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ABSTRACT

The SMAP (Soil Moisture Active/Passive) satellite
provides global soil moisture (SM) estimates that can
be used for scientific research and applications (such
as the hydrological cycle, agriculture, ecology, and
land atmosphere interactions). Currently, SMAP
provides the enhanced radiometer-only SM product
(L2SMP) at 9 km grid resolution. However, this spatial
resolution is still not enough to satisfy the needs of
some studies that require a finer spatial resolution SM
product, particularly in agricultural and watershed
applications. This study applied a downscaling
algorithm to the SMAP 9 km SM product to produce a
1 km resolution over the CONUS (Contiguous United
States). The downscaling algorithm is based on the
relationship between temperature change and SM
modulated by Normalized Difference Vegetation
Index (NDVI) of a given time period.  This
relationship was modeled using variables derived from
NLDAS (North America Land Data Assimilation
System) and NASA’s LTDR (Land Long Term Data
Record) between 1981 — 2018. The algorithm was
implemented uses the 1 km MODIS Aqua LST (Land
Surface Temperature) product. The downscaled SMAP
1 km SM was validated using in situ SM
measurements from the ISMN (International Soil
Moisture Network). The validation metrics show an
improved overall accuracy of the downscaled SM.

Index Terms— SMAP, NLDAS, soil moisture,
downscaling.

1. INTRODUCTION

Over the last two decades, microwave remote sensing
has been providing SM observations with higher
spatial and temporal resolution from passive/active
satellite sensors [1] - [4]. Soil moisture is a key factor
in many applications in hydrology and agriculture. A
series of satellites has carried active/passive
microwave sensors that have supported this
application. These have included AMSR-E (Advanced
Microwave Scanning Radiometer for the Earth
Observing System), AMSR2 (Advanced Microwave
Scanning Radiometer 2), SMOS (Soil Moisture and
Ocean Salinity), and SMAP satellite. There have been
numerous studies dealing with the calibration,
retrieval, and validation of the SM products [5] - [13]
provided by these platforms. However, due to the
limitation of antenna/aperture size of these passive
microwave sensors, the spatial resolutions of the SM
retrievals have been restricted to tens of kilometers,
which does not support all potential uses of SM.
Attempts have been made to extract higher spatial
resolution information using disaggregation methods.
In a recent paper [8], algorithms for downscaling SM
products were classified by the input data type and
modeling approaches as: (1) integration of multiple
remote sensing data from different satellite platforms,
(2) integration with other SM related geophysical
variables, such as soil properties and topographic
information, and (3) advanced numerical approaches.
In this study, we implemented a methodology that falls
into type 1 with SMAP observations. It integrates
passive microwave SM with other variables (surface
temperature and NDVI) derived from land surface
model and visible/infrared sensors and uses the
computed SM to downscale the original SMAP SM
product over the CONUS area. The advantages of this



methodology include the much higher spatial
resolution as compared to microwave sensors, as well
as the ability to readily provide SM estimates on a
frequent temporal repeat at global scale.

2. METHODOLOGY

The SM downscaling model is based on the thermal
inertia principle, which describes thermal resistance of
an object to temperature change. The temperature of a
dry object changes faster than a wet object [14-15].
Therefore, this principle can be applied to characterize
the relationship between SM and temperature change
during a period (SMAP morning/afternoon overpasses)
by using a linear regression fit, as

6@, )) = ao + a,ATs (i, ) M

Where, 0 and AT, are the SM at the time of SMAP
overpass and corresponding temperature change
between morning and afternoon overpasses at i and j
grid location, ap and a; are the best fit regression model
coefficients. It is assumed that the 8 — AT relationship
varies seasonally and each month is modeled
separately. In addition, it is also assumed that the 8 —
AT, relationship is modulated by vegetation
conditions. The relationship was modeled at the
NLDAS grid scale from 1981 to 2018 for all the
growing season months between April - September for
fitting the 6 — ATy correlations corresponding to
different NDVI classes. The NDVI was resampled to
NLDAS grid resolution in order to categorize the 8 —
ATy regression fitting lines with an interval of 0.1 from
0-0.8.

Since the SM downscaling algorithm is derived
from model output variables and optical remote
sensing observations, which are different from the
microwave radiometer observations, the 6 — ATy
model 1 km SM 6 output is required to be unbiased
with respect to the SM estimated by microwave
sensor. The 1 km SM values within each SMAP SM
grid were corrected using the follow equation
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Where, 8¢ are the downscaled 1 km SM pixels
included in one SMAP grid ® while N is the number
of 6. Previous studies with this approach are described
in [16-18]. The equation (2) was applied on a 36 km
domain of each 9 km SMAP SM point, which is the
major improvement of the original algorithm and it can

effectively solve sharp edges generated in the
downscaled SM results. The downscaled SM results
were validated by ISMN in situ measurements from
four sites where have plenty of points within each 9
km SMAP grid.

3. RESULTS AND CONCLUSIONS

Figure 1 shows the NLDAS regression fitting lines for
four selected sites; Walnut Gulch, Tonzi Ranch,
Reynolds Creek and Stillwater of corresponding
NLDAS grids in July. It can be summarized that the
fitted lines are negatively correlated and that the lines
corresponding to different NDVI classes are clearly
separated. We also concluded that the sites with
smaller NDVI (Walnut Gulch/Reynolds Creek) are
generally better correlated. Additionally, for the lower
vegetation sites, there is no clear decreasing trend of
R? as the NDVI increases in 0-0.4 interval. However,
the R? drops when NDVI > 0.4.
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Figure 1. 8 — AT, correlations of descending overpasses
corresponding to NDVI classes between 0-0.8 in 4 study
sites Walnut Gulch, Tonzi Ranch, Reynolds Creek and
Stillwater in July. Colors represents different NDVI classes
and the corresponding best fit lines.

The downscaling algorithm was implemented on
the CONUS region, and the San Pedro watershed was
mapped for comparing SM at 1 km / 9 km resolution.
When comparing the downscaled 1 km and 9 km
SMAP SM in June, 2018 (Figure 2), it can be
summarized that the downscaled maps showed more
SM spatial variabilities. Especially, wet areas along
the San Pedro River channel in the central north of the
watershed can be observed from 1 km SM. Such
variabilities were not captured by the coarse resolution
9 km SM from SMAP.
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Figure 2. The downscaled 1 km SMAP 6 compare with the

original 9 km SMAP 6 in San Pedro River watershed
between June 18 - 23, 2018.

From the validation results using ISMN in situ data
from 2018 [19] shown in Figure 3, it is observed that
the 1 km SM validation data points are much more
concentrated as compared to the scattered data points
shown in 9 km SM validations. Additionally, both 1
km/9 km SM demonstrate underestimation trends.
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Figure 3. Scatter plots of 1 km/9 km SMAP 6 validated
using ISMN in situ measurements in 2018 from four
grouped ground stations, including SCAN, SoilSCAPE and
COSMOS validation result.
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