

CLASP2: Exploring the magnetic chromosphere

Polarization Calibration of Chromospheric LAyer Spectro-Polarimeter (CLASP2)

Donguk Song¹ (donguk.song@nao.ac.jp), **Ryohko Ishikawa**¹, Ryouhei Kano¹, Hirohisa, Hara¹, Kazuya Shinoda¹, Masaki Yoshida¹, Takenori J. Okamoto¹, David E. Mckenzie², Javier Trujillo Bueno⁴, Frederic Auchere³, Laurel Rachmeler², Ken Kobayashi², and CLASP2 team ¹National Astronomical Observatory of Japan; ²NASA Marshall Space Flight Center; ³Institut d'astrophysique spatiale; ⁴Instituto de Astrofisica de Canarias

Introduction

Chromospheric LAyer Spectro-Polarimeter (CLASP2)

- is a NASA sounding rocket experiment, that was launched in April, 2019 (see, Fig 1).
- was successfully detected full Stokes profiles in the Mg II h & k lines near the 280 nm (SPW9 hightlighted talk of "The CLASP and CLASP2 Missions" by Ishikawa).
- In this study, we performed the polarization calibration to ensure 0.1% polarization accuracy of CLASP2 as required

g. 1. CLASP2 launch at WSMR

in April 2019

Results

Representative Response Matrix

Data (Slit center) taken on 2018. 9. 12 (linear) & 20 (circular) \diamond

$$X_{SP1} = \begin{pmatrix} 1 & -0.0081 & -0.0046 & -0.0014 \\ 0 & 0.9819 & -0.0340 & 0.0067 \\ 0 & 0.0346 & 0.9839 & -0.0012 \\ 0 & 0.0076 & 0.0019 & 0.9881 \end{pmatrix} \qquad X_{SP2} = \begin{pmatrix} 1 & 0.0070 & 0.0068 & -0.0073 \\ 0 & 0.9839 & -0.0044 & 0.0064 \\ 0 & 0.0041 & 0.9883 & -0.0017 \\ 0 & -0.0015 & 0.0019 & 0.9859 \end{pmatrix}$$

- Diagonal elements (x_{22} , x_{33} , and x_{44}) deviate from unity in larger than their tolerance \rightarrow It might be caused by the difference of the waveplate retardation.

by the theoretical prediction (Belluzzi & Trujillo Bueno, 2012).

- The CLASP2 instrument (cf. Narukage et al. 2015):
- It consists of the Cassegrain telescope (TL) and the spectro-polarimeter (SP).
- SP composed of two identical channels (SP1 and SP2) to measure the orthogonal polarization simultaneously.

Response Matrix and its Tolerance of CLASP2

The polarization of response of the instrument is characterized by the response matrix (X). Measured Response Incoming

> Matrix Polarization Polarization x_{13} x_{14} Q' x_{23} x_{24} =U'

Table 1. Requirement/tolerance (\pm) for each response matrix element of CLASP2 (Ishikawa et al. 2014).

Spurious Polarization (Scale Factor (Crosstalk ()		
0.017 %	1% / SORT(1) = 0.5%	1 % / SORT (21) = 0.7 %		

• One pair of off-diagonal elements ($x_{23} \& x_{32}$ in SP1) are larger than their tolerance. \rightarrow the polarization analyzer in SP1 is probably tilted a bit (~0.49°).

Uncertainty of Response Matrix

Uncertainty was evaluated from the repeatability and the spatial depend**ence.** (The root-sum square is used in total.)

$$\Delta_{SP1} = \begin{pmatrix} 0 & 0.0015 & 0.0006 & 0.0010 \\ \# & 0.0021 & 0.0003 & 0.0073 \\ \# & 0.0032 & 0.0040 & 0.0023 \\ \# & 0.0030 & 0.0022 & 0.0022 \end{pmatrix} \qquad \Delta_{SP2} = \begin{pmatrix} 0 & 0.0026 & 0.0015 & 0.0042 \\ \# & 0.0031 & 0.0020 & 0.0082 \\ \# & 0.0022 & 0.0053 & 0.0027 \\ \# & 0.0032 & 0.0039 & 0.0012 \end{pmatrix}$$

- Some elements are larger than their tolerance: x_{24} in SP1 and x_{24} & x_{33} in SP2
- However, the uncertainty of each Stokes parameter is within the total tolerance (1%) for Scale Factor and Crosstalk, at last

Appendix

Repeatability was checked by comparing the data sets in two different days (i.e. 9/11&12 for linear and 9/20&25 for circular).

