

Toward Global Snow from Space: Coverage of Snow Observation Constellation Configurations

Edward Kim¹, Barton A. Forman², Lizhao Wang², Jacqueline Le Moigne³, Sreeja Nag⁴

Sujay Kumar¹, Carrie Vuyovich¹, Bryan Blair¹, Michelle Hofton²

¹NASA Goddard Space Flight Center, ²University of Maryland,

³NASA Earth Science Technology Office (ESTO)^{, 4}NASA Ames & Bay Area Envir. Research Institute

IGARSS 2019 Yokohama, Japan

- Global snow mission background
- Which sensing technique?
- How to leverage existing/planned sensors
- Spatial/Temporal coverage results
- Role of SnowEx
- Next steps
- Upcoming activities

A Satellite Mission for Global Snow

- Recognition that seasonal snow water equivalent (SWE) is a key piece of the global terrestrial water cycle that is poorly quantified
- Recognition of societal impacts (water resources, natural hazards, etc)
- But what should a snow satellite mission look like?
- Many proposed answers over the years
 - A snow satellite mission appears in NASA Earth observing system studies at least as far back as 2002 → CLPP & 1st Decadal Survey
 - CoReH2O, EE10, CSA, WCOM, 2nd Decadal Survey
 - Plus operational/model-based snow products: GlobSnow, IMS, AMSR-E/2, NWP, reanalyses

- All the concepts, models, & products have significant limitations with respect to producing global SWE
- We need more accurate global observations to achieve global SWE
- None of the satellite concepts has been launched, and only one has been "selected"
- Snow remote sensing and modeling are *challenging*
- Snow itself presents significant challenges--metamorphism, dry vs. wet, wide dynamic range, strong space/time variability, etc
- A long list of sensing techniques are sensitive to SWE, but all have significant limitations

	Tundra	Taiga	Maritime	Ephemeral	Prairie	Alpine	lce
Area _{class} Area _{land}	8.45%	8.89%	3.95%	18.18%	10.03%	3.43%	1.60%

...and Snow Sensing Technique

- Many sensing techniques are sensitive to snow variables
 - <u>SWE</u>: passive microwave, SAR, InSAR, active-passive microwave
 - <u>Snow depth</u>: lidar, passive microwave, InSAR, Structure-from-Motion
 - <u>SCA</u>: VIS/IR, passive microwave, multispectral, hyperspectral
 - <u>Albedo</u>: VIS/IR, multispectral, hyperspectral
- Each has strengths and issues when faced with the challenges of snow sensing
 - Forests & vegetation
 - Wet snow, deep snow, shallow snow
 - Complex terrain
 - Layering inside snowpacks. Metamorphism; Needing density to convert depth to SWE
 - Clouds, atmospheric propagation
 - Retrievals that need ancillary data on snow grain size, soil moisture, soil roughness, etc

No single sensing technique works across all types of snow and confounding factors

- Field data+ multi-sensor obs needed to construct algorithms \rightarrow SnowEx
- Satellite orbit/coverage/repeat scenario trade studies → this study
 - Specifically, constellation scenarios involving different combinations of planned & existing sensors (leveraged sensors)
 - Will provide guidance on impact of potential sensors to add to the constellation → if we add sensor X, what is the impact on global coverage, on coverage per snow class, for specific confounding factors, as a function of algorithm maturity, as a function of error bar size, etc?

9/3/2019

What could a multi-sensor constellation do?

- Passive microwave/AMSR-2/1450km "PMW"
- Ku-band SAR/TSMM/550km "Ku-SAR"
- C-band SAR/Sentinel-1A/250km "C-SAR"
- Narrow-swath lidar/ICESat2/0.06km "n-LIDAR"
- Wide-swath-lidar/hypothetical sensor/20km "w-LIDAR"
- Use TAT-C tool to simulate orbits & swaths
- Simplifying assumptions (more fidelity to come later as study evolves)
 - Use Sturm (1995) snow classes
 - Nominal orbits & swath widths
 - Sensor footprints span full swath width
 - Use IMS average snow cover for February

- Explore **trade-off** between engineering and science
 - Field-of-View (FOV)?
 - Platform altitude?
 - Repeat cycle?
 - Orbital configuration(s)?
 - Single platform vs. constellation?
- How do we get the most scientific bang for our buck?

examples

4-hour Radiometer Viewing in Polar Orbit (Ascending Overpasses Only, e.g.)4-hour RADAR Viewing in Inclined Orbit (Descending Overpasses Only, e.g.)

[TAT-C will be available on the AMCDE cloud by the end of this year]

Example of TAT-C + analysis: Sentinel 1-A

Sentinel 1-A ("C-SAR") 1, 3, 30 days' coverage

Example TAT-C + analysis: wide-swath lidar

Wide-swath lidar ("w-LIDAR") 1, 3, 30 days' coverage

Metric 1:

Average percentage of sensor-observed snow coverage

	1 day	3 day	30 day
PMW (AMSR-2)	98.3	99.8	99.8
Ku-SAR (TSMM)	68.0	97.2	98.5
C-SAR (Sentinel-1)	39.6	79.2	95.8
n-LIDAR (ICESat2*)	0/1.1	0/3.2	1.4 / 20.4
w-LIDAR (wide swath LIDAR)	5.7	15.8	49.2

*For ICESat2, the first value is calculated from its total swath width, the second value is calculated from its total footprint width.

