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Abstract. Complex systems have characteristics that challenge traditional systems engineering 

processes and methods.  These characteristics have been defined in various ways.  INCOSE has 

previously identified characteristics of complex systems and potential methods to deal with com-

plexity in system development. The purpose of this paper is to provide definitions and describe 

distinguishing characteristics of complexity using example systems to illustrate approaches to as-

sessing the extent of complexity. The paper applies Appreciative Inquiry to identify and assess 

complex system characteristics. The characteristics are used to examine several different examples 

of systems to illuminate areas of complexity. These examples range from seemingly simple sys-

tems to complicated systems to complex systems.  Different tiers of complexity are identified as a 

result of the assessment. The paper also identified and introduces topics on managing complexity 

and the integrating system perspective that represent new directions for the engineering of complex 

systems. The Appreciative Inquiry approach provides a method for systems engineering practi-

tioners to more readily identify complexity when they encounter it, and to deal more effectively 

with this complexity once it has been identified. 



 

  

Introduction 

INCOSE published a Complexity Primer for Systems Engineers (McEver, 2015) developed by the 

Complex Systems Working Group to help systems engineering professionals understand the nature 

and some implications of complexity.  Responses to this Primer from INCOSE members included 

requests for examples of systems which are complex and non-complex (simple, complicated or 

complex), and the characteristics which can be used to identify complexity, and to deal with it 

more effectively.  A Complex Systems Exemplars Team was established by the Complex Systems 

Working Group to discuss examples of complex and non-complex systems.  This paper is the result 

of the efforts of this team. 

The focus of the team activity to date has been on engineered systems, but natural systems were 

also considered when they offered the best examples of some characteristics. In this paper, we first 

describe and define the distinguishing characteristics which can be used to differentiate between 

complex and non-complex systems; next we discuss how complexity can be managed in light of 

these characteristics.  The following section discusses the challenges of communicating about 

complexity, including the use of Appreciative Inquiry.  Next five examples of systems are pre-

sented and assessed against the distinguishing characteristics to identify whether (or when) they 

are complex. This assessment shows that complexity is not a binary, yes or no attribute, but sys-

tems have many different characteristics which lead to varying degrees of complexity. This section 

finishes with an introduction to the integrating perspective which can improve the likelihood that 

a system is understood accurately.  Finally, the summary highlights the key points a systems engi-

neer (or other stakeholder) should take away from this paper, and offers topics for possible inves-

tigation in the future. 

Assessing Complexity 

Complexity is challenging to communicate and describe to others and is a poorly understood aspect 

of contemporary engineering work. Previous bibliographic research has provided evidence of 

trends and identifiable gaps in existing literature on project complexity over the last 50 years, and 

documented a variety of focus areas constituting a research front - ‘an evolving network of scien-

tific publications cited by researchers’.  (Rezende, et al, 2018)  

Although this paper leaves a more exhaustive survey of the literature to future work, our prelimi-

nary research suggests a serious gap in research on identifying complexity in practice, or organi-

zational solutions to such situations.  Existing literature (Chen and Crilly, 2016) pertains to diverse 

developments and characteristics of complexity in specialized domains but does not consider prac-

tices relevant to more generalized engineering work.  This issue has been articulated in terms of 

an emerging field of complexity engineering and methodological gaps have been raised. Past stud-

ies have considered how organizations learn - through ‘Critical Learning Incidents’ - to resolve 

dynamically complex problems in system dynamics model-based engagements. (Thompson, et al, 

2016) Other studies consider methods based in Activity Theory applied to structuring complex 

problems (White, et al, 2016) These efforts can be seen within a longer tradition of Activity Theory 

and Action Research which we characterize as a larger field of ‘appreciative methods’ stemming 

from the work of Checkland and Holwell. (Checkland and Holwell, 1998) 



 

  

Table 1: Using Appreciative Inquiry to Leverage Insights into Complexity 

Complexity is not easy to address using the common engineering paradigm of problem-solving.  

An alternative is using Appreciative Inquiry Methods and Appreciative Inquiry.  These two inde-

pendently developed methodologies (Stowell, 2013) both offer an alternative to the conventional 

engineering problem-centered approach. Appreciative Inquiry Methods were inspired by Check-

land’s Soft Systems Methodology (Checkland, 1999).   Appreciative Inquiry Methods focus on 

participants/stakeholders, environment, authority, relationships (including the power relationships 

between stakeholders) and learning as a way to understand the complexity in a system and its 

interactions. Appreciative Inquiry (Cooperrider, 2003) is a transformational change methodology 

which leverages understanding from the disciplines of organizational behavior and the sciences of 

sociology and psychology (Stratton-Berkessel, 2018).  Social and organizational systems are com-

plex, and as such Appreciative Inquiry is based on methods used to understand these complex 

systems. Thus, Appreciative Inquiry provides an excellent approach to begin a more in depth study 

of complex systems. Appreciative Inquiry involves the art and practice of asking questions that 

strengthen the capacity to apprehend, anticipate and heighten positive potential.  It seeks to identify 

and build on the knowledge of what has already been proven to work, when this knowledge is 

spread across many diverse stakeholders. (Cooperrider and MacQuaid, 2012). Table 1 illustrates 

the contrast between a problem-solving focus and an Appreciative Inquiry focus. 

Appreciative Inquiry is typically used to deal with group processes that consider the knowledge 

(and areas of ignorance) distributed throughout a community or communities of practice.  Groups 

of individuals working on complex physical systems may themselves be considered complex sys-

tems, yet to date it appears that attention given to the language of complexity focused on physical 

and logical systems may be a factor holding groups back from greater effectiveness in managing 

social risks they face directly and indirectly in their work. A broader understanding of the social 

complexity involved in the development and application of various systems is an important factor 

in system complexity. This understanding helps to discern the variations of complexity for a given 

Problem-Solving Focus Appreciative Inquiry Focus 

Identification of problems Identifying what is known and unknown, risks and opportunities 

Analysis of possible causes Assessing distinguishing characteristics of complexity; identifying areas to 

focus on 

Analysis of possible solutions Identifying strategies which have been useful with comparable complexity in 

other systems/situations 

Implementation Trying promising strategies 

V & V Noticing effects 

Iteration Refining our understanding of which areas of complexity to focus on 

Basic assumption: Complexity  

presents problems to be solved 

Basic assumption: Complexity offers a mystery to be explored 

http://positivitystrategist.com/author/pmadminrsb/


 

  

system and context. The system context (i.e., the social environment) brings in various social as-

pects including government and organizational policy and law, budgetary constraints, schedule, 

organizational culture, environmental impact, etc. (Watson, 2018) 

Distinguishing Characteristics 

In order to assess the complexity of a system, the characteristic which distinguish the system com-

plexity must be identified and understood. The identification is the first step of Appreciative In-

quiry as discussed in Table 1. The understanding must come within the context and nature of com-

plexity. Complex systems must be considered in their full context (i.e., mission context or state-

ment of the problem to which the system provides the solution) including both the developmental 

and operational environments.  This includes both the natural environment and the social environ-

ment in which the complex system is developed and operated. Boundaries and controls are some-

times employed to contain complex responses and can at times mask some characteristics of com-

plexity within the system. The nature of system complexity can be either subjective (based on the 

limits of understanding of an individual or social structure) or objective (based on the characteris-

tics of the system itself or its environmental interactions). 

Complex systems tend to exhibit variety in their characteristics rather than uniform repetition. 

After reviewing the discussion of complexity in sources that reviewed the breadth complexity un-

derstanding at that time (Sheard 2006, McEver 2015), we identified the following 14 distinguish-

ing characteristics of complexity and developed associated definitions for each. The assessment of 

the complex system examples provided in tables in the appendix illustrates the application of these 

characteristics. 

