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Objective(s): 

• Demonstrate the liquefaction and storage of “In-Situ like” propellant via a Tube-On-Tank Heat Exchanger 
integrated with Active Cooling (cryocooler)

- Verify proof of concept
- Obtain relevant data for model validation

• Gather lessons learned from “brassboard” testing which will be applied to future liquefaction system prototype 
testing, then eventually to an end-to-end demonstration.

Background:

• To enable NASA’s planned long duration missions, the agency is putting emphasis on reusable cryogenic systems

• Such systems will require replenishing of cryogens on-orbit via a cryogenic tanker or refueling depot, and 
potentially on the lunar or Martian surfaces with the utilization of in-situ resources.

• Surface replenishing requires the in-situ production of gaseous oxygen (and hydrogen if on the lunar surface), 
followed by liquefaction and storage.

• Funded by NASA’s Advanced Exploration Systems, and managed under the Advanced Cis-Lunar Space Capability 
Project, the Cryogenic Fluid In-Situ Liquefaction for Landers (CryoFILL) multi center team was formed to develop 
a liquefaction and storage system that is efficient, reliable and scalable.  
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Background (continued):

• The CryoFILL team conducted trade studies on various system level concepts including multiple heat exchanger 
configurations to be integrated with active cooling (cryocoolers).

• When the trades concluded, the team settled on a configuration which includes a Tube-On-Tank Heat Exchanger 
integrated with Active Cooling

• See W.L. Johnson, D.M. Hauser, B.F. Banker, J.R. Stephens, D.W. Plachta, P.S. Desai, A.M. Swanger and X-Y.J. 
Wang, “Comparison of Oxygen Liquefaction Methods for Use on the Martian Surface”, presented at the 27th 
Space Cryogenics Workshop, July 2017 

• Development plan includes:
- Modeling of the liquefaction process 
- “Brassboard” Proof of Concept Testing

o Data for model validation
o Gather lessons learned

- Design, build and test of a prototype surface liquefaction and storage system
- Full end-to-end demonstration to include ISRU production, liquefaction, and long term storage

Focus of today’s discussion
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• *Glenn Research Center’s Zero Boil-Off   Propellant 
Tank

- Stainless Steel
- 630 lbm dry mass
- 48.5 ft3 total volume
- Hangs from six low conductivity struts
- Tube-On-Tank Heat Exchanger
- Outfitted with 80 layers of tMLI

• Gifford-McMahon 90K cryocooler

• Custom build heat exchanger to integrate 
cryocooler cold head to Tube-On-Tank Heat 
Exchanger

• Cryofan to circulate working fluid (neon) through 
the refrigeration loop.

• GN2 used as a surrogate for GOX
- Facility supplied at ~ 292K

• Constant flowrate set via Mass Flow Controller

• Tested at high vacuum: ~4.0E-6 Torr

*See D.W. Plachta, W.L. Johnson, and J.R. Feller, “Zero Boil-Off System 
Testing”, presented at the 26th Space Cryogenics Workshop, June 2015

PHPK Cryocooler CryoZone Cryofan (left) and cold 
head Heat Exchanger (right)
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• Filled ZBO with LN2 to  54% Initially, then 
topped off to 100% Liquid Level

- Continued to fill until Vent SD read 
LN2 temperatures

• Allowed the test article, penetrations and 
insulation time to “cold soak”

• Tank pressure controlled to 18 PSIA during 
“cold soak” Steady-State Heat Load test
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• Steady State will be declared for the Heat 
Load Test when either TC22 or TC23 
demonstrate a temperature change of less 
than 0.5 K over a six hour period. 

- These TCs are located at MLI layers 
15 and 20 respectively. 

• Loaded Tank to 100% Liquid Level on 
September 4th, 2018

• Steady State Conditions shown here from 
September 13th, 2018
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Heat Load Test - ZBO Tank Pressure
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Heat Load Test - Liquid Mass
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• ZBO Tank Loaded with LN2 to ~ 95%
• Venting with Back Pressure Control set 

to 18 PSIA

• Monitoring Vent Flowmeter and Load 
Cells

• Approximately 0.54 lbm/hr boil-off

Qtotal = 18.9W
Qlatent = 13.404W
Qsensible = 5.522W 
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Tank Ullage Pressure Liquid Mass

Back Pressure Control 
cycling to maintain 18 PSIA



• Tank filled to ~ 57% Liquid Level
- Loaded at Atmospheric Pressure

• Neon Loop Checkout
- Loop Pressure ~ 200 PSIA
- Cryofan Speed ~ 15,000 RPM

• Tank Pressure Reduction
- 0.1314 PSI / hour
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Liquid Level Mass Added Liquefaction Rate Liquefaction Rate
% lbm lbm/day % of Baseline

90% 139 22.0 97%
75% 138 22.7 101%
50% 136 23.3 103%
25% 138 23.3 103%
*0% 151 22.5 100%

*Baseline for comparison purposes

Liquefaction at Various Liquid Levels
Constant GN2 Flowrate – Injected Into Tank Ullage Space
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Liquefaction at Various Liquid Levels
Non-Constant GN2 Flowrate (12 hr cycles) – Injected Into Tank Ullage Space

Liquid Level Mass Added Liquefaction Rate Liquefaction Rate
% lbm lbm/day % of Baseline

90% 163 23.2 101%
50% 190 23.9 104%
*0% 237 23.0 100%

*Baseline for comparison purposes
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12 Hr Cycles GN2 Flow: 2.0 lbm/hr
High pressures limit 
GN2 flow into tank



Effects of Sub-Surface Injection
Non-Constant GN2 Flowrate (12 hr cycles) – Tank at 50% Liquid Level
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Injection to Ullage Space Injection thru Dip-Tube
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Start at ~ 14.3 PSIA

Pressure is significantly decreased, 
but average liquefaction rate is not 
affected much by sub-surface 
injection, ~23.9 lbm/day
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Conclusions:

• Loaded with Liquid Nitrogen, the heat load into the test article is ~18.9 Watts at high vacuum

• The Cryocooler consistently removes ~ 130 W heat from the refrigeration loop which removes ~ 85 W from the 
test article

• Both Zero Boil-Off and Liquefaction were demonstrated with the Tube-On-Tank Heat Exchanger integrated with a 
Cryocooler

• Liquefaction at higher liquid levels results in higher pressures and reduced liquefaction rates due to smaller ullage 
volumes, and decreased surface areas available for liquefaction

- Excessive pressures can reduce the inflow of propellant gas

• Changes in liquefaction rates were not very significant
- Less than 6% change over liquid levels tested
- Slightly increase, ~ 2% to 5%, when introducing flow in 12 hour cycles rather than a constant 24 hours.

• Sub-Surface Injection results in lower tank ullage pressures and will likely be the preferred method for prototype 
testing.
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