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 The Advanced Noise Control Fan (neé Active Noise Control Fan - ANCF) was utilized in the design, test, 
and evaluation for technical risk mitigation of most of the innovative fan noise reduction technologies developed 
by NASA over the past 20 years. The ANCF is a low-speed, ducted fan, testbed for measuring and 
understanding fan-generated aeroacoustics, duct propagation, and radiation to the farfield. It is considered a 
low Technology Readiness Level testbed. The international aeroacoustics research community employed the 
ANCF to facilitate advancement of multiple noise reduction and measurement technologies, and for code 
validation. From 1994 to 2016, it was located in the NASA Glenn Research Center’s Aero-Acoustic Propulsion 
Laboratory. In 2016 the ANCF was transferred to the University of Notre Dame where it is expected to continue 
to positively impact ducted fan aeroacoustic research and provide STEM support. This paper summarizes the 
capabilities and contributions of the ANCF to the field by documenting its history. Limited data is presented, 
focusing on a description of the configurations, goals, and objectives of representative ANCF tests. This 
provides an overview of the progress of aeroacosustic research as implemented on the ANCF, as well as a 
background for its continued usage. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A: Line Drawing of the Advanced Noise Control Fan in the Aero-Acoustic Propulsion Laboratory  
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I. Introduction 

A. Rationale 
The NASA Glenn Research Center has been involved in several programs1 (Advanced Subsonic Technology, Quiet 
Aircraft Technology, the Fundamental Aeronautics Subsonic Fixed Wing, and currently, Advanced Aircraft Transport 
Technology) whose goals were the reduction of the adverse impact of aircraft noise on the public. 

These programs employed multiple strategies to address the issue – code predictions (system analysis and physics-
based), measurement tool development, component database acquisition – all supporting the development and 
application of noise reduction concepts. Several focal points, emphasis, and/or success metrics were stressed in 
individual programs, but consistent across all these programs, was a focus on the reduction in noise attributed to the 
turbofan engine.   

Novel means of noise reduction were required in order to meet the continually aggressive noise reduction targets. In 
order to implement NASA’s philosophy of high-risk / high-benefit technologies (i.e “Fail-Smart2”), a highly flexible, 
low cost, testbed was needed to quickly evaluate and improve proposed concepts. 

B. Basics of Aircraft Noise 
Aircraft noise3 can be separated into two general sources: (i) propulsion noise and (ii) airframe noise. Depending on 
the aircraft and flight condition, the relative levels of these sources varies; generally, the turbofan noise dominates. 

Turbofan noise results from a variety of sources within the engine (Figure 1). A major component of turbofan noise 
is due to rotor-stator and other interactions, coupled to duct propagation, which then radiates to the farfield. This 
source of noise is generated by the impingement of the rotor wake on the stator. This periodic interaction generates a 
pressure response from the stator that coalesces into acoustic duct modes4. Figure 2 is a flow chart of the generation 
and measurement of fan noise. 

Currently, the primary means to reduce propulsion noise is through careful design of the source (though acoustics 
takes a lower priority relative to other concerns, most notably performance, operability, reliability, and maintenance) 
or attenuation after the noise is generated5. A few examples of source design include blade count/spacing/shaping6.  
The primary method for reducing noise after it is generated is through the installation of honeycomb/resistance sheet 
passively absorptive liners7 in locations internal to the turbofan with relatively moderate aerodynamic and 
thermodynamic conditions (nacelle walls compared to the core, for example).  

 

  
Figure 1: Sources of Turbofan Noise     Figure 2: Rotor-Stator Interaction Schematic 
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II. Background 

Laurence J. Heidelberg conceived the Active Noise Control Fan (original name) (ANCF) in the early 1990s as a low-
cost experimental testbed for developing fan noise reduction technologies. Originally this was specifically Active 
Noise Control (ANC), but he also foresaw its usefulness for acoustic database enlargement to aid in the understanding 
of aero-acoustic physics and code validation. He also oversaw the design, installation, and early checkouts. It has been 
upgraded several times over the last 20 years in order to continue to make significant contributions in the aero-
acoustics field, while located at the NASA Glenn Research Center.  

A. Basic Features 
The ANCF8,9,10 is a highly configurable 4-foot diameter ducted fan located in the Aero-Acoustic Propulsion 
Laboratory11 (AAPL) at the NASA Glenn Research Center (for the period covered in this paper). The AAPL is a 
hemispherical anechoic (above 125 Hz) test facility used for noise measurements. An exterior view of the 65-foot high 
dome is shown in Figure 3. The early ANCF, shown in Figure 4, operated inside an enclosed, compact, farfield arena 
designed12 such that it is in an anechoic environment (Figure 5). 

The nominal operating condition13 of the ANCF is 1886 revolutions-per-minute–corrected (RPMc) resulting in a tip 
speed of 400 ft/sec, an inlet duct Mach number of ~0.15, and a fundamental blade passing frequency of ~500 Hz. The 
fan speed can vary from 100 to 2400 RPMc. The frequency range of 250 Hz to 2.5 kHz is representative of the range 
of concern for community noise impact, based on the EPNL metric. The maximum rotor tip speed of ~500 ft/sec and 
the duct Mach number of up to 0.16 is low, but allows for limited studies on the effect of flow. The fan pressure ratio14 
is a few inches of H2O – therefore it is not relevant to study turbofan performance utilizing the ANCF.  

The ANCF can be run rotor alone, and the pitch of the 16 fan blades, nominally 28°, can be adjusted to 18° or 38°. A 
variable count stator hub is attached to the center-body downstream of the fan to test rotor/stator interactions. Stator 
counts can vary and be set at any angle. Inlet flow disturbances can be simulated using circumferentially distributed, 
radially extended, rods installed in front of the rotor.  

An Inflow Control Device (ICD) is integrated into the ANCF inlet lip. An ICD15 is used for static engine testing to 
break up ground vortices and equalize the turbulence that would otherwise be ingested by the fan and create spurious 
noise. The ANCF ICD was an equipotential surface with longitudinal segments. The original ICD had 11-longitudinal 
segments. As this was eventually shown to generate cut-on modes based on the 11 segments, a 22-segment ICD was 
built. Fine wire mesh on either side of the honeycomb structure of the ICD was used to further reduce the turbulence. 

The unique feature of the ANCF, and the sine qua non of the ANCF is the Rotating Rake16. The Rotating Rake, based 
on the modal theory of Tyler-Sofrin4, provides a complete map of the acoustic duct modes present in a ducted fan and 
hence enabled much of the research described in the next sections. In addition, multiple aero-acoustic measurement 
capabilities are integrated into the ANCF rig  

The general Technology Readiness Level (TRL) of the ANCF is considered to be 2-3 for representing a turbofan 
engine. 

B. CFANS Derivative 
A Configurable Fan Artificial Noise System17 (CFANS) was developed and utilized to generate and control 
circumferential modes (m) and to generate radial modes (n). The system consists of 4 axially distributed rows, each 
with 16 circumferentially distributed sets of electromagnetic drivers flush mounted on the inner wall. There are two 
spool pieces, each having 2 driver rows. A LabviewTM program is used to generate the waveforms sent to each driver 
independently, in the proper phase relationship to generate the desired circumferential mode. The signals to each row 
can be adjusted to affect the radial distribution, if desired. The practical limits of the system are |m-order| ≤ 7, and 
frequency ≤ 1500 Hz 

C. Programmatic Impact 
The ANCF was the primary component in two NASA Research Agreements, six Small Business Independent 
Research grants, four Space Act Agreements, two internal Glenn Strategic/Director’s Research Funds, and four Aero 
Acoustic Research Consortium programs. These were integrated in GRC’s noise reduction program milestones. It is 
the only complete aero-acoustic data/geometry set publicly available. Approximately 100 documents were published 
based on ANCF tests, data, and/or geometry (up to ~4-6 per AIAA Aero-Acoustics Conference).  
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Almost all of the fan noise reduction concepts and CAA prediction methods for fan tones were evaluated on, or using 
data from the ANCF. While the general development path for noise-reduction concept development is a sequence of 
increasing TRL models or tests, a few concepts have gone directly from a proof-of-concept on ANCF to a full-scale 
turbofan engine test. The most notable concepts were the HQ-tubes on the Honeywell TECH700018 and the highly 
successful Over-the-Rotor Foam Metal Liner installed on the Williams International FJ4419. Manufacturing techniques 
and the efficacy of an advanced liner was validated on the ANCF prior to a recent flight test on a Boeing 737 MAX20. 

In addition to the direct contributions made through studies on the ANCF, the capabilities, skill set, and experience 
developed by the team enabled several significant contributions to the greater NASA mission. Perhaps the most 
notable was the participation in the NESC Return-to-Flight Flow-liner Cracking root-cause determination21. Also, the 
unique UCFANS series of tests that contributed to the ERA Hybrid Wing Body shielding studies22 were based on 
ANCF/CFANS lessons learned. 