Diversity. Diversity is defined by Webster as: quality, state, fact, or instance of being diverse (dif-

ferent; dissimilar; varied); difference; variety. (Webster, 1982) In a complex system context, di-

versity encompasses the structure of the system, the behavior of the system, and the states of the 

system. The structure of the system includes the types of nodes, number of nodes, types of inter-

faces, and number of interfaces. 

System behavior involves types of responses and types of functional interfaces. Responses include 

stochastic (Bayesian, Frequenist) vs. deterministic.  Minor system differences can lead to large 

behavior changes in a complex system. Types of functional interfaces include information, mate-

rial, and energy flows. States involve structural states (coupled, uncoupled), functional states 

(moving, stationary), and behavior states (dynamic, static). 

Based on these considerations complex system diversity can be defined as: 

Diversity - The structural, behavior, and system state varieties that characterize a system 

and/or its environments.  

Connectivity. Connectivity characterizes the systems connections both internally and externally. 

This connectivity includes the system environment and the interrelationships among the structural 

components of the system.  Dynamic connectivity is more complicated or complex than static 

connectivity. Dynamic connectivity adds consideration of time, motion, transition and other types 

of change to the system, potentially increasing the complexity of the system, rendering a simple 



 

  

system complicated or a complicated system complex. Note, complexity of interactions are more 

characteristic of a complex system than merely the number of interacting elements.  

Based on these considerations complex system connectivity can be defined as: 

Connectivity - The connection of the system between its functions and the environment.  

This connectivity is characterized by the number of nodes, diversity of node types, number 

of links, and diversity in link characteristics.  Complex systems have multiple layers of 

connections within the system structure. Discontinuities (breaks in a pattern of connectivity 

at one or more layers) are often indications of complex system connectivity. Simple and 

some complicated systems may be characterized by simpler structures such as hierarchies. 

Interactivity. Interactivity involves the behavioral reactions of the system both internally and ex-

ternally. Human interaction greatly increases the system interactivity characteristic. The greater 

the potential the system has for multiple human stakeholders the greater the likely system com-

plexity. 

Based on these considerations complex system interactivity can be defined as: 

Interactivity - The behavior stimulus and response between different parts of a system and 

the system with its environment.  Complex systems have many diverse sources of stimulus 

and diverse types of responses. The correlation between stimulus and response can be both 

direct and indirect (perhaps separated by many layers of system connectivity).  The types 

of stimuli and responses vary greatly. The levels of stimuli and responses can range from 

very subtle to very pronounced. The timeframe for system responses can vary hugely. 

Adaptability. Adaptability involves the system coping with changes from both internal and exter-

nal sources. This includes both the complex system’s environment and usage. Complex systems 

are generally expected to accommodate future changes in system environment and usage. Complex 

systems can change their environment. Note that there are differences between a complex system, 

a complex environment (in which simple systems, complicated systems, and complex systems can 

all function), and complex interfaces. 

Based on these considerations complex system adaptability can be defined as: 

Adaptability – Complex systems proactively and/or reactively change function, relation-

ships, and behavior to balance changes in environment and application to achieve system 

goals. 

Multiscale. Multiscale is a characteristics that can be applied to systems in general (i.e., simple, 

complicated, complex). Multiple scales exist in nature from the atomic level to the macroscopic. 

Thus even simple systems, such as an iron bar, can be viewed as consisting of multiple scales. 

Note, there are properties which do not define system complexity but are more general, applying 

to multiple system types: 

Size is not a discriminating characteristic and size can apply to simple, complicated and 

complex systems.  



 

  

Multiple stable states is not a defining characteristic of a complex system. Various system 

types (complicated or complex) can have multiple stable states. A complex system can 

have stable states, transient states, and no stable states.  

Based on these considerations complex system multiscale can be defined as: 

Multiscale - Behavior, Relationships, and Structure exist on many scales, are ambiguously 

coupled across multiple scales, and are not reducible to only one level. 

Multi-perspective. Multi-perspective involves the different perspective from which a complex sys-

tem may be understood.  These can include performance, reliability, use, durability, interactions, 

etc. The different perspectives required to understand a complex system may overlap so that or-

thogonality in perspectives is present but not required to define a complex system perspective. An 

orthogonal view is an independent view from other views.  Different characteristics may be seen 

by different views. Some orthogonal views may be oppositional views, views which appear to 

oppose other views of the system.  Oppositional views are a source of paradoxes sometimes un-

derstood about complex systems. 

Based on these considerations complex system multi-perspective can be defined as: 

Multi-perspective - Multiple perspectives, some of which are orthogonal, are required to 

comprehend the complex system. 

Behavior. Behavior of a complex system is unpredictable when understood from finite resources. 

An understanding may be gained with infinite resources. The limited knowledge available about 

the behavior of a complex system limits the ability to model the system and gain a full understand-

ing of the complex system behaviors. The time and effort to fully model a complex system typi-

cally exceeds the schedule and budgetary resources of the project.  Behavior is nonlinear which 

means extrapolation of current conditions lead to errors in understanding.  

Based on these considerations complex system behavior can be defined as: 

Behavior - Complex system behavior cannot be described fully as a response system. Com-

plex system behavior includes nonlinearities. Optimizing system behavior cannot often be 

done focusing on properties solely within the system. 

Dynamics. Complex systems have dynamic states, constantly changing as internal and external 

conditions change. Complex system states can also be static. They can transition from static to 

dynamic states unexpectedly and suddenly. 

Based on these considerations complex system dynamics can be defined as: 

Dynamics – Complex systems may have equilibrium states or may have no equilibrium 

state. Complex system dynamics have multiple scales or loops.  Complex systems can stay 

within the dynamical system or generate new system states or state transitions due to in-

ternal system changes, external environment changes, or both. Correlation of changes in 

complex systems to events or conditions in the system dynamics may be ambiguous. 



 

  

Representation. Complex system representations are difficult to define or predict. The time to 

construct and the information needed to define these representations is difficult to compile. 

Based on these considerations complex system representation can be defined as: 

Representation – Representations of complex systems can be difficult to properly construct 

with any depth. It is often impossible to predict future configurations, structures, or behav-

iors of a complex system, given finite resources. Causal & influence networks create a 

challenge in developing 'requisite' conceptual models within these time and information 

resource constraints. 

Evolution. Complex systems change in structure, behavior, and states over time.  These changes 

occur in response to both internal and external events.  The exact stimulus for the change can be 

difficult to discern and may be the result of the complex interaction of several events. 

Cognitive recognition has a time lag with respect to the system change. 

Self-Organization is a form of system evolution. 

Based on these considerations complex system evolution can be defined as: 

Evolution – Changes over time in complex system states and structures (physical and be-

havioral) can result from various causes. Complex system states and structures are likely 

to change as a result of interactions within the complex system, with the environment, or 

in application. A complex system can have disequilibrium (i.e., non-steady) states and con-

tinue to function. Complex system states and structures can change in an unplanned man-

ner and can be difficult to discern as they occur. The changes in the states and structure of 

a complex system are a natural function of (is often present in) the complex system dynam-

ics. Changes can occur without centralized control, due to localized responses to external 

and/or internal influences.  

System Emergence. System emergence has two forms: general and complex.  General system 

emergence result in properties from systems in general, that become apparent over time.  Compli-

cated systems may demonstrate some forms of emergence when put in unusual or uncommon en-

vironments or circumstances. While not common, these responses are expected.  

Emergent behavior is not describable as a response system. Describing the behavior of a system 

as a response function may require an unobtainable amount of information. System emergence is 

often described as a novel system response. Novelty is the human subjective response to a change 

in the system rather than a characteristic of the system. Emergence can be Objective or Subjective. 

Emergent properties of a system that exist technically (objective) vs. those that are difficult to 

understand/recognize/identify (subjective). Subjective emergence includes properties where the 

emergent property is manifest well before the property is discerned by observers.  

Based on these considerations general and complex system emergence can be defined as: 

System Emergence (general) - Features/behavior associated with the holistic system that 

are more than aggregations of component properties. 