Forest and cloud assumptions

- 1) Assume Passive Microwave (PMW) sensors do not work for forest (Taiga), deep snow (Maritime) and complex terrain (Alpine).
- 2) Assume RADAR sensors do not work for forest(Taiga).
- 3) Assume LIDAR sensors being affected by clouds, so only 50% of obs work.
- 4) Use weights below as a mask when calculating metrics.
- 5) Actual situation is more complex; this is just a first-order approximation.

	Tundra	Taiga	Maritime	Ephemeral	Prairie	Alpine
PMW	1	0	0	1	1	0
RADAR	1	0	1	1	1	1
LIDAR	0.5	0.5	0.5	0.5	0.5	0.5

Single Sensor Performance

Single sensor observation percentage within 3 days, weights applied.

*Percentage =
$$\frac{A_{observed_snow}}{A_{snow}} \times 100$$

	Tundra	Taiga	Maritime	Ephemeral	Prairie	Alpine
PMW Sensor (AMSR2)	100	0	0	100	100	0
Ku-Band SAR (TSMM)	99	99	0	77	90	98
C-Band SAR (Sentinel 1A)	82	83	0	64	65	76
Wide LIDAR	8	8	6	5	6	7
Narrow LIDAR (IceSAT-2)	2	1	2	0	1	2

Case 1: AMSR2 + narrow LIDAR; observation percentage

	Tourslass	T alaa		F	Ducinic	
	Tunara	laiga	Waritime	Epnemeral	Prairie	Alpine
1 Day	100	3	2	99	97	2
3 Days	100	8	6	100	100	7
30 Days	100	29	24	100	100	26

Case 2: AMSR2 + TSMM; observation percentage

	Tundra	Taiga	Maritime	Ephemeral	Prairie	Alpine
1 Day	100	0	60	100	99	59
3 Days	100	0	95	100	100	97
30 Days	100	0	98	100	100	98

Comments: Better observed over Alpine, but worse over Taiga

Case 3: AMSR2 + TSMM + Wide LIDAR; observation percentage

	Tundra	Taiga	Maritime	Ephemeral	Prairie	Alpine
1 Day	100	3	61	100	99	60
3 Days	100	8	96	100	100	97
30 Days	100	29	98	100	100	98

Comment: Improved over both Alpine and Taiga

Case 4: AMSR2 + TSMM + Sentinel + Wide LIDAR + narrow LIDAR (All 5 Sensors) observation percentage

	Tundra	Taiga	Maritime	Ephemeral	Prairie	Alpine
1 Day	100	3	73	100	99	72
3 Days	100	9	98	100	100	98
30 Days	100	41	99	100	100	99

1 Day coverage map for different sensors

IGARSS 2019

wide LIDAR +narrow LIDAR repeat intervals

average revisit day = 22.0144

sentinel1A + wide LIDAR repeat intervals

average revisit day = 3.1791

Metric 2: revisit intervals

Repeat intervals for single sensor (unit: days); smaller numbers --> more desirable

	Tundra	Taiga	Maritime	Ephemeral	Prairie	Alpine
AMSR2	1.2	-	-	1.6	1.5	-
TSMM	1.5	-	2.3	4.6	2.8	2.1
Sentinel	27	_	1 2	6.2	ΓΛ	4.0
IA Wide	2.7	_	4.5	0.2	5.4	4.0
LIDAR	40	44	58	85	71	53
Narrow						
LIDAR	193	231	334	518	423	302

Metric 2: revisit intervals

Repeat intervals for Constellation cases (unit: days) ; smaller numbers --> more desirable

	Tundra	Taiga	Maritime	Ephemeral	Prairie	Alpine
Case1	1 1		50	1.0	1 5	53
(PIVIVV+ n-LIDAR)	1.1	44	58	1.6	1.5	53
Case2						
(PMW+ Ku-SAR)	0.7	-	2.3	1.2	1.0	2.1
Case3 (PMW+ Ku-SAR+ w-						
LIDAR)	0.6	44	2.2	1.2	1.0	2.0
Case4						
(PMW+2SAR+2LIDAR	0.5	37	1.5	1.0	0.8	1.3

SnowEx will help provide input data for algorithms & mission concept trade studies

Why SnowEx? and what we need from it

23

A global snow mission should explore a multi-sensor approach

- Trade studies will be key to evaluate potential concepts
- The trade studies require multisensor field data (airborne + ground): SnowEx
- The trade space should span the sensors, snow types, & confounding factors

Forest density

- More combinations of sensors, sensors + models
- Use higher-fidelity snow class map
- Higher-fidelity sensor observing geometries
- Repeat analyses considering additional tradespace parameters
 - spatial resolution
 - SWE retrieval accuracy
 - dry vs. wet snow
 - etc

Upcoming & Ongoing Snow Activities

- Special Issue of WRR (closed); 80+ papers
- Postponed SnowEx 2019 begins Nov 2019, ends spring 2020
- Future SnowEx (2020-21; 2021-22; 2022-23) brainstorming in progress; contact <u>ed.kim@nasa.gov</u>
- SnowEx workshop September 17-19, 2019; BWI airport (USA); contact Dorothy Hall; <u>dkhall1@umd.edu</u> (first workshop in 2017 had 90+ people)

- AGU town hall December, 2019; contact Dorothy K. Hall; dkhall1@umd.edu
- Snow field school Jan 6-9, 2020; apply by Sep 15, 2019; (USA); contact <u>carrie.m.vuyovich@nasa.gov</u>
- websites
 - depts.washington.edu/iswgr/
 - Snow.nasa.gov