The remainder of this paper provides brief summaries of a number of studies conducted using the ANCF. The reader 
is directed to the supporting references for more thorough discussions of the individual topics. 

 

 
Figure 3: The ANCF is Located in the AAPL  

       
Figure 4: The ANCF Early Days        Figure 5: The ANCF in the Compact Farfield Arena 
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III. Historical Studies 

The Active Noise Control Fan’s raison d'etre was to initiate and support the NASA effort in the Active Noise Control 
research in the 1990s. As the NASA ARMD focus changed, the 1st letter in ANCF was changed from Active to 
Advanced and significant research into other noise reduction concepts and aero-acoustic investigations were 
accomplished. Along the way, many interesting changes and events occurred. Table I presents a time line of the 
research emphasis over the last two decades. This section will roughly be divided between those topics, preceded by 
a general history. 

 
Table I: Timeline of ANCF Research Emphasis 

A. General 
The initial checkouts of the ANCF were in May of 1994. The checkouts were primarily performed with rods mounted 
in the inlet. (During the period of study, inlet-guide vanes were not a feature in contemporary aircraft turbofan engine 
design.) The primary reason for utilizing inlet rods in the inlet was to generate extremely clear and convincing duct 
modal structure and strong fan tone harmonics in the farfield relative to the broadband. The database for the stator 
vanes was first acquired in February 1995. Initially, a long spinner (from rotor to inlet plane) was installed for 
evaluation of the acoustic character but dynamic issues resulted in a short spinner being used for the remainder of the 
history. 

While the rig was located in the APPL facility, early control was from the 2nd floor of B90 (the 10x10 Wind Tunnel 
control room). Rotating Rake and other in-duct data were acquired with the ANCF near the wall just inside the main 
door opening of the AAPL. Farfield data were acquired with the ANCF located in the center of the AAPL arena. 
Farfield data were acquired using the AAPL sideline array. (This array consisted of 30 microphones mounted on 10’ 
high poles, at a 40’ foot radius centered on NATR). 

In 2001 a “Compact Farfield Arena” to acquire farfield data was designed and installed to allow for year-round farfield 
acoustic testing. Two walls with anechoic wedges were placed and angled about the ANCF as it was situated in the 
“in-duct data” only location. The wall in front of the ANCF was fixed; the wall on the left side, where a microphone 
array was situated, could pivot to allow access under the mezzanine. These walls, combined with the sidewall of the 
AAPL, provided three anechoic surfaces for this location. The fourth ‘anechoic surface’ was the open main door, and 
of course the hemi-spherical ceiling – the floor would be covered with movable wedges to complete the anechoic 
environment. The microphone array arcs were at 10’ to 15’ horizontally from the centerline of the duct (eventually 
sited at 12’) and level with the duct centerline in the vertical direction. Farfield data comparisons23 between these arcs 
and the 40’ arc showed the data was essentially similar (some increase in the low frequency broadband levels below 
one-half of the blade passing frequency (½ BPF) were noted – probably due to increased turbulence from the proximity 
of the wedge wall to the inlet of the ANCF of which the ICD could not fully dissipate). 

A 75 horsepower (HP) motor originally powered the ANCF. Research requirements continued to increase, and in 1999 
a 125 HP motor was installed to accommodate the higher fan speeds (2500 RPM) required to achieve greater modal 
density. The RPM increase was accomplished by reducing the rotor pitch angle to keep the torque below the design 
limit.  The original set of fan blades was an industrial set from Crowley. These plastic blades were designed and 
manufactured for ventilating fans and as such were intended for flexibility of application (one blade design for any 
diameter/pitch) rather than aerodynamic efficiency. They were attached to a fan hub and installed in a 14.75” (hub-
to-tip ratio, s, of 0.307) center-body. A redesign of the rotor blades to create a more realistic loading and efficiency 
profile in preparation for the blowing rotor study was performed using rotor-design codes in 2000. The more efficient 
fan design resulted in increased loading which required a new 200 HP motor installation. Also, at this time the center 
body diameter was increased to 18” (s = 0.375).  
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B. Database Development  
The primary aero-acoustic database acquired from the ANCF was the variation of stator vane count and spacing. The 
nominal counts were (13,14,15,26,28,30) at 0.5, 1.0, and 2.0 chord spacings. The lower counts generate a cut-on BPF, 
while the higher vane counts result in a cut-off BPF, a design condition that is common in modern turbofans. Rotating 
Rake modal data and farfield spectral data exist for most of the combinations of those physical parameters9,10.  Figure 
6 illustrates the measurement locations corresponding to the steps in the flow chart of Figure 2 and further description 
in this section. 

The viscous wake is the 1st step in the flow chart (Figure 2) in the generation of rotor-stator interaction noise. The 
upwash on the stator vane from the cyclic and repetitive change in velocity and angle is the physical cause of the stator 
vane surface pressure fluctuations. To acquire this database, two-component hot-film data were acquired. This set-up 
is shown on Figure 7a.  Stator vane surface unsteady pressures are the next step of the chain in the physical generation 
of fan noise (Figure 7b). A database of pressure and suction side pressures were acquired. Phasing is very important 
in the coupling of the surface pressures to duct-modes as analytically described by the Green’s function radiation and 
is therefore retained in the processing of this data. 

 
Figure 6: Schematic of ANCF Measurement Locations 

 

              
 (a) Hot-film Measurement     (b) Stator Vane Surface Pressure Measurement 

Figure 7: Aerodynamic Measurements 
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C. Code Verification  
As a result of the ANCF’s geometric flexibility and its ability to acquire multiple aero-acoustic measurements it is 
well suited for providing a range of conditions for code validation.  

The V07224 Rotor Wake/Stator Interaction Code is widely used as a simple prediction code for rotor-stator interaction. 
It has been used in a number of cases as a preliminary design tool. An ANCF experiment25,26 validated the code by 
comparing experimentally measured mode levels to those predicted by V072. V072 predicted mode levels based on 
the actual wake profiles of the ANCF rotor as measured by a 2-component hotwire. The experiment indicated that 
V072 reasonably predicts the mode level trends within the design limits of the code. 

The Eversman Radiation code27 is a finite-element based propagation code to predict the radiated far field directivity 
from in-duct modal sources. Acoustic propagation in exhaust ducts of varying cross section was examined28 in a 
specific test. Eversman code and Rotating Rake modal measurements were employed to measure the effect of variation 
in the hub-to-tip ratio of the exhaust duct. Modifications to the ANCF exhaust duct inner flow path were made to 
increase the hub-to-tip ratio of the exhaust duct from its nominal 0.50 up to 0.80 illustrated in Figure 8a. The computed 
axial variations of acoustic power and phase angle of acoustic pressure from the finite element solution showed good 
agreement with the experimental data. 

The directivity of fan tone noise is generally measured and plotted in the sideline plane and is assumed that this curve 
is the same for all azimuthal angles. When two or more circumferential (m-order) modes of the same tone are present 
in the fan duct, an interference pattern develops in the azimuthal direction in the farfield. In an investigation29 two 
circumferential modes of similar power were generated using the ANCF. Farfield measurements showed substantial 
variations in the azimuthal direction. Although these configurations may have represented a worst-case scenario, the 
investigation implied that the validity of the current practice of assuming axis-symmetry should be questioned.  

Fan inflow distortion tone noise was studied experimentally and analytically. The tone noise generated when a fan 
ingests circumferentially distorted flow was studied by experiments30,31,32,33 conducted on the ANCF. The inflow was 
distorted by inserting cylindrical rods radially into the duct which were arranged in circumferentially irregular patterns, 
installed one rotor chord length axially upstream of the fan, as shown in Figure 8b. Acoustic mode levels were 
measured in the inlet and exhaust duct of the fan using the Rotating Rake. Circumferential mode sound power levels 
were calculated from the measured data using several different methodologies described in the references.  

Acoustic transmission loss (Figure 8c) test objective was to obtain the effect of geometrical obstructions on mode 
propagation34, i.e. blockage (or transmission loss). Blockage effects were measured separately for stationary 
geometries (stator vanes) or for rotating geometries (fan blades). In order to provide a larger database, and taking 
advantage of the flexibility inherent in a no-flow condition, the existing ANCF stator vanes were pitched at a range of 
angles. The center-body was retained, creating a transition from s=0 at the inlet to s =0.5 at the exhaust exit plane. 
The CFANS system was used to generate modes for the study. The Rotating Rake and data acquisition system were 
synchronized to the CFANS rather than the fan – so the modes measured were those generated by the CFANS. That 
process filtered out the fan modes. The baseline case was a clean duct, with no stator vanes or fan blades. A parametric 
set of modes was generated at either the forward or aft driver set, and measured by the rotating rake in the opposite 
duct location. That is: the exhaust rake measured modes generated by the forward driver set; the inlet rake measured 
modes generated by the aft driver set. Fourteen or twenty-eight stator vanes were installed at various pitch angles and 
the rake mode measurements repeated. Separately, the rotor blades were installed at 3 different pitch angles. The 
nominal pitch angle for ANCF is 28° and that configuration was run at 3 different fan speeds. The fan pitch angle was 
changed by +/-10° and run at a single fan speed for those two angles. 