 

  

Unexpected Emergence (Complex) - Emergent properties of the holistic system unexpected 

(whether predictable or unpredictable) in the system functionality/response. Unpredictable 

given finite resources. Behavior not describable as a response system.  

Disproportionate Effects. Complex system responses or changes to events or impulses can be 

largely disproportionate to the scale of the cause. Small scale modifications can result in radical 

changes of behavior.  Scale can be in terms of magnitude of effect or aggregate amount of change. 

Weak ties can have disproportionate effects. Note, this characteristic exists over multiple system 

types.  Complex systems appear to demonstrate this as a rule, but having this property does not 

necessarily indicate the system is complex.  

Based on these considerations complex system disproportionate effects can be defined as: 

Disproportionate Effects - Details seen at the fine scales can influence largescale behavior. 

Small scale modifications can result in radical changes of behavior.  Scale can be in terms 

of magnitude of effect or aggregate amount of change. Weak ties can have disproportionate 

effects. 

Indeterminate Boundaries. Complex system boundaries are difficult to define or discern. Com-

plex system boundaries may be more of a transition than a distinct change. 

Based on these considerations complex system indeterminate boundaries can be defined as: 

Indeterminate boundaries - Complex system boundaries are intricately woven with their 

environment and other interacting systems. Their boundaries can be non-deterministic. 

The boundary cannot be distinguished based solely on processes inside the system. 

Contextual Influences. System context is the social and physical environments in which a system 

functions or operates. The social context includes budgetary, schedule, governmental and organi-

zational (i.e., corporate) policy, and governmental law. (Watson, 2018) Within the influences of 

these context the system application and operation can be complex.  These influences tend to con-

found the system complexity and can increase the system complexity 

Based on these considerations complex system indeterminate boundaries can be defined as: 

Contextual Influences - All systems reside in natural and social environments and relate to 

these.  In the relationship between the system and the natural and social environments 

there can be complexity.  This complex interaction depends on the social application of the 

system. Social systems often strive to achieve multiple, sometimes incompatible, objectives 

with the application of the same system. 

How to Manage Complexity 

In defining the characteristics of a complex system, some ideas for approaches needed to manage 

complexity also began to emerge.  This corresponds to the analysis of possible solutions as defined 

by  Appreciative Inquiry in Table 1. Managing complexity first requires identifying the complexity 

of a system. The Multi-perspective of a complex system can make the complexity appear in dif-

ferent ways, and may even mask the complexity. There are various ways a system and its context 



 

  

may appear complex: physical, logical, social interaction, social application, environmental inter-

action. 

Below are some initial ideas about how to deal constructively with complexity. An important as-

pect of managing complexity is understanding the integrating perspective of the system.  This 

provides a clarifying view of the system as discussed in the section on Integrating Perspectives 

below.  

Some key points to consider in managing complexity are: 

 Complex systems need balance rather than optimization. The whole is often sub-optimized 

when a part is optimized, or an optimized system can become rigid and cannot cope with 

changing circumstances and needs. 

 Tension is common in complex systems. Tension between large and small, distributed and 

central, agile and planned, calls for perpetual seeking of balance. 

 Complexity can be bounded within a simpler structure. E.g., biological cells are internally 

complex and yet a single cell is a simple structure externally.  

 Architecture is defined in the INCOSE Systems Engineering Handbook as “the fundamen-

tal concept or properties of a system in its environment embodied in its elements, relation-

ships, and in the principles of its design and evolution.” (INCOSE 2010) The characteri-

zation of a system architecture in terms of some coordinated collection of subsidiary design 

elements (e.g., responsible ‘trades' for specific design elements) can be a major step to-

ward organizing and managing complexity.  Implicit in successfully navigating this task is 

mutual appreciation between responsible trades regarding their respective contributions 

and interactions to the evolving system(s). 

 Social-Political Complexity.  All systems reside in natural and social environments and 

inherently relate to these.  In the relationship between the engineered system and the nat-

ural and social environments there can be complex interactions inducing pressures on 

socio-political and governance structures.  This level of interaction often depends on spe-

cific and potential applications (uses) of the given system. Social systems often strive to 

achieve multiple, sometimes incompatible, objectives engendering risks and opportunities 

for the coevolution of systems services and value to society.  Better understanding these 

co-evolutionary processes may prove useful to engineering organizations.  



 

  

Complex System Examples 

We have chosen five example systems to characterize using the distinguishing characteristics de-

scribed above to analyze the possible causes of complexity as defined by Appreciative Inquiry in 

Table 1.  These five systems, with a short summary description of each, are: 

 Army Pot Helmet: The Army Steel Pot Helmet (Fig-

ure 1) is a simple steel helmet that included a shell, 

liner, strap, and cover. In application, the helmet had 

many more uses that were valuable to the soldier than 

just protecting from bullets and explosive fragments.  

Functions included head protection, identification, 

seating, fluid and solid containment, and heating 

(when used to prepare meals). The helmet could be 

used as a seat, a shovel, a wash and shave basin, a pot 

for cooking, and anything else the innovative soldier 

could image. (New York Times 1982, Webster, 2017)  

 Launch Vehicle:  Launch vehicles are very large physical systems whose development re-

quires very large and geographically 

distributed efforts (operations teams, 

manufacturing, engineering organiza-

tions). Launch Vehicles are a compli-

cated assemblies of physical parts in a 

static state as illustrated in Figure 2.  In 

operation, they are a complex interac-

tion of thermodynamic fluids, soft-

ware, and electrical systems.  Launch 

vehicles are not complex adaptive sys-

tems in the current state of the art.  The 

addition of artificial intelligence re-

sponses to in-flight conditions would 

transform them into complex adaptive 

systems.  

 Bullet Train (Shinkansen). This is a nationwide 

transportation system in Japan and international cat-

alyst interacting at many levels of hierarchy with 

multiple business, technical, social, cultural, politi-

cal groups and organizations. (Straszak, 1981; 

Okada, 1994; Endo, 2003; Okamura, 2005; Tomii, 

2010; Smith, R. A., 2014; Yokoshima, 2017; Asano, 

2017)  It has a robust and resilient architecture for 

reliable inter-city passenger transport. (Endo, 2003; 

Shimamura and Yamamura, 2006; Uda, 2010; Kato 

and Shinohara, 2013; Smith, R. A., 2014) It is heavily 

Figure 1: Army Steel Pot Helmet 

Figure 2: NASA Space Launch System Launch 

Vehicle 

Figure 3 Shinkasen Train Engine 

Configurations 



 

  

dependent upon minute to minute managerial competence due to its one-track paradigm.  

(Shimuzu, 2002; Kawasaki, 2011; Mochizuki, 2011; Tomii, 2010) The individual cars of 

the Shinkansen are complicated systems, yet the whole aggregated train is complex. Figure 

3 shows various engine configurations used for the train. The Shinkansen system illustrates 

how aggregation of subsystems and confounding factors can both elevate the complexity 

of the system. 

 Radar: A system which bounces radio waves off of targets to determine various character-

istics of the target, usually including position, size and velocity.  Analysis of radar echoes 

can use many techniques, including fractal analysis, which classifies shapes seen by the 

complexity of their geometrical form (Azzaz, 2017 and Cherouat, 2008) as shown in Figure 

4.  Practitioners of radar design, and developers of tools to support simulation and modeling 

of radar components and environments perceive radar design to be complex.  For example, 

the MathWorks website says: “Radar system design, simulation, and analysis is complex 

because the design space spans the digital, analog, and RF domains. These domains extend 

across the complete signal chain, from the antenna array, to radar signal processing algo-

rithms, to data processing and control. The resulting system level complexity drives the 

need for modeling and simulation at all stages of the development cycle.” (Mathworks, 

2018)   

 

Figure 4: Radar Images. (a) Top Left, Fractal Radar Image (b) Top Right, Air Traffic Con-

trol Radar (c) Bottom Left, Air Defense Radar (d) Hurricane Katrina Radar Image 

The environment that radar has to contend with also can be complex, since rain, fog, plant 

matter and electromagnetic energy generated by other radars can interfere with a given 

radar’s ability to detect signals; also noise comes from sources ranging from the radar’s 

own transmitter, to energy from the earth’s atmosphere and the earth itself, to galactic noise 

from the cosmos.  There are many choices, with associated trade-offs, in radar design.  Ex-

amples of choices include: (1) power level (higher power can yield higher signal-to-noise 



 

  

ratios, and thus better performance, but also create more interference for other systems, 

and be more detectable (for systems in which the user does not want an enemy to know 

they are using radar); (2) wavelength (a higher frequency – shorter wavelength -- yields 

better tracking performance, but a lower frequency means less power needs to be used, and 

the receiver can be smaller); and (3) receiving aperture size (a bigger aperture means better 

performance for a surveillance radar).  

