Temporal and Spatial Variations of Linear Polarization in Lyman-α Spicules Observed by CLASP

Masaki Yoshida (SOKENDAI/NAOJ)

Y. Suematsu, R. Ishikawa (NAOJ), J. Trujillo Bueno (IAC), Y. Iida (KGU), M. Goto (NIFS), R. Kano, N. Narukage, T. Bando (NAOJ), A. Winebarger, K. Kobayashi (MSFC), F. Auchère (IAS)

Introduction

In the Solar chromosphere, "**Spicules**" (jet-like structures) are observed everywhere.

Spicule's schematic view

** We do not know how spicules are formed and how they affect the corona. **

Measurements of magnetic field are critical for understanding the formation mechanism of spicules and its influence on the corona. **Goal: Derive magnetic field in spicule**

Determination of spicule magnetic field

There are few studies deriving magnetic field of spicule. All these studies based on ground-based observations.

Trujillo Bueno et al. 2005 (He I 1083.0 nm): Spicule magnetic field is ~10G. *López Ariste and Casini 2005* (He I D3 587.6 nm): Spicules are aligned with the magnetic field line. *Centeno et al. 2010 (He I 1083.0 nm)*: Derive parameters using HAZEL inversion. *Orozco Suárez et al. 2015* (He I 1083.0 nm): Strength of magnetic field decrease with spicule height.

New investigations are needed.

Lya line

 To measure magnetic field, we use "Lyα line (121.56 nm)" polarization observed by "CLASP."

Pros

- Lyα line is optically thick and it is sensitive to the transition region temperatures.
 - Lyα line is well suited to investigate how spicules affect corona.
- + Lyα line is sensitive to scattering polarization.
- + Hanle magnetic sensitivity of Lyα line: 10–100G
 - It is comparable to the magnetic field strength of typical spicules, about 10-80G; *Trujillo Bueno* et al. 2005; *Centeno et al. 2010; Orozco Suárez* et al. 2015.
- Cons
- The scattering polarization highly depends on the radiation field.

Strategy to derive magnetic field

- 1. Investigate polarization in Lyα spicule (temporal & spatial variation).
- Compare polarization degree of Lya core (scattering polarization & Hanle effect) with Lya wing (scattering polarization).
- 3. Constrain magnetic field parameters using Hanle diagram.

CLASP (Chromospheric Lyman-Alpha Spectro-Polarimeter)

+ CLASP

Rocket experiment (launched in Sep. 2015.) Only 5 mins. observation time High cadence observation SP: 1.2 sec/modulation SJ: 0.6 sec/image

 CLASP/SP succeeded in observing Lyα spectra along a spicule.

Time-averaged polarization

Axisymmetric radiation field

from solar disk

Height - time variation (core) 2772 [sec] 28.8 sec Running average

Height - time variation (core)

Height - time variation (wing)

Q/I is always positive. (~ +0.5%) U/I fluctuates in time. (~ 0.0 - -0.5%)

Error bar: photon noise & CCD readout noise

Discussion: Upper part v.s. lower part

-Upper part of the spicule

=> The polarization degree is **large**.

Since the low density of the structures, the spicule's plasma mainly illuminated vertically.

-Lower part of the spicule

=> The polarization degree is **small**. Since the high density of the structures, the spicule's plasma illuminated vertically and horizontally.

Lya core v.s. wing

U/I

250

12

Temporal variation on Hanle diagram

Sign of U/I changing with time. (Upper part of Lyα core)

As a 1st step,

we find out the magnetic field parameters to be consistent with this Hanle diagram, assuming **axisymmetric** radiation field.

Constraint on the magnetic field

10–80 G; Trujillo Bueno et al. 2005; Centeno et al. 2010; Orozco Suárez et al. 2015

Calculation code: Goto et al. 2019, Atoms

Summary

- CLASP succeeded in observing Lyα linear polarization of spicules for the first time.
 - Q/I of the off-limb spicule is positive.
 - Polarization degree is higher in the upper part than in the lower part.
 - U/I is different between Lyα core and wing.
 - U/I (core) changed from positive to negative.
 - U/I (wing) is mainly negative.
- Implication to the magnetic field of spicule
 - Indication of the Hanle effect.
 - Temporal variation of the U/I sign indicates the changes of azimuth.
 - For a final conclusion, we will consider non-axisymmetric radiation field.