Duct mode propagation theory3,4 assumes a long duct as defined by the length to diameter ratio (L/D > 1) in order for 
the classic mode structure to develop into the predicted analytical forms. In reality, even a cut-off mode can be said to 
“propagate” from the source, albeit at a significant decay rate. Modes that are well below cut-on may decay at a rate 
of 80-100 dB per duct diameter, while a mode just below cut-on may decay at a rate of only 2-3 dB per diameter4. To 
investigate this effect, the ANCF/CFANS was tested with two duct lengths (Figure 8d) with the actuated driver row 1 
diameter from the duct exit, or 1/4–diameter from the duct exit. The modes were measured at the inlet entrance plane. 
Corresponding farfield directivity data were acquired. The farfield array was kept at a constant distance from the duct 
inlet entrance plane.  Modes and farfield directivity from the short and long duct configurations were noted to have 
significant differences. Duct modes in short-ducts have not decayed and are nearly equal in strength to the target mode. 
The total PWL in all modes, PWL in the generated mode, and the sum of the non-target mode were also compared. 
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(a) Aft Duct Propagation (Eversman Radiation 

Code Variation) 

 
(b) Inlet Distortion Experiment Configurations 

 
(c) Transmission Loss / Blockage Experimental 

Configuration 

 
(d) Effect of Short Duct on Modal Content / 

Farfield Directivity 

Figure 8: Code Validation Configurations 
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D. Active Noise Control 
As mentioned in the prior sections the ANCF was built to support the NASA Active Noise Control effort. ANC is the 
use of sound equal in frequency and spatial characteristics but 180° out of phase to the original resulting in destructive 
interference of the original acoustic field. An ANC system35 requires 3 main components: detection microphones to 
measure the signal to be cancelled (or its residual), a control algorithm to determine the necessary signal, and actuators 
to generate the canceling acoustic signal. The NASA effort addressed the fan harmonics and utilized a modal approach. 
It implemented an increasing complexity approach by continuously introducing higher source content, actuator 
concepts, and more efficient control algorithms. The order of discussion that follows is not necessarily chronological, 
but grouped by concept. 

The maiden ANC test was the GE ANC Flat Plate Actuator study36 pictured in Figure 9a. The goal of this study was 
to assess the feasibility of using wall mounted secondary acoustic sources and sensors within a ducted fan for active 
noise cancellation of fan tones.  The modal control system was based on a Single-Input, Single-Output RPM feed-
forward controller using a modal control approach. The key results were that the (6,0) mode was completely eliminated 
at 2BPF (960 Hz). Global attenuation of tonal PWL was obtained using an actuator and sensor system totally contained 
within the duct. This was the first successful ANC test of a complex nature. 

The next level in complexity was to effect control of the first two fan harmonics, with 2 radials at 2BPF, in the inlet, 
and to provide unidirectional control (that is no increase in noise in the exhaust direction). In addition, the active 
resonator concept was applied. HWAE developed active/passive resonator concept37 whereby an active element in the 
actuator base extends the range of a Helmholtz resonator and slight broadband character of a resonator is maintained 
(see Figure 9b). The concept was successful as the three radials were attenuated (which actually required 6 control 
Mutli-Input, Multi-Output (MIMO) control channels to prevent an increase in the exhaust). The resonators were tuned 
at BPF and substantial attenuation is noted – the active portion has no effect. At 2BPF the passive has no effect and 
the active control reduces the farfield level. 

The number of targeted radial modes was increased to four at m=2, 2xBPF in a task performed by GE using 4 rows of 
wall-mounted electromagnetic speakers as shown in Figure 9c. This radial mode density approaches that of a cut-on 
turbofan at BPF, or 2BPF at approach. Radial modes are more difficult to cancel since their axial wavelength can vary 
significantly. Indeed, this test ran into a radial distribution problem. The (2,1) mode was relatively low compared to 
others and was difficult to couple into and actually increased thereby limiting the net reduction. Later numerical 
simulations showed that this can be overcome by over-specifying the ANC control system by increasing the MIMO 
channels or increasing the duct length for the error sensor distribution (not really a potential option). 

The emphasis on simultaneously developing actuator technology was continued as HWAE integrated piezoelectric 
drivers (Figure 9d) surrounding the stator vanes: 2-rows on the duct wall near the tip, and 2-rows on the hub, near the 
base of the stator. The additional utilization of the inner wall provided a more efficient coupling to the radial modes 
since there were now two radial direction boundary conditions specified. Multi-directional control in a more compact 
arrangement was successfully demonstrated.  

Figure 9e pictures an attempt to simultaneously control multiple modes and harmonics in both the inlet and aft ducts. 
This was accomplished by combining the GE & HWAE systems from the earlier tests. Simultaneous multi-mode 
control of inlet/exhaust – 7 radials at m=2, 2BPF (4 inlet, 3 exhaust) – approaches the modal density of turbofans at 
2BPF under most conditions. This combined control successful as the exhaust reduction was nearly the same as earlier 
separate control results. The inlet reduction was still limited by (2,1) radial increase but performed slightly better than 
separate control. 

The preceding tests used the Adaptive-Quadrature (A-Q) control algorithm in single and multi-tone suppression 
systems, based on bandwidth capability, rapid convergence and processing simplicity  

Taking advantage of the radial coupling of vane mounted actuators, attenuation of higher order radials was attempted 
in two separate entries38,39. The development of the vane actuators was based on THUNDER actuator technology 
implemented by BBN. These are highly resonant to enable higher amplitudes to be generated – potentially at the level 
of full-scale turbofans, at least at approach. A schematic of the actuators and installation on the ANCF stator vanes is 
shown in Figure 9f. The results were the vane actuator ANC system reduced total 2BPF tone PWLs in the target modes 
in the inlet while at the same time exhaust power levels were reduced. A simplified control system with just two 
actuator arrays at different radial locations was demonstrated to simultaneously reduce tonal power in both inlet and 
exhaust. A benefit of vane actuators is that they act at the source of the disturbance. If both fan interaction and control 
sources are at the same location and are both dipole sources, then they should couple with the duct acoustics in the 
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same way. The baseline control strategy was successful, resulting in control of the seven radials in m=2 (four in the 
inlet, three in the exhaust). An important result from the baseline configuration was the simultaneous reduction in the 
inlet and exhaust when control was attempted in the inlet only. To say this is essentially an under-specified control 
system is a substantial simplification. The reason for this dual control is likely due to the close physical proximity of 
the anti-source (actuators) and the source (stator vanes). Other configurations in this test tended to confirm this result.  

After the successful demonstration of ANC, it was recognized, and studies showed, that any loss of treatment required 
to install an active noise control system would result in penalties due to the loss of treatment that could be greater than 
that obtained from the ANC. 

HAE/Rice developed an ANC system40 that was coupled to a Grumman passive liner, which is pictured in Figure 9g. 
The ANC portion of the combined system was to “set-up” the two-targeted radial modes so that the passive liner was 
more effective at cancellation. The optimized active/passive liner achieved a greater reduction than either alone. 
Keeping the passive liner in the configuration maintained the broadband attenuation. Indeed, the combined system 
yielded greater attenuation than the sum of the active and passive acting separately – the hybrid generating a 
synergistic effect as intended.  

While the aforementioned hybrid configuration demonstrated the efficacy of a combined/active system, the passive 
liner extent was reduced to incorporate sensors into the hardwall. An inlet duct section was used to investigate fully 
incorporating passive treatment into an ANC system that embedded the sensors, shown in Figure 9h. Comparisons 
were made of the ANC performance with baseline hard-wall (treated section taped over) to ANC performance with 
the treated section exposed along with a comparison was between using the error sensing microphones upstream of 
the exposed treatment and embedding the microphones in the treatment. The reduced levels achieved with sensors 
embedded in the liner were similar to those obtained with the sensors embedded in the upstream hardwall section, 
demonstrating that control can successfully achieved with sensors embedded in a liner. The ability to embed the 
sensors in the treatment increases the flexibility for the locating error sensors in ANC systems and avoids any noise 
reduction performance penalties associated with eliminating a very small portion of the passive treatment. 

The component count required for successful ANC are specified by the physics of duct propagation. The full 
specification resulted in very high component counts (microphones and actuators) that are probably not feasible on an 
in-service turbofan. Therefore, attempts were made to reduce the component count.   