Radar is starting to use adaptive approaches, such as a “cognitive radar system” based on 

the fully adaptive radar framework for cognition (Smith, et al, 2016)  For example, pulse 

repetition frequency and number of pulses can be adjusted dynamically to maintain radar 

tracking performance (Butterfield, et al, 2016).  The key concept is that radar system per-

formance can be enhanced through a continuous and coordinated feedback between the 

transmitter and receiver that implies a dynamic adaptation of the sensor’s algorithms to the 

operational context and environmental replies.   

 Artificial Intelligence Image Collection Manager – A collection manager is a software 

system that assists experienced human operators in effective use of image collection assets 

through the generation of collection plans and tasking commands for a constellation of 

imaging devices that usually include satellites and may include airborne assets. Some con-

stellations may include a range of earth based assets as well. The collection planning capa-

bility includes complexity in a number of dimensions including environment, social con-

text and the interplay among elements of an evolving System of Systems.  

Recently, scientists and engineers have begun to apply Artificial Intelligence and Machine 

Learning (AI/ML) to realize complex adaptive software systems that identify the best op-

portunities to collect requested imagery for unique mission needs within the confines of 

policy and law, environmental conditions and the capabilities of the vehicles and instru-

ments available. Berger (Berger, 2016) describes the problem addressed by this system as 

“the process of converting intelligence-related information requirements into collection re-

quirements, establishing priorities, tasking or coordination with appropriate collection 

sources or agencies, monitoring results, and re-tasking, as required”.  

In most current deployed systems, this process is managed by a human, augmented by rules 

based automation. In the case of an AI/ML version of this capability, the system learns 

based on collection success over time and develops additional rules and algorithms to de-

velop more effective collection schedules. More traditional implementations of collection 

management systems may be considered complicated or complex systems while AI driven 

implementations are complex adaptive systems. 

Integrating perspective. The integrating perspective of any system allows the system to be more 

clearly understood. If the integrating relationship is known, then the system can be understood, 

and may even appear to be less complex from this perspective. The integrating perspective of a 

complex system is not intuitively obvious to the casual observer.  

Intentionally engineered complex systems are constructed in such a way as to provide a direct view 

of the integrating nature of the system sometime presenting a more informative view of the system. 

This perspective enhances our understanding of the system and how to deal with this complexity. 



 

  

The integrating perspective enables the construction of models to aid in the understanding of the 

system and its complexity. Integrating perspectives reduce resource demand to be able to predict 

system behavior.  Malleability is a property that allows the complex system to be deconstructed 

and/or reconstituted around the integrating perspective. Complex systems are malleable around 

their integration perspectives. Complex system variables can be opaque. These complex system 

variables are difficult to identify and predict apart from the system integrating perspective. 

Confounding Factors. The tables in the appendix compare the different examples on each of the 

distinguishing characteristics of complexity described above.  In doing this comparison, we use 

Appreciative Inquiry to examine both the complexity of the system itself, and, when applicable, 

complexity caused by what we call “confounding factors”.  Even with a very simple system, there 

can be complexity in the environment, in the interactions between stakeholders, and/or other fac-

tors.  These confounding factors can introduce complexity even when the system under consider-

ation is not, in and of itself, complex.  We have rated each example system characteristic on a scale 

of 1 to 10, where 1 = simple, 5 is complicated, and 10 is highly complex.  When a confounding 

factor is present, we have also rated the level of complexity it introduces.  The purpose of these 

ratings is to highlight the distinguishing characteristics of each system which are most complex.  

In dealing with complexity, it is helpful to identify the specific characteristics, and/or confounding 

factors, which are the major sources of complexity.  Once these are understood, discussions with 

stakeholders and specific techniques and tools to deal with the complexity can be chosen to better 

address the complexity and the challenges it introduces into a system development, operation or 

modification effort. 

As an example, the pot helmet as a structural system is simple, with very few components (i.e., 

attachments) and only static properties. Yet in application the pot helmet had many uses: as a stove, 

a personal hygiene basin, a shovel, a bucket, seat, and many other uses that the innovative soldier 

could define. The social complexity supported by these applications was tremendous.  Without the 

steel helmet, the soldiers would need to carry a stove, a basin, a shovel, a seat or do without these 

in the field.  The psychological comfort afforded by these applications can substantially boost the 

morale of the organization (i.e., Army) and affect numerous social level results affecting troop 

morale, perseverance and longevity in the field, mission effectiveness, and so on. Thus, while a 

simple structure, the pot helmet had a very complex effect on the army at large.  

 

Complexity Assessment. The assessment of these various systems produced some unexpected 

results.  The initial expectation was the pot helmet was simple, only the Artificial Intelligence 

Scheduler was complex, and the other systems were complicated.  The results of the assessment, 

however, showed the Launch Vehicle and Bullet Train are complex systems in dynamic opera-

tion and social interaction. These systems, much as the radar system, can be viewed as compli-

cated when only considering the assembly (aggregation) of components yet are very much com-

plex in their dynamic operation. This is an aspect of the multi-perspective characteristic and 

shows complexity can sometimes be hidden from the normally perceived view of the system.  

 

Complex systems are not complex in all of their characteristics. The assessment in the tables in 

the appendix show that even complicated systems (i.e., radar systems) can have complex charac-

teristics and that not all characteristics of a complex system may be complex. Thus complexity is 

not a simple yes or no attribute.  Complexity is based on multiple characteristics not all of which 



 

  

are likely to be complex for most systems. Even a Complex Adaptive system only shows com-

plexity in some of the characteristics (i.e., Artificial Intelligence Scheduler) of the system indi-

cating the other characteristics have more of an effect on a systems complexity than the adapta-

bility functions.  

 

Confounding factors are significant aspects in the complexity of a system.  These factors can ele-

vate a system from complicated to complex in the systems application.  This elevation can be 

seen for the pot helmet where the application of a simple structural system is complicated and 

can lead to very complex results in the organizational system that utilizes it.  In addition, there 

are many other subdivisions of complexity that can emerge including managed/constrained com-

plexity (where the complexity is hidden by physical control boundaries and hence “managed or 

constrained” to not be apparent), expected and unexpected emergence, aggregation, and physical 

environment interaction.  

The assessment of these systems indicates that there are tiers of system complexity. Systems can 

be a complicated assembly in a static sense, and a complex interaction of parts and physical phe-

nomena in a dynamic sense.  A distinction can also be made between complex systems and com-

plex adaptive systems as discussed above.  Complex adaptive systems encompass capabilities to 

respond to their contexts in unexpected manners.  Artificial Intelligence can transform a compli-

cated or complex system into a complex adaptive system by imbuing the system with adaptive 

responses to their social and physical environments. Thus, a tier of complexity can be envisioned 

for a system as shown in Table 2. 