$$Diff_{\cdot SP1} = \begin{pmatrix} 0 & 0.0001 & 0.0003 & -0.0006 \\ \# & 0.0011 & 0.0001 & -0.0018 \\ \# & -0.0006 & 0.0014 & 0.0012 \\ \# & 0.0005 & -0.0005 & 0.0021 \end{pmatrix} Diff_{\cdot SP2} = \begin{pmatrix} 0 & -0.0024 & 0.0011 & -0.0028 \\ \# & -0.0019 & 0.0000 & -0.0024 \\ \# & 0.0009 & 0.0024 & 0.0008 \\ \# & 0.0005 & -0.0010 & -0.0008 \end{pmatrix}$$

Spatial dependence was checked by comparing the data sets at the slit center with the central illumination and at the slit edge with the edge illumination $(0 \ 0.0015 \ 0.0006 \ -0.0009)$ (0 - 0.0011 - 0.0011 - 0.0032)

 $U_U U I / 70$

1% / SQR1(4') – 0.5 %

1%/3QRI(2) = 0.1%

^{1.} Four (or two) elements contribute to each fractional Stokes parameter.

Methods of the Polarization Calibration

- Two steps in our polarization calibration (Giono et al., 2016, 2017)
- Step 1: Pre-flight Polarization Calibration

to evaluate the elements for 'Scale Factor' and 'Crosstalk' by using an in-house polarization light source with the UV LED lamp.

• Step 2: In-flight Polarization Calibration

to evaluate the elements for 'Spurious Polarization'

- by using the solar disk center observation.
- We calibrated only the SP section in Step1. The instrumental polarization of the TL section is estimated to be negligibly small because of its symmetry and coating uniformity.

Pre-flight Polarization Calibration

Test Configuration

Light source for circular polarization

$Diff_{SD1} =$	#	0.0018	0.0003	0.0071	Diff and -	#	-0.0024	0.0020	0.0079	
$D v j j \cdot S P 1 =$	#	0.0032	0.0038	0.0019	DiJJ.SP2 =	#	-0.0020	0.0048	0.0026	
	$\backslash \#$	-0.0030	0.0021	-0.0008/		\#	-0.0031	0.0037	0.0009	

Rough Estimate of Spurious Polarization from "un-polarized" light

Table 3. Measurement of the modulated signals with the "un-polarized" input

	SP1		SP2			Comment
Q '/I'	U'/I'	V'/I'	Q '/I'	U'/I'	V'/I'	(Averaged Region)
0.00283	0.00507	0.00161	0.00303	0.00477	0.00151	slit center (100 $ imes$ 60 pixels)
-0.00068	-0.00002	-0.00007	-0.00070	-0.00060	-0.00002	entire region of the slit

Modulated signals with the unpolarized input indicate that the Spurious Polarization is probably smaller than 10^{-3} at the slit center and 10^{-4} at the entire region of the slit.

- Note that this is the rough estimation, because it is hard to create the perfectly unpolarized light on the ground.

Summary

- We preformed the polarization calibration in VUV line near 280 nm, and derived the response matrix of CLASP2.
- We found that the response matrix was determined within the required accuracy, except some elements.
- Our results constrain the Stokes parameters (Q'/I', U'/I', and V'/I') with a good

 $(+Q_0 \text{ or } +Q_{180})$ with the 1/4 waveplate **Circular Polarization**

Fig 2. custom-made light source for linear (left and right photo) and circular (middle) polarizations. Each light source was attached to the CLASP2 spectro-polarimeter, directly.

Data Sets for the Pre-flight Polarization Calibration

Incoming light	Beam illumination	Date	Table 2. Data sets taken during the Pre-flight test
linearly polarized light	slit center / two	2018. 9. 11 & 12 / 9. 13	daning the rife hight teet
Circularly polarized light	edges of the slit	2018. 9. 20 & 25 / 9. 21	
"Un-polarized" light ²	slit center	2018. 9. 26	

^{2.} "Un-polarized" light was obtained after removing a polarizer and a $\frac{1}{4}$ waveplate in the light source chamber to check the spurious polarization roughly.

- Improvement of the photon noise (achieved <10⁻⁴)
- Summing of the pixels

: Spatial 100 pixels \times spectral 60 pixels with avoiding the stripe pattern caused by electrical noise.

- Stacking of the 284 PMU rotations

accuracy, so that we ensure CLASP2 obtained the polarization measurements which we required in the Mg II h & k lines near the 280 nm.

Future Works

- Check the wavelength dependence of the response matrix.
 - The phase retardation is wavelength dependent (δ =234±1.5°) and the wavelength variation could affect the response matrix.
- Evaluate the Spurious Polarization by the flight data (i.e. Step 2).
- Derive the final response matrix of CLASP2

References

- Belluzzi, L. & Trujillo Bueno, J., 2012. ApJ, 750, L11.
- Narukage, N., et al., 2015, Applied Optics, Vol.54, No.8, pp.2080-2084
- Ishikawa et al., 2014. Solar Phys., 289, 4727
 - Giono et al., 2017. Solar Phys., 292, 57 Giono et al., 2016. Solar Phys., 291, 3831