In the first attempt at simplification41, an axially distributed array was used instead of the complete circumferential 
array, to detect m= 2 as shown in Figure 9i. This assumes that the target mode is dominant in the acoustic signature 
since an axial array does not allow for circumferential modal decomposition (a situation known from the character of 
ANCF). The minimum number of microphones required is still equal to the number of radials present (in this case, 
four in the inlet and three in exhaust for a total of seven). The results show that the reduction obtained is very modest, 
and there are even slight increases. It is important to recognize that the extraneous modes (non-target modes) generated 
by imperfections in the actuators and/or input signals result in modest reductions – though the concept might be valid. 

The standard location for the ANC error sensors has typically been the duct walls. As seen earlier, this arrangement 
can have difficulty detecting radial modes. Alternative locations were investigated42 on the ANCF. 

A boom was located outside the fan duct in the horizontal plane, approximately 10 feet from the centerline pictured 
in Figure 9j. The goal was to demonstrate the feasibility of reducing selected sectors in the farfield directivity that 
have the greatest impact on noise. This could be a more realistic application of the farfield error microphone technique, 
perhaps being mounted off an aircraft wing or fuselage. The boom array error sensing input weighting used two 
methods: a radial based filtering to attempt to control individual radials and an angle based method to control sectors 
in the farfield. The best results with the radial based filtering method were achieved by applying control weighting to 
the m=2 mode. Control weighting of other individual radials was not successful in providing reductions in the m=2 
mode or for the corresponding individual radials. As was found with the steering array, the targeted mode was not 
necessarily the one reduced the most. 

Turbofan engines typically have a pylon or bifurcation in the exhaust duct. The ANCF exhaust duct was modified by 
installing two radial surfaces 180° apart, in the vertical plane to simulate a bifurcation, which is pictured in Figure 9k. 
This surface can provide additional locations to mount error-sensing microphones. In addition, the radial extent of the 
pylon/bifurcation can provide radial information to the control system. Twenty microphones were distributed radially 
(five on each surface). A configuration using six microphones (three on two pylon faces) performed very well and met 
the goal of using only radially distributed microphones. It was suggested that more microphones are required in the 
radial distribution than the number of radials present. 
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The ANCF demonstrated that tonal based ANC is possible, potentially significantly reducing multiple harmonics. It 
demonstrated that fully integrating the active system into a liner is necessary as well as close-coupling the actuators. 
It was generally recognized that the benefits of tonal control did not justify the added complexity – and attempts at 
reducing the complexity did not improve that cost/benefit ratio. The ANCF effort also demonstrated that the most 
critical component of the ANC system is the control algorithm. That was determined to be the basis of any research 
attempted in broadband ANC – which could potentially enable the cost/benefit ratio to become viable. 

     
(a) GE ANCF Flat Plate Actuators 

     
(b) HWAE Active Resonators 

    
(c) GE Multiple Mode ANC       (d) HWAE Control Near Source 

Figure 9: Active Noise Control Configurations 
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  (e) GE/HWAE Combined ANC  (f) BBN Vane Actuators ANC 

 

        
  (g) Grumman/HAE/Rice Hybrid ANC 

 

        
(h) Strategic Research Fund - Error Sensors Embedded in Liner 

Figure 9: Active Noise Control Configurations 
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  (i) VPI Linear Array 

 

     
(j) HWAE Exterior Boom Array        (k) HWAE Pylon Error Sensor A 

 

Figure 9: Active Noise Control Configurations 



 
 

14 

E. Unique Fan Noise Reduction Techniques 
An experimental proof-of-concept test was conducted43 to demonstrate reduction of rotor-stator interaction noise 
through Trailing Edge Rotor Blowing (TERB). The velocity deficit from the viscous wake of the rotor blades was 
reduced by injecting air into the wake through a trailing edge slot. Composite hollow rotor blades with internal flow 
passages were designed based on analytical codes modeling the internal flow. This hollow blade with interior guide 
vanes created flow channels through which externally supplied air flowed from the root of the blade to the trailing 
edge. The blade and air flow distribution system are shown on Figure 10a. The impact of the rotor wake-stator 
interaction on the acoustics was also predicted analytically. The ANCF/TERB rotor was designed using a modified 
version of the NASA developed compressor design program in conjunction with a three-dimensional viscous 
computational fluid dynamics (CFD) code for turbomachinery, RVC3D. A two-dimensional viscous CFD code, 
DVC2D44, was used to a limited extent, for example, to simulate the flow field in the axisymmetric inlet upstream of 
the rotor, providing inlet boundary condition data for the rotor computational domain. The types of data acquired 
were: (i) two-component hotwire behind the rotor, (ii) unsteady stator vane surface pressures, (iii) acoustic duct modes, 
and (iv) farfield directivity. Reduction in the fan tone levels by filling the rotor viscous wake through trailing edge 
blowing was demonstrated to achieve substantial tone reduction using 1.6% to 1.8% of the fan mass flow rate. Indirect 
methods indicate that broadband reduction of rotor-stator interaction noise may result. 

A fortuitous outcome of the TERB test was a rotor blade design that was more realistic than the original ventilation 
fan set. A set of blades based on the TERB planform, but with a sharp trailing edge, was used to update  the baseline 
aero-acoustic data set10,13. In addition, trailing edge inserts were made using rapid proto-type methods and materials 
to study passive mixing of the viscous wake (e,g. serrated or wavy – Figure 10b). 

A foam-metal liner (FML) for attenuation of fan noise was developed for and tested on the ANCF45 as shown in Figure 
10c.  A foam-metal liner was designed based on the absorption characteristics of the foam-metal determined using a 
normal incidence impedance tube and the known acoustic characteristics of a low-speed fan. The attenuation 
characteristics of the foam-metal-liner installed in the inlet matched the predicted absorption spectra reasonably well. 
Additional attenuation bandwidth, beyond that predicted from the impedance tube tests, occurred with the foam-metal-
liner installed over-the-rotor (OTR), achieving broadband attenuation in both the inlet and aft farfield. This compared 
favorably to having single-degree of freedom liners installed in both the inlet and aft duct sections to achieve similar 
global attenuation. This suggests foam-metal liners installed over-the-rotor could provide the opportunity to eliminate 
the conventional liners, resulting in shorter ducts with reduced weight. A follow-on test of a FML/OTR on a production 
turbofan19 was performed and the impact on fan performance quantified based on these ANCF tests. 

In order to better understand the physical effects of over-the-rotor acoustic treatments, a series of tests46,47 were 
performed at multiple TRLs, with various treatment concepts, of which tests on the ANCF were in the middle. Two 
locations were tested, (i) in a traditional inlet location, and (ii) in an OTR location. The goal was to measure the 
insertion loss of the four liners in the OTR configurations (Figure 10d) and compare to the same liners in the inlet, 
thereby providing some insight into the relative impact of the two physical mechanisms mentioned earlier. Each liner 
was evaluated in the ANCF in terms of acoustic reduction efficacy. In the OTR position, several of the liner designs 
were shown to have a reduction on the fan noise. The comparison of the reduction achieved in rotor-alone vs rotor-
stator noise indicated that the attenuating mechanism is a combination of source modification plus a reduction in the 
propagating acoustic wave from the rotor-stator interaction, which is very notable in the forward arc.  

Extending the concept of passive treatment to locations other than the outer duct walls provides opportunities for 
additional attenuation. One potential location is the stator vane, where a portion of the stator vane surface is made 
porous to allow communication between pressure fluctuations at the vane surface and multiple, internal, resonant 
chambers. The internal chambers and porous surface are designed to an optimum impedance, such that maximum 
sound absorption is achieved. This impedance boundary condition also provides pressure release (relative to the rigid 
surface it replaces) at the surface of the stator vane. This concept has been termed “soft vane”48 and is intended to 
reduce noise from rotor-stator interaction. Several soft vane configurations were tested on the ANCF, all utilizing the 
basic vane design. An exploded view of this concept is shown in Figure 10e. These were: (i) 2 rows of the interior 
partition beads filled with ceramic beads, (ii) same plus a fibermetal cover sheet over the porus area, (iii) the fibermetal 
cover sheet with only the interior partition, (iv) the fibermetal cover sheet with no partition, completely filled with 
ceramic beads, and (v) the fibermetal cover sheet with an empty vane. Configuration (ii) was the primary design and 
in fact achieved the best broadband attenuation relative levels to the original solid aluminum stator vanes. This 
broadband noise reduction was a very encouraging result, leading to a test on the high-speed ducted fan in the NASA 
9x15 Wind Tunnel. 
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   (a) Trailing Edge Rotor Blowing Configuration 

 

 
(b) Trailing Edge Inserts Adapted from TERB Blades 

 

   
   (c) Over-the-Rotor Foam-Metal-Liner Configurations 

 

Figure 10: Novel Noise Reduction Configurations 

 

Serrated TE insert 
developed by GRC  

Marcelled TE insert 
developed by GE   
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   (d) Multiple Over-the-Rotor Liner Configurations 

 

 
(e) Soft Vane Exploded Paper 

 

Figure 10: Novel Noise Reduction Configurations 
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F. Novel Liner Development 
As discussed earlier, the ANCF was designed to approximate the frequency range impacting the EPNL calculation. 
Any successful reduction over that range would benefit the public. The state-of-the art to attenuate that frequency 
range is passive liners. The ANCF was used to evaluate several advanced liner concepts.  