Table 2: System Complexity Tiers 

System Complexity Tier Characterized by 

Complicated Assembly of static parts 

Complex Interactions of dynamic operations 

Complex Adaptive Application of Artificial Intelligence determin-

ing system responses 

 

The potentially infinite diversity of complex system examples precludes a 'one-size-fits-all' men-

tality when it comes to responsible and responsive Systems Engineering approaches to working 

with complexity.  Much has been written on the nature of complexity in engineered systems 

though there is little consensus on what precisely generates complexity let alone what to do 

about it - and that can be seen as the general nature of it.  Often, the path to a viable engineered 

response and a successful design lies in a diverse organization; a 'society of mind' as Marvin 

Minsky (Minsky, 1986) put it.  Interestingly, this suggests that complexity exists in the response 

to complexity and that solutions can emerge unexpectedly. This can be seen in the complex or-

ganizations necessary to build complex systems today. (Watson, 2018)  Consider that this is the 

nature of novel invention (as distinct from rational, parameterized design), and that once rational 

solutions are identified, a system may no longer be considered 'complex' in and of itself. 

 

While outside the scope of this paper, we would be remiss to suggest that complexity and engi-

neering are completely antithetical concepts.  On the contrary, it is important to recognize that 

complexity can (and demonstrably does) spawn novel engineering communities that coevolve 

with their work products and also that it is essential that engineering organizations avoid fixating 



 

  

on singular methods or approaches to complex design problems by failing to appreciate the mul-

tiplicity of considerations that may be salient to problems at hand.  Complexity can offer exercise 

to the imagination, to say the least.  Future efforts toward discovering useful guidance may bene-

fit from considering the 'appreciative tendencies’ of organizations responsible for and responsive 

to successful complex system design and implementation. 

Summary 

This paper has described characteristics which can be used to identify complexity in a system, and 

the additional confounding factors (i.e., social and physical environmental interactions) which can 

elevate complexity of complicated systems. Systems can have various tiers of complexity ranging 

from static to dynamic to adaptive complexity. The evaluations of system complexity show that 

complexity is not a simple yes or no assessment, but there are several different characteristics of a 

system which may be complex. Not all of these distinguishing characteristics of the system need 

to be complex in order for the system to be complex.  

This paper offers an attempt to develop a more explicit recognition of and familiarity with im-

portant dimensions of complexity that SE's may encounter and to provide a practical scaffolding 

for dialog on engineering innovation.  It is essential to notice that engineered systems and engi-

neering organizations (including directly/indirectly interested and disinterested agents) constitute 

complete systems operating 'far from equilibrium' and that complexity, managed appreciatively, 

need not be an insurmountable barrier to the effective realization of engineering value. 

“Complexity engineering has still not been established as a proper engineering domain. Research 

remains scattered and focused on specific examples, which is the reason why most methodologies 

are not generally applicable. We would like to encourage other researchers to make efforts in com-

plexity engineering, and to coordinate their research with peers. A general framework for com-

plexity engineering should be created, linking existing and new methods with each other, giving 

receipts for how to approach which type of problem. Complexity engineering requires particular 

attention concerning the following issues: theory, universal principles, implementation substrates, 

designing, programming and controlling methodologies as well as collecting and sharing of expe-

rience.”  (Frei and Di Marzo, 2011) 

 

This paper indicates several topics of future research.  The concept of Complexity Tiers observed 

in the assessment of the examples is a fruitful concept that may help explain the sometimes di-

vergent opinions on what is or is not complex.  In addition, there are subcategories of complexity 

indicated in the assessment of the systems in the paper which should be further defined, includ-

ing ideas such as managed complexity, constrained complexity, expected or unexpected emer-

gence, social application complexity, operational complexity, etc. Some of these topics may be 

related and research is needed to define these subcategories more clearly and what constitutes a 

complicated or complex system when there is a large mix of complicated and complex system 

characteristics. Also, research into the benefits which have been obtained from different systems 

engineering techniques when faced with complexity of a system or its confounding factors on 

each individual characteristic may yield useful guidance for dealing with complexity. 



 

  

References 

Azzaz, N., and Haddad, B., “Classification of radar echoes using fractal geometry” in Chaos, 

Solitons & Fractals, Volume 98, May 2017, Pages 130-144, accessed 11/11/2018 at 

https://www.sciencedirect.com/science/article/pii/S096007791730070X . 

Asano, Koji. "JR East High-speed Rolling Stock Development", JR EAST Technical Review-

No.36., 2017, accessed 4/16/2018 at https://www.jreast.co.jp/e/develop-

ment/tech/pdf_36/tec-36-01-06eng.pdf  

Berger, J.,  “Mult-Satellite Intelligence Collection Scheduling”, DRCD Valcartier Research 

Centre, Dec 2016,  Indentified # DRDC-RDDC-2016-R181, accessed 11/11/2018, 

cradpdf.drdc-rddc.gc.ca/PDFS/unc260/p805043_A1b.pdf. 

Bushe, G.R. (2011) Appreciative Inquiry: Theory and Critique.  In  Boje, D.,  Burnes, B. and 

Hassard, J. (eds.)The Routledge Companion To Organizational Change (pp. 87  103). 

Oxford, UK: Routledge.  

Butterfield, Aaron S., Mitchell, Adam E., Smith, Graeme E., Bell, Kristine L., and Rangaswamy, 

Muralidhar “Metrics for Quantifying Cognitive Radar Performance” 2016 CIE 

International Conference on Radar, https://ieeexplore.ieee.org/document/8059298 

Cherouat, S. and Soltani, F. “Radar Signal Detection Using Fractal  Analysis in K-Distributed 

Clutter” accessed Nov 11 2018 at 

https://www.researchgate.net/publication/251870078_Radar_signal_detection_using_frac

tal_analysis_in_K-distributed_clutter . 

Checkland P.B., “Systems Thinking, Systems Practice”. Wiley: 1999 

Checkland, P., and Holwell, S., “Action research: Its nature and validity”, Systemic Practice and 

Action Research 11: 9–21. 1998 

Chen, CC. & Crilly, N., Res Eng Design (2016) 27: 291. https://doi.org/10.1007/s00163-016-

0219-2  accessed 11/12/18 at https://link.springer.com/article/10.1007/s00163-016-0219-

2 

Cooperrider D, Whitney D, Stravos J. 2003. “Appreciative Inquiry Handbook”, 2nd Edition  Co-

published Lakeside communications Inc, Bedford Heights OH and Barrett-Koehler, Pub-

lishing Inc.:San Francisco CA, USA. 

Cooperrider, D. L., McQuaid, M., “The Positive Arc of Systemic Strengths: How Appreciative 

Inquiry and Sustainable Designing Can Bring Out the Best in Human Systems”, JCC 46, 

Summer 2012, https://appreciativeinquiry.champlain.edu/wp-content/up-

loads/2017/10/Cooperrider-and-McQuaid-JCC46.pdf accessed Oct 2018. 

Endo, Takashi. "Aiming at Higher Speeds for Shinkansen", Japan Railway & Transport Review 

No. 36, 32-36, Oct 2003, accessed 4/16/2018 at 

http://www.ejrcf.or.jp/jrtr/jrtr36/pdf/f32_end.pdf 

https://www.sciencedirect.com/science/article/pii/S096007791730070X
https://www.jreast.co.jp/e/development/tech/pdf_36/tec-36-01-06eng.pdf
https://www.jreast.co.jp/e/development/tech/pdf_36/tec-36-01-06eng.pdf
https://ieeexplore.ieee.org/document/8059298
https://www.researchgate.net/publication/251870078_Radar_signal_detection_using_fractal_analysis_in_K-distributed_clutter
https://www.researchgate.net/publication/251870078_Radar_signal_detection_using_fractal_analysis_in_K-distributed_clutter
https://doi.org/10.1007/s00163-016-0219-2
https://doi.org/10.1007/s00163-016-0219-2
https://link.springer.com/article/10.1007/s00163-016-0219-2
https://link.springer.com/article/10.1007/s00163-016-0219-2
https://appreciativeinquiry.champlain.edu/wp-content/uploads/2017/10/Cooperrider-and-McQuaid-JCC46.pdf%20accessed%20Oct%202018
https://appreciativeinquiry.champlain.edu/wp-content/uploads/2017/10/Cooperrider-and-McQuaid-JCC46.pdf%20accessed%20Oct%202018


 

  

Frei, R. and Di Marzo Serugendo, G., ‘Advances in complexity engineering’, Int. J. Bio-Inspired 

Computation, 2011 (pre-released version). 

