RHESSI and Konus-
WIND) and soft X-rays (from GOES).

• Computation of IRIS line profiles (Mg II, C II, Si IV) for the considered
StellarBox run using RH radiative transfer code. Testing the clustering
algorithms on the synthesized emission reduced to IRIS and SDO/AIA
instrumental resolutions.

• Development of diagnostics tool for recognition of shocks, strong flows
and heating events from SDO/AIA data and IRIS data based on cluster
analysis discoveries.
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Figure 1. a) C II 1334.5 Å line profile representatives (cluster centers) for the M1.0 class solar flare observed on
June 12, 2014; b) the average silhouette width as a function of number of cluster used for K-Means algorithm.
Dashed black vertical line points out the optimal selected number of clusters (7); c) IRIS SJI 1330 Å image for the
peak time of the flare. White lines point out slit positions for the panels d-g); d-g) maps of line profile
representatives for different times of the flare. The color code is in accordance with the panel a).

Figure 2. Typical behavior (cluster centers) of the Mg II k 2796 Å line intensity (a), Doppler shift (b) and line
width (c) during M1.8 class flare of February 13, 2014. Dashed black vertical lines mark the flare start and flare
peak times. (d) Map of behavior representatives for the flare. Color coding is kept in accordance with panels (a-c).
(e) IRIS SJI 1330 Å image for the flare peak time. White lines point out slit positions for the panels (d). (f) the
average silhouette width as a function of number of cluster used for K-Means algorithm. Dashed black vertical line
points out the optimal selected number of clusters (5).

Figure 3. (a) Distributions of temperature, (b)
vertical velocity, and (c) magnetic field in a
quiet Sun region at 2 Mm height above the
photosphere for StellarBox setup. (d)
Synthesized AIA 171Å emission, (e) AIA 171Å
running difference, and (f) label map for t=62s.
(h-i) Same for t=188s. (j-l) Same for t=226s.
(m) Average distributions of the differential
emission measures (DEM) corresponding to
recognized AIA clusters. Colors are in
accordance with panels (f, i, l). (n) Average
silhouette widths of the DEM clusters as a
function of number of clusters for AIA
emission. Dashed vertical line corresponds to
selected number of clusters (7)

Figure 4. Illustration of how the clustering in image space can be reflected in parameter space. The lower
right circle represents the case when identification of new cluster in image space does not help to locate
the generating parameters in parameter space.
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