An experimental effort to investigate the performance of Herschel-Quincke (HQ) tubes combined with high resistance 
liners for the control of aft fan noise radiation was performed. In addition, testing of the HQ tubes with hard wall duct 
condition also performed. These are pictured in Figure 11a. The HQ tubes were specifically designed to attenuate the 
2BPF tone and the broadband component around it. The liner was designed for optimum broadband performance 
between 2½ to 5½ BPF where the HQ contribution expected to be small. The HQ-liner system performed well: an 
encouraging contribution was from the HQ tubes, particularly at lower frequencies where the liner was not very 
effective. The HQ-liner test and results were used to justify the inclusion of HQ-tubes on the Honeywell TFE-731 
technology maturation test program18. 

Figure 11b shows the schematic of the ANCF configuration for the evaluation of insertion loss due to a liner. The liner 
used was a single-degree-of-freedom (SDOF) liner. The Rotating Rake was installed in one of two locations: upstream 
of the liner to measure the modal PWL at the entrance, and downstream of the liner to measure the modal PWL at the 
liner exit. Comparing the two measurements provides the liner insertion loss. This type of measurement provides a 
more detailed evaluation of the physics of the liner efficacy compared to just measuring the insertion loss in the farfield 
as it takes into account internal reflections and other acoustic effects. These rake locations were tested both with the 
liner exposed and taped over (to provide a hard-wall baseline). The effect of pylons on the liner efficacy was also 
investigated during this test. Two pylons were manufactured: (i) a large one that extended the full axial length of the 
liner, and (ii) a smaller one approximately 25% of the liner length. Both pylons are pictured in Figure 11c. 
Configurations tested were with both pylons mounted, or the large pylon only, for either the hardwall or liner. This 
investigation built on an earlier one that showed pylons reflect modes into the opposite rotation.  

Two broadband liner designs49 were produced that were predicted to provide increased attenuation over conventional 
tonal designs for the full range of frequencies and operating conditions considered. Both designs incorporated a septum 
to create two chambers. The first liner incorporated a septum with a constant depth (same depth in each chamber) to 
provide a constant impedance liner design. The second design incorporated a unique variable depth septum creating a 
variable impedance liner. The insertion loss for each liner was measured experimentally. The objective of the 
experimental portion of this effort was to validate the efficacy of the design process by comparing the experimentally 
measured insertion losses for each liner to those predicted50. In order to provide a clean, annular duct for this 
experiment the ANCF was built up off of the stanchion/pylon assembly that normally supports the fan and duct 
sections that make up the nacelle. That is, the spool pieces were stacked up in a vertical orientation on the floor as 
shown in Figure 11d. This removed the ANCF center-body and support pylon from the arrangement, providing a 
constant area annular duct. Two configurations were tested in this setup: (i) with a constant 24” diameter cylindrical 
tube center-body and (ii) with a constant 36” diameter cylindrical tube center-body. These provided an equivalent 
annular duct hub-to-tip ratio of 0.5 and 0.75, respectively (inner diameter of the outer wall is 48”). The entire stack 
rested on the floor, and approximately 6” of foam material was placed in the bottom of the stack to minimize reflections 
from the floor. Only in-duct rotating rake measurements using the CFANS as a source were acquired in this 
configuration. Obviously, in this orientation, there was no flow. Rotating Rake data were acquired at the entrance and 
exit of the liner. This was the primary setup for all liner configurations. Selected liner configurations were also 
installed on the standard ANCF configuration. The fan was used as the primary source at the standard range of 1400-
2000 rpm pictured in Figure 11e. Two stator counts were utilized, 0 (rotor alone) and 14 vanes at 0.5 chord spacing. 
The liner was installed in the aft converging section where the hub-to-tip ratio transitions from 0.375 to 0.5. Rotating 
Rake measurements upstream and downstream of the liner were acquired. Farfield directivity measurements were 
acquired. The CFANS was also used to generate broadband noise as described above (no flow) and farfield 
measurements were acquired. These tests were used to assess NASA’s ability to design acoustic liners using 
construction with embedded mesh-cap technique (developed by Hexcel Inc.). Data from the ANCF were compared 
with predictions from aero-acoustic propagation codes to demonstrate the prediction capabilities, and to compare 
results from different types of liner configurations. Based on the success in the ANCF (as well as the NIT and GFIT 
at NASA LaRC), similar liners were designed for tests on the DART51. This test clearly demonstrated that the MDOF 
configuration could be fabricated for a very difficult inlet configuration (14” diameter; strong curvature). This was 
used to convince program official that this type of design could be built in a flightworthy product and flight tested on 
a Boeing 737 MAX Quiet Technology Demonstrator testbed20..



 

  
   (a) HQ-tube Installation and Design 

 

   
(b) Insertion Loss Measurement Configuration 

 
 

 
(c) Effect of Pylon/Liner Interaction Configurations 
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(d) Insertion Loss Measurement Configuration   (e) Insertion Loss Measurements - Horizontal Configuration 

Figure 11:  Novel Liner Configurations 

G. Measurement Technology Development 
For reasons similar to those given for code verification (section III.C) the ANCF is well suited for development and 
improvement of aero-acoustic measurement technologies.  

An expansion of the Rotating Rake measurement and analysis technique52 to include measurements over treated 
sections was validated using the ANCF. A rake with an extension measured the pressure profile over the passive liner 
(Figure 12a). Liners with differing impedances were evaluated by exposing them to several modes and frequencies 
generated by the CFANS. In addition to experimental validation on ANCF, the technique was verified by decomposing 
and analyzing radial pressure profiles generated numerically by the Eversman propagation code. Data from the ANCF 
fan with several different impedance conditions on the outer wall were acquired and reduced to determine the best fit. 
Using the impedance boundary conditions resulted in better mode measurement solutions. The methodology obtained 
basis functions based on wall impedance boundary conditions for flow conditions (i.e. constant duct area and Mach 
number) if the closed-form analytical solution existed. Analytical equations developed to estimate mode power are 
incorporated. For ducts with soft walls and mean flow, the radial basis functions must be numerically computed. The 
linear companion matrix method is used to obtain both the eigenvalues and the radial basis functions. In addition, a 
nonlinear least squares method is used to adjust the wall impedance to best fit the data in an attempt to use the rotating 
system as an in-duct wall impedance measurement tool.  

Typically, a rake extending from the outer-wall to the duct centerline, has been inserted to measure duct modes at a 
single axial location. It has been known53 that measurement at a single axial location will not be able to account for 
reflections in the duct; therefore, an experiment54 utilizing an additional rake mounted on the same rotating ring as the 
original was conducted. This second rake was adjustable in the axial direction over the range of 2.5” to 10.5”, in fixed, 
one-inch increments, and was mounted 180° from the original rake in the circumferential direction as seen in Figure 
12b. Data were simultaneously acquired from both rakes to provide the two-point axial variation needed to compute 
the reflection.  Reflections were created using two methods. The first method relies on the natural reflections due to 
an open-ended exit termination. The ring containing the dual rotating rake system was mounted at the exit of the 
ANCF stack-up. The single driver row (C) farthest from the exit termination was used to generate the modes (see 
Figure 12c). This configuration was run with the flow lip attached – this was assumed to minimize reflections; and 
with the flow lip removed, creating a sharp 90° flanged exit – this was assumed to create stronger reflections. A second 
configuration was used to generate artificial reflections. This was accomplished by locating the dual rake ring in the 
center of the stack-up. Driver row C was used to generate the “primary” wave and driver set B was used to generate 
the “reflected” wave. Each driver row was actuated independently and the dual rakes measured the modes. Then both 
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sets were activated simultaneously and the resulting superposition was measured. The concept is that the measured 
combination is the resulting superimposed mode and is equal to that measured independently and mathematically 
combined.  The fixed rake mode PWLs were compared to the levels from the adjusted rake as a function of separation 
distance. The flow-lip on and flow-lip off cases were compared. The data showed that the mode PWL variation in 
axial distance is greater with the flow-lip removed, indicating a stronger reflection, due to constructive and destructive 
interference, as expected.  