Haskins, C (ed.) 2007, Systems Engineering Handbook: A Guide for System Life Cycle Processes 

and Activities, Version 3.1., INCOSE, San Diego, CA (US). 

INCOSE, 2010, “Systems Engineering Handbook: A Guide for System Life Cycle Processes and 

Activities”, Version 3.2., INCOSE, San Diego, CA (US). 

Janic, Milan, “A Multidimensional Examination of Performances of HSR (High-Speed Rail) Sys-

tems”, J. Mod. Transport. (2016), 24(1):1–21. 

Kato, I., and Shinohara, Y., "Wayside Environmental Measures for Shinkansen Speed In-

creases", JR EAST Technical Review-No.26. 2013, accessed 4/16/2018 at 

https://www.jreast.co.jp/e/development/tech/pdf_26/Tec-26-55-58eng.pdf 

Kawasaki, Hiroshi. "Advancement and Issues of Transport Management and Signal/Train Con-

trol Systems", JR EAST Technical Review-No.20., 2011, accessed 4/16/2018 at 

http://www.jreast.co.jp/e/development/tech/pdf_20/Tec-20-07-11eng.pdf 

Mankins, JC 1995, ‘Technology Readiness Levels’, White paper, NASA Office of Space Access 

and Technology, viewed 16 Oct 2010, http:/www.hq.nasa.gov/office/codeq/trl/trl.pdf. 

Mathworks website, see https://www.mathworks.com/discovery/radar-system-design.html, ac-

cessed October 2010. 

McEver, J, Sheard, SA, Cook, S, Honour, E, Hybertson, D, Krupa, J, McKinney, D, Ondrus, P, 

Ryan, A, Scheurer, R, Singer, J, Sparber. J, and White, B 2015, A Complexity Primer for 

Systems Engineers, INCOSE, San Diego, CA (US) found at 

https://www.incose.org/docs/default-source/ProductsPublications/a-complexity-primer-

for-systems-engineers.pdf 

Minsky, Marvin (1986). The Society of Mind. New York: Simon & Schuster. 

Mochizuki, Asahi. "Part 2: Speeding-up Conventional Lines and Shinkansen", Japan Railway & 

Transport Review No. 58, 51-60, Oct 2011, accessed 4/16/2018 at 

http://www.ejrcf.or.jp/jrtr/jrtr58/pdf/51-60web.pdf. 

New York Times, 1982, “Army Replacing Steel Helmet”, Associated Press, December 1, 1982. 

Rezende, L. B., Blackwell, P., Goncalves, M. D. P., “Research Focuses, Trends, and Major Find-

ings on Project Complexity: A Bibliometric Network Analysis of 50 Years of Project 

Complexity Research”, Project Management Journal, Vol. 49, No. 1, 42–56,  2018, ac-

cessed 11/11/18 at https://www.pmi.org/-/media/pmi/documents/public/pdf/learn-

ing/pmj/early-edition/feb-mar-2018/j20180242.pdf . 

Sheard, SA 2006, ‘Definition of the Sciences of Complex Systems’, INSIGHT 9 (1), 25. 

http://www.hq.nasa.gov/office/codeq/trl/trl.pdf
https://www.mathworks.com/discovery/radar-system-design.html
https://www.incose.org/docs/default-source/ProductsPublications/a-complexity-primer-for-systems-engineers.pdf
https://www.incose.org/docs/default-source/ProductsPublications/a-complexity-primer-for-systems-engineers.pdf
https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/pmj/early-edition/feb-mar-2018/j20180242.pdf
https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/pmj/early-edition/feb-mar-2018/j20180242.pdf


 

  

Shimamura, M., and Yamamura, K., "Development of Shinkansen Earthquake Impact Assess-

ment System", JR EAST Technical Review-No.7., 2006, accessed 4/16/2018 at 

http://www.jreast.co.jp/E/development/tech/pdf_7/Tec-07-56-64eng.pdf. 

  Shimuzu, H., et al. "The proposal system for Shinkansen using Constraint Programming", JR 

East Japan Information Systems Company, Tokyo, Japan; East Japan Railway Company, 

Tokyo, Japan; NS Solutions Corporation, Tokyo, Japan., 2002, accessed 4/16/2018 at 

https://uic.org/cdrom/2008/11_wcrr2008/pdf/O.1.3.2.3.pdf. 

  Smith, R. A., "The Shinkansen—World Leading High-Speed Railway System", Japan Railway 

& Transport Review No. 64, 6-17, Oct 2014, accessed 4/16/2018 at 

http://www.jrtr.net/jrtr64/pdf/6-17_web.pdf. 

Smith, Graeme E., Cammenga, Zach, Mitchell, Adam, Bell, Kristine L., Johnson, Joel, 

Rangaswamy, Muralidhar, and Baker, Christopher “Experiments with Cognitive Radar” 

IEEE Aerospace and Electronic Systems Magazine Volume: 31 Issue: 12, Dec 2016, 

https://ieeexplore.ieee.org/abstract/document/7838314.  

Stowell, Frank “The Appreciative Inquiry Method—A Suitable Candidate for Action Research?” 

in Systems Research and Behavioral Science, Syst. Res. 30,15–30 (2013) accessed 

11/11/2018 at https://onlinelibrary.wiley.com/doi/pdf/10.1002/sres.2117. 

  Straszak, A., "The Shinkansen Program", International Institute for Applied Systems Analysis, 

Laxenburg, Austria, 1981, accessed 4/16/2018 at 

http://pure.iiasa.ac.at/id/eprint/1761/1/CP-81-702.pdf. 

Stratton-Berkessel, R.,” Appreciative Inquiry – Overview of Method, Principles and 

Applications”, http://positivitystrategist.com/appreciative-inquiry-overview/ accessed Oct 

2018. 

Thompson, J. P., Howick, S., Belton, V., “Critical Learning Incidents in system dynamics mod-

elling engagements”, European Journal of Operational Research. Volume 249, Issue 3, 16 

March 2016, Pages 945-958, accessed at https://www.sciencedirect.com/science/arti-

cle/abs/pii/S0377221715008905. 

Tomii, N. "How the punctuality of the Shinkansen has been achieved", WIT Transactions on The 

Built Environment, Vol 114, 2010 WIT Press, accessed 4/16/2018 at https://www.wit-

press.com/Secure/elibrary/papers/CR10/CR10011FU1.pdf. 

Uda, T., et al., "Basic Research by Numerical Simulation on Mechanism of Aerodynamic-Noise 

Generation", JR EAST Technical Review-No.23., 2010, accessed 4/16/2018 at 

https://www.jreast.co.jp/e/development/tech/pdf_23/Tec-23-43-46eng.pdf) 

US Department of Defense 2003, Department of Defense Directive 5000.1. The Defense 

Acquisition System, Office of the Under Secretary of Defense for Acquisition, 

Technology, and Logistics. Washington, DC (US). 

Watson, Michael D., “Engineering Elegant Systems: Postulates, Principles, and Hypothesis of 

Systems Engineering, A Whitepaper”, INCOSE IW 2018. 

https://ieeexplore.ieee.org/abstract/document/7838314
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sres.2117
http://positivitystrategist.com/appreciative-inquiry-overview/
https://www.sciencedirect.com/science/article/abs/pii/S0377221715008905
https://www.sciencedirect.com/science/article/abs/pii/S0377221715008905


 

  

“Webster’s New World Dictionary of the American Language”, Guralink, D. B., ed., Simon and 

Schuster, 1982. 