An available location for phased microphone arrays for determining engine inlet propagating mode distributions is the 
ICD (used on static engine tests). A proof- of-concept test55 was performed on the ANCF, since the modal distribution 
of the fan tone harmonics were accurately measured by the Rotating Rake system. An array of 40 microphones were 
installed on the ANCF ICD; a close-up is shown in Figure 12d. An acoustic duct propagation code, CDUCT, was used 
to generate the steering vector predictions, required for classical phased array beam forming. The steering vectors 
consist of the CDUCT predicted complex acoustic pressure at the microphone locations for each propagating mode. 
The phase-accurate microphone data is then projected in the steering vector directions in order to determine the modal 
distribution. The dominant circumferential modes indicated by the ICD array matched those from the rotating rake.  

Another external technique that was investigated was a planar array in front of inlet56, which may be more applicable 
for use in wind tunnels. This array is shown in front of the ANCF ICD in Figure 12e. The methodology utilized was 
to adapt the Generalized Inverse method and compute radiation patterns by approximating the Rayleigh Integral 
(Tyler-Sofrin) as a coherent sum over beam-form map points. A correction was applied by incorporating the Rayleigh 
integral with Kirchhoff factor. Included were the hardwall and pressure release modes.  

An in-duct beam-forming technique for imaging rotating broadband fan sources was developed and evaluated57. A 
phased array consisting of one or more rings of microphones was employed shown in Figure 12f. The data are 
mathematically resampled to a frame of reference rotating with the fan and subsequently used in a conventional beam-
forming technique in the rotating frame. The steering vectors for the beam forming are derived from annular duct 
modes, so that effects of reflections from the duct walls are reduced. In contrast with other work, the steering vectors 
represent the effect of the unsteady pressure at the fan, rather than the Green’s function. This improves the condition 
of the formulation and provides a connection to analytical studies. The test included a condition in which two of the 
fan blades were altered to create noise sources at known locations to provide a challenge. Comparisons of images 
obtained with a stationary rod installed in the inlet bottom dead center of the inlet using the VRM technique. The 
technique was evaluated by applying it to data from the ANCF rig with the Foam Metal Liner installed Over-the-
Rotor. The evaluations suggested improvements to the technique could be made, which were subsequently 
implemented. 

Farfield inlet fan noise can be measured under anechoic conditions in some model scale fan rig test facilities but 
farfield aft fan noise measurements are often not possible because the bypass flow is typically ducted away through a 
throttle into an exhaust stack. A beam-former based technique was developed58 for processing measurements taken 
with an in-duct axial (‘phased’) array in the bypass duct of the ANCF (see Figure 12g) which, with certain modeling 
assumptions, enables the fan broadband noise level and directivity to be predicted in the farfield. Validation with a 
realistic fan noise source was partially achieved by using experimental data from the ANCF low-speed fan rig. The 
modal transfer functions are computed using a ‘plug’ flow exhaust model based upon a well-established Wiener-Hopf 
farfield technique but since the measured farfield data is located at three duct diameters from the exhaust, modal 
transfer functions are also computed at that distance and with a spreading jet model using a linearized Euler code. 
Both models yielded predictions that agree reasonably well with measured data but the latter is more accurate at small 
angles to the jet axis.  

Typically, voltage values obtained from a hotwire must be corrected if the experimental temperature is different from 
the temperature at calibration. The experimental temperature is often not known exactly due to limitations in placement 
of a temperature measurement device. In addition, the temperature may vary in any of the dimensions that hotwire 
data is acquired. Generally, this is not a major cause for concern since (1) the temperature variation during the 
revolutions acquired is small; (2) the exact mean values are of less concern than relative or fluctuating values. 
Therefore, a single bulk experimental temperature is often used to correct all voltage measurements in a given run. 
However, using a single temperature across the entire revolution was unacceptable for the TERB application because 
of the significant temperature rise in the injected air. The compressor that supplied the injected air had a 30 to 40 °F 
temperature rise. In addition, the large temperature difference between the calibration (~70 °F) and the experiment 
(~30 to 40 °F) is probably greater than can be accurately adjusted by the standard temperature correction. Therefore, 
the two overheat method59 was used to determine the true velocity and temperature across a passage. The hotwire 
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probe was calibrated, and data acquired behind the rotor, at two overheat ratios. The significant temperature rise in 
the wake changed the reduced velocity profile substantially when compared to the uncorrected, presumably inaccurate, 
profile obtained using a constant temperature across the passage profile. For the blowing case, it was expected that 
there was a temperature rise in the wake. The iterative method indicated that the peak rise is ~4.5 °F near the centerline. 
In addition, the variation in the wake results in an iteratively converged velocity that has a significantly different 
characteristic than the velocity profile from either overheat ratio. The presumed actual velocity profile is overblown, 
a characteristic not indicated from the unadjusted profiles. In addition, both cases have nearly identical (~11.5 °F) 
bulk temperature increases that are probably due to the systematic error in the temperature correction due to the large 
difference between the temperatures used for the calibration and the experiment.  

 

 

 

 
    (a) Modal Measurement Over Passive Liner 

 

 

      (c) Artificial Mode Reflection Generation 

       
(b) Dual Rake Modal Measurement Configuration 

Figure 12: Measurement Technology Development Configurations  



 
 

22 

      
 (d) Source Imaging Using an ICD Array                    (e) External Flow-Through Array Configuration 

 

       
    (f) Source Localization Using an In-Duct Array 

 

     
    (g) Farfield Projection from In-Duct Array 

 

Figure 12: Measurement Technology Development Configurations  
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IV. Summary 

A. Proposed Replacement  
Since 1995 the Advanced Noise Control Fan (ANCF) substantially contributed to the advancement of understanding 
of the physics of fan tone noise generation and the development of multiple fan noise reduction technologies. However, 
as the low speed/loading/pressure rise of ANCF was not fully representative of the physics of fan broadband noise 
generation, a replacement was considered necessary. In April 2010, consultation with industry/academia/government 
was held at the Acoustic Technical Working Group meeting at the Ohio Aerospace Institute to solicit opinions and 
high-level needs. This led to a request for resources to conduct a concept study for a replacement: “ANCF II”. The 
concept study team spent a year evaluating performance levels, infrastructure requirements, and multiple drive 
options. Industry comments were solicited, budgetary constraints noted, and results incorporated into a final 
recommendation. The ANCF II concept study results were presented to the project office on June 2011. The project 
office approved the further work and committed resources through the Preliminary Design Review that was held in 
September of 2012. The team recommended to the aero-acoustics community a design60 for a 3000 HP electric motor, 
shaft driven fan in a 22-inch diameter duct that could be driven from the front or aft to enable clean farfield 
measurements in either arc. Unfortunately, the estimated costs were not within the budgetary scope and the effort was 
halted.  

B. Collaboration 
In addition to the highly prolific NASA studies accomplished, significant international collaboration transpired (Figure 
13) using the ANCF on an explicit test, and/or its all-encompassing database of geometry and aero-acoustic data. 
Several students earned advanced degrees based on collaborations centered on the ANCF. A student from the 
University of Akron proposed and participated in custom modifications to the operating procedure to acquire transient 
data for his Master’s thesis61. Students from the Federal University of Brasilia developed a CAA code for their 
Master’s62 and Ph.D.63 theses that used the 2008 geometry and data set for validation.  At the University of São Paulo, 
a student based his Master’s Degree topic64 on duct modal measurements from an internal array installed on the ANCF 
and comparisons to the Rotating Rake. A student from the University Southampton based a part of her Ph.D. thesis 
on a collaborative test with inter-stage liners65.  The University of Sherbrook66 and ONERA utilized the available 
data/geometry package to validate their in-house CAA codes. Commercial codes from NUMECA (FINE™/Acoustics) 
and EXA (PowerFlow)67 were partially validated using the data/geometry package. An interesting YouTube video68 
was created to demonstrate the results.  There have been multiple Space Act Agreements, including three international 
(FUB, USP, and ISVR), focusing on collaborating using the ANCF. A simplified version of the ANCF was designed 
and manufactured, and is used for research at USP69.  

C. Relocation 
In order to make room for a small turbofan engine (DART70) the ANCF was relocated to the University of Notre Dame 
Turbo-machinery Research Lab (Figure 14). As a result of this change of venue the ANCF will be an outdoor test rig 
using ground-plane microphones and will be transported over a ¼ mile from the storage to the test site along the path. 
In spite of these significant differences, the farfield data comparison of the data acquired in the AAPL facility to the 
new University of Notre Dame (UND) outdoor location is remarkably similar. The use of ground microphones showed 
a simpler experimental setup can be useful in the acquisition of farfield acoustic data in an outdoor environment. For 
the most part, ground microphone data appeared to resemble pole microphone data, validating the usage of the former 
in outdoor experimentation. Furthermore, data acquired at UND decade apart from those acquired at NASA seemed 
as a positive indication of the healthy state of the fan. A paper71 detailing the initial commissioning test at UND’s 
facilities is published concurrently. 
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Figure 13: Flags of Many Nations Conducting Research on ANCF. 

     

 
Figure 14: Relocation of ANCF. 
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V.Conclusion 

The ANCF has contributed considerably to the various NASA ARMD research programs focused on reducing aircraft 
noise and mitigating its impact on the public. It is a complete aero-acoustic data/geometry set that is publicly available. 
The ANCF served as a wide-ranging enabler of cross-center, academic, industry, and international collaboration. It is 
a highly prolific test rig that is flexible, adaptable, that evolved to make wide-ranging contributions to the field of 
aeroacoustics for over 20 years and beyond including developing several technologies that were evaluated on 
production turbofans (static and flight test). Transferring the ANCF to the UND to jointly operate the test rig will 
maintain research its capability, and provide relevant STEM opportunities in the area of fan aeroacoustics. A more 
detailed version of this paper is presented in a NASA Special Publication72. 

 ACKNOWLEDGEMENTS 

The author thanks Mr. Larry Heidelberg, who originally conceived of the Active Noise Control Fan, and significantly 
influenced him. Tony Shook, Julius Giriunas, and Kevin Konno contributed considerably to the design and installation 
of the ANCF. Technical support during the crucial early years was expertly provided by David Hauser, Michael 
Bronczek, Rick Herrlick and Ben Dastoli. Steve Wnuk provided professional engineering support during the early-to 
mid-operational years. Aero-Acoustic Propulsion Laboratory facility staff (Mark Jacko, Lenny Smith, Bruce Groene, 
Ed Mysliwiec, Joeseph McAllister, Joel Lauer, Mark Lasky, Devin Podboy, and Brian Rouse) and predecessor 
organizations continued the tradition of exceptional support. Current high-level managers in ARMD were operations 
engineers on ANCF (e.g. Ruben Del Rosario). Michael Jones and Douglas Nark, of the LaRC, exhibited the ideal of 
inter-center cooperation during numerous collaborations. Dr. Bruce Walker, who was also very influential on the 
author, was a prolific and significant contributing external researcher. Mr. Ray Loew is especially recognized in 
memory of his dedication and commitment. 

REFERENCES 

1 Huff, D.L., “NASA Glenn’s Contributions to Aircraft Engine Noise Research”, NASA/TP—2013-2178185. 
2 https://airandspace.si.edu/stories/editorial/nasa-leader-explains-why-failure-sometimes-option 
3 Hubbard, H. H., editor, Aero-acoustics of Flight Vehicles: Theory and Practice: Volume 1: Noise Sources, NASA Reference 

Publication 1258, Vol 1, WRDC Technical Report 90-3052. 
4 Tyler J.M., and Sofrin T.G., “Axial Flow Compressor Noise Studies,” SAE Transactions, Vol. 70, 1962, pp. 309-332. 
5 Huff, D.L. “Noise Reduction Technologies for Turbofan Engines”, NASA/TM–2007-214495. 
6 Woodward, R.P., Hughes, C.E., Jeracki, R.J., and Miller, C.J, “Benefits of Swept and Leaned Stators for Fan Noise Reduction”, 

NASA/TM–1998-208661. 
7 Hubbard, H. H., editor, Aero-acoustics of Flight Vehicles: Theory and Practice: Volume 2: Noise Control, NASA Reference 

Publication 1258, Vol 2, WRDC Technical Report 90-3052. 
8 Heidelberg, L.J., Hall, D.G., Bridges, J.E., and Nallasamy, N., “A Unique Ducted Fan Test Bed for Active Noise Control and 

Aero-acoustics Research”, NASA TM–107213, also AIAA–96–1740. 
9 Sutliff, D.L., Nallasamy, N., and Elliott, D.M., “Baseline Acoustic Levels of the NASA Active Noise Control Fan Rig”, NASA 

TM–107214, also AIAA–96–107214. 
10 McAllister, J., Loew, R.A., Lauer, J.T., and Sutliff, D.L., “The Advanced Noise Control Fan Baseline Measurements”, 

NASA/TM–2009-215595, also AIAA–2009-0624. 
11 Cooper, B.A., “A Large Hemi-Anechoic Chamber Enclosure for Community-Compatible Aeroacoustic Testing of Aircraft 

Propulsion Systems”, Journal of the Institute of Noise Control Engineering of the USA, Jan/Feb 1994. 
12 Sutliff, D.L., “Acoustic Characteristics of the Active Noise Control Fan Located in the Compact Farfield Arena”, Technical 

Progress Report, Contract NAS3-00170, Task Order no. 17, Sest Inc. 
13 Loew, R.A., Lauer, J.T., MCAllister, J., and Sutliff, D.L., “The Advanced Noise Control Fan”, NASA/TM–2006-214368, also 

AIAA–2006-3150. 
14 Bozack, R.F., Jr., “Advanced Noise Control Fan Aerodynamic Performance”, NASA/TM-2009-215807. 
15 Homyak, L., Mcardle, J. G., and Heidelberg, L. J. “A Compact Inflow Control Device for Simulating Flight Fan Noise”, AIAA 

83-0680. 
16  Sutliff, D.L. “Rotating Rake Turbofan Duct Mode Measurement System”, NASA TM-2005-213828. 
17 Sutliff, D.L., and B.E. Walker, B.E., “Artificial Noise Systems for Parametric Studies of Turbo-machinery Aero-acoustics”, 

International Journal of Aero-acoustics January-March 2016 15: 103-130. 
18 Weir, D., “Engine Validation of Noise and Emission Reduction Technology Phase I”, NASA/CR–2008-21–13843A. 

                                                        



 
 

26 

                                                                                                                                                                                   
19 Sutliff, D.L., Jones, M.G., and Hartley, T.C., High-Speed Turbofan Noise Reduction Using Foam-Metal Liner Over-the-

Rotor", Journal of Aircraft, Vol. 50, No. 5 (2013), pp. 1491-1503. 
20 Norris, G., “Quiet Quest”, Aviation Week & Space Technology, September 2018, pp24-25. 
21 Sutliff, D.L., and B.E. Walker, B.E., “Two-Dimensional Air-Flow Tests of the Effect of ITA Flowliner Slot Modification by 

Grinding/Polishing on Edge Tone Generation Potential”, NASA/CR-2004-213405.  
22 Sutliff, D.L., Clifford A. Brown, C.A., Walker, B.E., “Hybrid Wing Body Shielding Studies using an Ultrasonic Configurable 

Fan Artificial Noise Source Generating Typical Turbofan Modes”, AIAA 2014-0256.  
23 Sutliff, D.L., “Acoustic Characteristics of the Active Noise Control Fan Located in the Compact Arena”, NAS3-00170-17, 

June 2002. 
24 Meyer, H.D., and Envia, E. “Aeroacoustic Analysis of Turbofan Noise Generation”, NASA CR 4715, March 1996 
25 Sutliff, D. L.; Bridges, J., Envia, E., “Comparison of Predicted Low Speed Fan Rotor/Stator Interaction Modes to Measured”, 

NASA-TM-107462, AIAA–97-1609. 
26 Sutliff, D. L.; Heidelberg, L. J., Envia, E., “Coupling of Low Speed Fan Stator Vane Unsteady Pressures to Duct Modes: 

Measured versus Predicted”, NASA/TM-1999-209050, AIAA Paper 99-1864. 
27 Eversman, W., “Turbofan Acoustic Propagation and Radiation”, NASA Technical Report, NAG3-2109, June 2001. 
28 Nallasamy, M., Sutliff, D.L., and Heidelberg, L.J., “Propagation of Spinning Acoustic Modes in Turbofan Exhaust Ducts”, AIAA 

Journal of Propulsion and Power, Sep-Oct 2000. 
29 Heidelberg, L.J., Sutliff, D.L., and Nallasmay, M., “Azimuthal Directivity of Fan Tones Containing Multiple Modes”, NASA 

TM-107464, AIAA 1997-1587. 
30 Koch, L., “An Experimental Study of Fan Inflow Distortion Tone Noise”, 15th AIAA/CEAS Aero-acoustics Conference (30th 

AIAA Aero-acoustics Conference), 2009. 
31 Koch, L., “Predicted and Measured Modal Sound Power Levels for a Fan Ingesting Distorted Inflow”, AIAA–2010-3715, 

NASA TM-2010-216782. 
32 Koch, L., “Validation of the Predicted Circumferential and Radial Mode Sound Power Levels in the Inlet and Exhaust Ducts of 

a Fan Ingesting Distorted Inflow”, AIAA-2011-2808, NASA-TM-2012-217253. 
33 Koch, L., “Predicting the Inflow Distortion Tone Noise of the NASA Glenn Advanced Noise Control Fan with a Combined 

Quadrupole-Dipole Model”, NASA-TM-2012-217673. 
34 Hixon, D.R., Envia, E., Dahl, M.D., and Sutliff, D.L. “Comparison of Computational Aero-acoustics Prediction of Acoustic 

Transmission Through a Three Dimensional Stator Geometry with Experiment”, AIAA 2014-1405. 
35 Walker, B., “Sensitivity Issues in Active Control of Circular Duct Modes Using Axially-Spaced Actuator Arrays”, Proceedings 

of Active 99, pp 91-102, The 1999 International Symposium on Active Control of Sound and Vibration, December 1999, Ft. 
Lauderdale, Florida, USA.  