Webster, Donovan, “How the Military Helmet Evolved From a Hazard to a Bullet Shield”, 

Smithsonian.com, https://www.smithsonianmag.com/smithsonian-institution/how-

military-helmet-evolved-hazard-bullet-shield-180963319/ accessed 5 Nov 2018.  

 

White, L., Burger, K., Yearworth, M., “Understanding behaviour in problem structuring methods 

interventions with activity theory”, European Journal of Operational Research Volume 

249, Issue 3, 16 March 2016, Pages 983-1004 accessed at 

https://www.sciencedirect.com/science/article/abs/pii/S0377221715006785. 

 

Yokoshima, S., et al., "Combined Effects of High-Speed Railway Noise and Ground Vibrations 

on Annoyance", Int. J. Environ. Res. Public Health 2017, 14, 845, accessed 4/16/2018 at 

www.mdpi.com/1660-4601/14/8/845/pdf. 

 

  

https://www.smithsonianmag.com/smithsonian-institution/how-military-helmet-evolved-hazard-bullet-shield-180963319/
https://www.smithsonianmag.com/smithsonian-institution/how-military-helmet-evolved-hazard-bullet-shield-180963319/
https://www.sciencedirect.com/science/article/abs/pii/S0377221715006785


 

  

Appendix 

Assessment of the Complexity of Example Systems 

In the tables below, each example system characteristic is rated on a scale of 1 to 10, where 1 = 

simple, 5 is complicated, and 10 is highly complex.  When a confounding factor is present, it is 

described briefly, and the same scale is used to rate the level of complexity it introduces.   

Table A-1: Simple and Confounding Complexity Examples 

Example   
System => 

  
Characteristic: 

Army Pot 
Helmet 

Bullet Train Radar 

Bottom line: 
Simple, Compli-
cated or Com-
plex? 

Simple Complex Complicated (with dynamic 
artificial intelligence algo-
rithms, may be complex 
adaptive) 

Diversity 3 Minimal  8 Stable goals for system wide per-

formance are difficult to attain and 

maintain due to constant pressures 

for increased speed, ridership, so-

cial embrace, and profitability. 

Over years of operation the system 

accumulates an increasing variety 

of rolling stock, component inven-

tory, operating procedures, and lev-

els of regional capacity. 

7 Moderate (many different 
engineering disciplines 
needed, leading to high sub-
jective complexity) 

Connectivity 2 Minimal 
(head in-
terface) 

8 Ultimately, system connectivity is 

defined by inter-nodal relationships 

(e.g., riders moving from one place 

to another). These relationships are 

mediated by rider trust and the 

‘weighting’ afforded by trusting 

populations. These populations are 

further coupled with events e.g. 

business schedules, seasonal activi-

ties, weather, economic cycles, etc. 

6 Moderate (may connect to 
other systems) 



 

  

Example   
System => 

  
Characteristic: 

Army Pot 
Helmet 

Bullet Train Radar 

Interactivity 2 Minimal 
(adapt, 
don/doff, 
secure /re-
lease)     6 
Con-
founding 
factor: 
Uses for 
other pur-
poses 
(such as 
cooking) 

9 Numerous interactions between 

the system and its environment: var-

ious experiential dimensions (e.g., 

cost, punctuality, comfort, quiet) 

and social embrace/ridership/profit-

ability; various technical dimen-

sions (e.g., aerodynamics and vibra-

tion, earthquakes and safety, 

weather and punctuality, rolling 

stock and performance, etc.) 

6 Moderate (often interacts 
with other systems) 

Adaptability 2 Minimal 
(size, shell 
on/off, 
cover 
on/off) 

8 In order to achieve overriding 

goals for system punctuality, the 

technical system must be extremely 

adaptable in responding to variabil-

ity in weather conditions across ge-

ographical regions as well as multi-

level (across temporal and spatial 

scales) scheduling logistics, antici-

pated ridership, etc. 

6 Moderate 

Multiscale 1 No 9 The technical system is a compo-

site of elements that can be de-

scribed at various scales: materials, 

components, unit assemblies (cars, 

engines, couplings, stations, tracks, 

region/prefecture, whole system, 

etc.). In addition the operating or-

ganization can be described at vari-

ous levels of hierarchy (e.g., depart-

ments, lines, company, etc.) 

8 Yes: particulate level af-
fects performance, while 
higher-level choices such as 
waveforms and frequency 
have different dynamics; 
coverage is at a large scale. 



 

  

Example   
System => 

  
Characteristic: 

Army Pot 
Helmet 

Bullet Train Radar 

Multi-perspec-
tive 

1 No 9 Technical system states and 

events are routinely represented, 

referenced, and interpreted from 

multiple perspectives by different 

facets of the operating organization 

(mechanics, schedulers, service per-

sonnel, management, etc.), stake-

holders (riders, residents, business, 

towns, cities, prefectures, regula-

tors, journalists, countries, etc.), and 

others (disinterested humans and 

non-humans). Such perspectives 

routinely and generatively feed 

back into system states and events. 

5 No (though may be used 
in a system -of-systems 
which is multi-perspective) 

Behavior (not 
describable as a 
response sys-
tem) 

1 No 9 At lower levels of assembly hier-

archies (bogies, pantographs), be-

haviors can be well characterized. 

But given the diversity and unpre-

dictability of the system at higher 

levels of aggregation, system con-

trol becomes increasingly subject to 

human intervention and certain in-

puts (e.g., energy flows, line loads) 

or outputs (e.g., trackside noise, 

sparking) may exhibit challenging 

or problematic behavior; such side 

effects can effectively limit im-

portant dimensions of system per-

formance (profitability, market 

share) prompting system evolution 

(research and development).  

3 No                                   
10 If artificial-intelligence 
algorithms are used to dy-
namically alter characteris-
tic of waveforms sent and 
receiving processing 



 

  

Example   
System => 

  
Characteristic: 

Army Pot 
Helmet 

Bullet Train Radar 

Dynamics com-
plex  

1 No 5 While selected dynamics of the 

technical system may be reproduci-

ble in test facilities, in the field such 

simple results may not be conclu-

sive. Consider, for example human 

response to noise, vibration, pitch, 

and yaw under variable track condi-

tions.  To the extent that changing 

conditions can be anticipated, adap-

tive responses can be designed and 

deployed. 

4 Moderately 

Representation 
difficult 

1 No 8 Considering the variety of opera-

tional states achieved and/or main-

tained far from equilibrium by the 

technical system relative to e.g., 

specific environment, component 

operating and life-cycles, physical, 

technical, or economic conditions, a 

discrete enumeration of system 

states could prove un-representable.  

However, managerial and technical 

systems exhibit numerous represen-

tational features contributing to ro-

bustness and resilience of long term 

development: e.g. active tracking of 

commitments to physical infrastruc-

ture, research and development ca-

pability and performance measures 

considering large-scale/long-term 

effects, such as long term profitabil-

ity and growth, technical perfor-

mance competitive with air travel. 

8 Representation compli-
cated; interference and 
noise make response de-
scription less accurate 



 

  

Example   
System => 

  
Characteristic: 

Army Pot 
Helmet 

Bullet Train Radar 

Evolution 1 No 5 Day to day and year to year oper-

ational system evolves with experi-

ence and technology, through 

techno-social and organizational 

learning processes.  Day to day and 

year to year operational system con-

tinuously generates novelty - alt-

hough it is usually hidden or ig-

nored/tolerated to a degree (e.g., 

within bounds of system-wide 

punctuality). Also see the entry on 

Representation. 

3 No           10 (except when 
dynamic AI-based algo-
rithms are used) 

System Emer-
gence not pre-
dictable behav-
ior  

1 No 8 Stable goals for system wide per-

formance are difficult to attain and 

maintain due to constant pressures 

for increased speed, ridership, so-

cial embrace, and profitability. Over 

years of operation the system accu-

mulates an increasing variety of 

rolling stock, component inventory, 

operating procedures, and levels of 

regional capacity. 