36 Sutliff, D. L.; Hu, Z.; Pla, F. G.; Heidelberg, L. J., “Active Noise Control of Low Speed Fan Rotor-Stator Modes”, NASA-TM-
107458, AIAA Paper 97-1641. 

37 Walker, B.E., Hersh, A.S, Heidelberg, L.J., Sutliff, D L, Spencer, M.E., “Active Resonators for Control of Multiple Spinning 
Modes in an Axial Flow Fan Inlet”, AIAA 99-1853. 

38 Sutliff, D.L., Curtis, A.R.D., Heidelberg, L.J., and Remington, P.J., “Performance of an Active Noise Control System for Fan 
Tones using Vane Actuators”, AIAA 2000-1902.  

39 Sutliff, D.L., Remington, P.J., and Walker, B.E.., ‘Active Control of Low-Speed Fan Tonal Noise Using Actuators Mounted in 
Stator Vanes: Part I Control System Design and Implementation”, AIAA 2003-3193. 

40 Parente, C. A.; Arcas, N.; Walker, B. E.; Hersh, A. S.; Rice, E. J., “Hybrid Active/Passive Jet Engine Noise Suppression 
System”, NASA/CR-1999-208875. 

41 Smith, J.P., Burdisso, R.A., and Sutliff, D.L., and Heidelberg, L.J. “Active Control of Inlet Noise at the NASA Lewis Ducted 
Fan Facility”, VPI-ENGR 97-444, Nov 1997. 

42 Walker, B., Hersh, A., Celano, J., and Rice, E. “Active Control of Low-Speed Fan Tonal Noise Using Actuators Mounted in 
Stator Vanes Part 2: Novel Error Sensing Concepts”, AIAA-2003-3191. 

43 Sutliff, D.L., Fite, E.B., E Envia, E, and Tweedt, D.L., “Low-Speed Fan Noise Reduction with Trailing Edge Blowing”, 
International Journal of Aero-acoustics. 2002, Vol 1 No 3. 

44 Tweedt, D.L, Chima, R.V. "Rapid Numerical Simulation of Viscous Axisymmetric Flow Fields", AIAA-96-0449, also NASA 
TM-107103. 

45 Sutliff, D.L. and M.G. Jones, “Low-Speed Fan Noise Attenuation from a Foam-Metal Liner”, AIAA Journal of Aircraft, July-
Aug 2009.  

46 Gazella, M., Takakura, T., Daniel L. Sutliff, D.L., Bozak, R., and Tester, B.J.“Evaluating the Acoustic Benefits of Over-the-
Rotor Acoustic Treatments Installed on the Advanced Noise Control Fan”, AIAA 2017-3872. 

47 Bozak, R. F., and Dougherty, R. P., "Measurement of Noise Reduction from Acoustic Casing Treatments Installed Over a 
Subscale High Bypass Ratio Turbofan Rotor", AIAA Aviation Forum, 2018 (not yet published). 

48 Jones, M. G., Parrott, T. L., Sutliff, D. L., Hughes, C., “Assessment of Soft Vane and Metal Foam Engine Noise Reduction 
Concepts”, AIAA-2009-3142. 

49 Nark, D.M., Jones, M.G., and Sutliff, D.L., “Improved Broadband Liner Optimization Applied to the Advanced Noise Control 
Fan”, AIAA-2014-3103. 

50 Sutliff, D. L., Jones, M. G., and Nark, D. M., “In-Duct and Far-field Experimental Measurements from the ANCF for the 
Purpose of Improved Broadband Liner Optimization,” AIAA–2014-3231.  



 
 

27 

                                                                                                                                                                                   
51 Sutliff, D. L., Jones, M. G., and Nark, D. M., “Acoustic Directivity and Insertion Loss Measurements of Advanced Liners 

Installed the Inlet of the DGEN Aero-propulsion Research Turbofan”, NASA TM–2018 …. 
52 Sutliff, D.L. and Dahl, M.D., “Techniques for analyzing rotating rake mode measurements over passive treatment”, 

International Journal of Aero-acoustics , July 2016 15: pp 430-461. 
53 Cicon, D. E. and Sofrin, T. G.,“Method for Extracting Forward Acoustic Wave Components from Rotating Microphone 

Measurements in the Inlets of Turbofan Engines,” NASA CR-195457, April 1995.  
54 Dahl, M.D. and Sutliff, D.L. “Analysis of Dual Rotating Rake Data from the NASA Glenn Advanced Noise Control Fan Duct 

with Artificial Sources”, AIAA 2014-3316. 
55 Lan, J., Premo, J., Sutliff, D.L, “Inlet Mode Measurements with an Inflow Control Device Microphone Array” AIAA 2002-

2563.  
56 Dougherty, R.P, “Generalized Inverse Images of ANCF from Array 96 /Breaking News in Beamforming”, Acoustics Technical 

Working Group Meeting, NASA Langley, Hampton, VA, 23-25 October 2012. 
57 Dougherty, R.P., and Walker, B.E., “Virtual Rotating Microphone Imaging of Broadband Fan Noise”, AIAA-2009-3121. 
58 Tester, B.J., Özyörük, Y., Sutliff, D.L., and Bozak. R., “Validation of an in-duct to far-field beamformer method for predicting 

far-field fan broadband noise”, AIAA-2016-2894.  
59 Hot-Wire Anemometry, Principles and Signal Analysis, Section 7.4.2, Oxford University Press, 1995. 
60 Lucero, J., “Advanced Noise Control Fan II Test Rig and Trade Study Summary”, 2012, Oral/Visual Presentation, Report 

Number: E-661125. 
61 Brown, C. A., “Analysis of Rotor-Stator Interaction Noise During a Speed Transient”, University of Akron Master’s Thesis, 

2001. 
62 Maldonado, Ana Luisa Pereira, “N Predicão numérica do ruído tonal para o advanced noise control fan”, Universidade de 

Brasília, 2002. 
63 Pimenta, B. G., “Simulação numérica de ondas não-lineares em dinâmica dos gases e ruído de interação rotor-estator em 

turbofans aeronáuticos”, Ph.D. Thesis, Universidade de Brasília, 2016. 
64 Caldas, L. C., “Beamforming e análise modal em duto utilizando arranjo circular de microfones para caracterização de ruído 

banda-larga em motores aeronáuticos turbo-fan”, University of São Paulo, 2016. 
65 Maldonado, A.L.P., “On the prediction of the effect of interstage liners in turbofan engines”, University of 

Southampton, Doctoral Thesis, 2016. 
66 Sanjoséa, M., Daroukhb, M., de Laborderied, J., Sté Moreaue, S. and Mann, A. “Tonal noise prediction and validation on the 

ANCF rotor–stator configuration”, Noise Control Engineering Journal 63 (6), November-December 2015  
67 Mann, A., Perot, F., Suk K., Min, and Casalino, D. & Fares, E.. “Investigation of inflow condition effects on the ANCF aero-

acoustics radiation using LBM”, 41st International Congress and Exposition on Noise Control Engineering 2012, INTER-
NOISE 2012. 

68 CFD-Acoustic integrated simulation of the NASA Glenn Research Center's Advanced Noise Control Fan, 
https://www.youtube.com/watch?v=pkraAk1YQwA 

69 Caldas, L., Greco, P.C., Herold, G., and Baccalá, L.A., “In-duct Rotating Beamforming and Mode Detection of Fan Noise 
Sources”, AIAA 2016-3034.  

70 Sutliff, D.L., Brown, C.A., Bayon, B., and Sree, D., “Farfield Acoustic Characteristics of the DGEN380 Turbofan Engine as 
Measured in the NASA Glenn AeroAcoustic Propulsion Laboratory”, AIAA 2016-3006. 

71 Figueroa-Ibrahim, K., Ross, M.H., & Morris, S., “Evaluation of Radiated Sound from the Advanced Noise Control Fan facility 
in an Outdoor Environment using Ground Microphones”, AIAA-2019-####. 

72 Sutliff, D.L., “The Advanced Noise Control Fan: A 20 Year Retrospective of Contributions to Aeroacoustics Research”, 
NASA/SP-2019-643. 