5 No                                    
10 (unless dynamic AI-
based algorithms are used) 

Disproportionate 
Effects 

1 No 10 Local events or state changes at 

distant station pairs can produce 

system-wide effects. Also see above 

re small scale modifications.  Due 

particularly to one-track logistics, 

small changes on the scale of 

minutes can produce extensive 

change in system configurations 

and system wide effects taking 

place over days and longer. Also see 

the entry on Unexpected Emergence 

4 No 
Confounding factors: 9 
Environmental changes, es-
pecially ones which are 
very rapid, can cause unan-
ticipated performance prob-
lems 



 

  

Example   
System => 

  
Characteristic: 

Army Pot 
Helmet 

Bullet Train Radar 

Indeterminate 
Boundaries 1 Distinct 

Boundaries 

10 Physical track corridors are de-

terminate however the boundaries 

of interactions between the tech-

nical system and surrounding envi-

ronment are fuzzy. Noise enve-

lopes, ridership catchment, and line 

capacity are soft and always evolv-

ing. for example.  Also, maximum 

speeds are opaque in the absence of 

extensive testing, standard develop-

ment, and public feedback. This 

only partially accounts for other 

variables such as management and 

energy costs associated with sched-

ule maintenance which are effec-

tively unknown until they happen. 

3 The boundaries between a 
radar system and the con-
text in which it is operating 
are typically very clear. 

Contextual In-
fluences 5 In Appli-

cation 

10 Nationwide system (Japan) and 

international catalyst interacting at 

many levels of hierarchy with mul-

tiple business, technical, social, 

cultural, political groups and or-

ganizations.  Managerial system 

exhibits numerous strategic fea-

tures contributing to robustness and 

resilience of socio-political interac-

tions: e.g. participation in regional, 

national, and international transpor-

tation standards and policy devel-

opment. 

 

 

 



 

  

Table A-2: Complex and Complex Adaptive System Examples 

Example   
System => 

  
Characteristic: 

Launch  
Vehicle / Rocket 

Artificial 
Intelligence Scheduler 

Bottom line: 
Simple, Com-
plicated or 
Complex? 

Complex Complex Adaptive 

Diversity 8 Constrained Diversity - The system 
design accounts for diversity in opera-
tion 

5 The learning function of the 

scheduler is very diverse. Specific 

intent to make everything but the 

learning function as deterministic as 

possible. The majority of the system 

has constrained diversity typical of a 

software system that controls hard-

ware in space.  

Connectivity 7 Intricate and Diverse Connectivity 6 The learning function of the sched-

uler has complex connectivity. The 

system has structural complexity 

typical of a software system that con-

trols hardware in space.  

Interactivity 8 Controlled Boundaries, not well pre-
dicted. 

6 The scheduler is instructed to pro-

pose the most  likely collection op-

portunities based on historical per-

formance, which it assesses using 

learning algorithms The majority of 

the system has stimulus/response 

complexity typical of a software sys-

tem that controls hardware in space.  

Adaptability 6 Limited: Vehicles are designed to 
withstand changes and operations to 
stay within limited ranges. Advanced 
GN&C software is emerging that is 
adaptive and will increase the vehicle 
adaptability to trajectory and environ-
mental perturbations. 

8 Open adaptability within loose 

constraints. This system is designed 

and encouraged to adapt. 

Multiscale 10 Yes: The system has several scales: 
rocket, stages, and engines.  Each can 
be viewed as a separate system or a 
component system part of the larger 
whole. 

7 Possible multiscale. The sched-

ulers learning decisions may be 

based on conditions at multiple 

scales, but the precise rationale for 

the decisions is opaque. 



 

  

Example   
System => 

  
Characteristic: 

Launch  
Vehicle / Rocket 

Artificial 
Intelligence Scheduler 

Multi-perspec-
tive 

9 Yes: There are several perspectives 
needed to understand the system as a 
whole: Physics (thermodynamic, me-
chanical, electrical, optical, atmos-
pheric, etc.) Value (Economic), Policy, 
Law, multiple stakeholder classes with 
different values of the system. 

7 The leaning scheduler itself has a 

single perspective, but its options are 

constrained by rules made from mul-

tiple perspectives. 

Behavior (not 
describable as a 
response sys-
tem) 

9 Yes: The amount of information 
needed to understand system response 
through all flight phases is not currently 
obtainable.  The models of things such 
as atmospheric conditions, space radia-
tion environments, and thermal vacuum 
interactions are not accurate enough to 
fully describe the system behavior. 

7 Difficult to describe. Scheduler 

learned decisions are opaque. 

Dynamics com-
plex  

7 Yes: Monte Carlo is state of the art 

analysis for many aspects.  Nonlinear 

response regimes are particularly not 

simple averages.                               

Confounding factors: Natural / In-

duced Environments can induce highly 

dynamic behavior 

7 Somewhat dynamic. Scheduler is 

intended to learn to deal with the in-

teraction of multiple environmental 

constraints. 

Representation 10 Yes: Disaggregated There is a great 
deal of unpredictability in the compo-
nent systems, and their interactions.  
Most accidents stem from not under-
standing or predicting the system level 
response from some "simple" changes 
in a system or environmental parameter. 

7 The learning algorithms are diffi-

cult to represent beyond fundamental 

equations and logic structures. 

Evolution 5 Somewhat: Rocket designs to evolve 
with time and technology.  Shuttle was 
stated as a 30 year flying experiment.  
The shuttle never flew the same system 
configuration twice. There were always 
changes and upgrades.                     
Confounding factors: 10 Artificial In-
telligence could lead to evolutionary 
characteristics in future systems. 

8 Designed Evolution. The system 

changes its rules but not its functions. 

System Emer-
gence not pre-
dictable behav-
ior  

9 Somewhat: Novelty comes from the 
flight patterns and payloads placed in 
orbit.  The space program continuously 
generates novelty.  The rocket is part of 

8 System is designed to learn based 

on results and emergent behavior in 



 

  

Example   
System => 

  
Characteristic: 

Launch  
Vehicle / Rocket 

Artificial 
Intelligence Scheduler 

this larger system and enables the nov-
elty. 

some fashion is expected. Unex-

pected Emergence in collection re-

quests over time.  

Disproportion-
ate Effects 

10 Yes: This is seen everyday in rock-
etry.  A few temperature degrees 
change can cause < mm change in di-
mensions and cause the system to lose 
functionality.  Small pressure changes 
can have large effects on propulsion ef-
ficiency.  Rockets have very subtle rela-
tionships.  Soft foam moving at Mach 
speeds can break strong reinforced car-
bon panels.  There is no direct tie, yet 
the interaction is catastrophic. 

8 Highly Disproportionate Effects. 

Learning decisions may create large 

shifts in behavior based on small 

changes in input.  

Indeterminate 
Boundaries 

8 Environments are highly indetermi-
nate. Flow fields are indeterminate. Me-
chanical boundaries are well defined in 
nominal operation. Confounding fac-
tors: 9 Atmospheric environments are 
complex and difficult to predict for a 
given launch site and day of launch.  

8 Environments and requests are 

highly indeterminate. Environmen-

tal boundaries are indeterminate and 

vary with local conditions. Requests 

vary widely. 

Contextual In-
fluences 

10 The natural environment relationship 

is highly variable and difficult to pre-

dict. The social interactions between the 

large design teams (1000's) and the 

rocket design are large.  There is signif-

icantly complexity in the social interac-

tions of the design organization leading 

to vary different designs for similar 

problems.  The designs are difficult to 

compare without the integrating con-

text. The social value of the rocket is 

also subtle and difficult to measure.  

Value for commercial telecommunica-

tions satellites vs. intergalactic astron-

omy platforms is very different in both 

near term value and long term value. 

The value of these different applica-

tions (payloads) is not currently possi-

ble to quantify.  

8 High impact. Law and policy of 

multiple nations and many mission 

requirements interact to constrain the 

system. 
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