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The Carbon Dioxide Removal by Ionic Liquid Sorbent (CDRILS) system is designed for 

efficient, safe and reliable carbon dioxide (CO2) removal from cabin air on long-duration 

missions to the Moon, deep space, and Mars. CDRILS integrates an ionic liquid sorbent with 

hollow fiber membrane contactors for rapid CO2 removal and recovery. The liquid-based 

system provides continuous CO2 delivery, which avoids complicated valve networks to switch 

between absorbing and desorbing beds and enables simpler integration to the Sabatier without 

the need for the CO2 Management System (CMS). Ionic liquids are particularly desirable as 

liquid absorbents for space applications since they are non-volatile, non-odorous, and have 

high oxidative stability. The hollow fiber membrane contactors offer both high contact area 

and rigorous containment between the gas and liquid phases in a microgravity environment. 

Scale-up of the CDRILS technology has presented a series of fascinating challenges, since 

the interaction between hollow fiber properties, ionic liquid properties and performance is 

complex. Properties measured with lab-scale hollow fiber contactors are used to estimate the 

performance of contactors that are similar in scale to flight-scale demonstrations. To 

accomplish this, component and system models have been built to relate the key scrubber and 

stripper design and operating variables with performance, and experiments directed to 

validate the models have been performed. System size, weight and power are determined by 

component selection, arrangement, and operating conditions. 

Reliability will be extremely important for any long-range mission and depends on the 

stability of the ionic liquids and hollow fiber contactors. We report on our continuing long 

term stability experiments for the ionic liquid and contactor materials and our investigation 

of the physical properties of additional ionic liquids. 
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Nomenclature 

AHA = aprotic heterocyclic anions 

ATR-FTIR = attenuated total reflectance Fourier-transform infrared spectroscopy 

CASIS = Center for the Advancement of Science In Space 

CCAA = Common Cabin Air Assembly 

CDRILS = Carbon Dioxide Removal by Ionic Liquid Sorbent 

CHN = carbon, hydrogen and nitrogen 

CMS = CO2 Management System 

CO2 = carbon dioxide 

DMSO = dimethyl sulfoxide 

EMIM Ac = 1-ethyl-3-methylimidazolium acetate 

ESM = Equivalent System Mass 
1H NMR = proton nuclear magnetic resonance  

H2O = water 

HTU = height of a transfer unit 

MTC = mass transfer coefficient 

N2 = nitrogen 

NTU = number of transfer units 

O2 = oxygen 

P666(14)
+

 = trihexyltetradecylphosphonium 

I. Introduction 

HE Carbon Dioxide Removal by Ionic Liquid Sorbent (CDRILS) system is a next generation approach to removal 

of carbon dioxide from the air in an enclosed system, including vessels in Earth orbit or interplanetary missions.  

In contrast to other approaches, it avoids the use of solid carbon dioxide adsorbents in favor of ionic liquids that have 

a specific affinity for carbon dioxide over oxygen and nitrogen.  This approach, similar in many ways to the technology 

used to revitalize air in submarines, is operationally simpler than approaches with solid adsorbents. While solid 

adsorbent-based approaches require a complicated valve system to switch the beds between adsorption and desorption 

modes, circulating liquid in CDRILS allows the scrubber and stripper each to have a fixed role.  Since the liquid can 

be rapidly moved between absorption and desorption, less carbon dioxide absorbent is required, reducing weight and 

volume.  The CDRILS process is inherently well-designed for zero gravity, since the ionic liquid is constrained within 

the system, and forced flow is always used.  It has high reliability due to internal redundancies, and easy 

maintainability since ionic liquid can be readily withdrawn or replaced without disassembly. 

 The CDRILS system has been described in prior papers.1,2,3  The current paper discusses progress in scaling up 

and optimizing the technology, including design and construction of a scaled-up CDRILS brassboard unit and the 

associated model development.  It also reports results of continuing testing to ensure the long-term stability of the 

ionic liquid and a new effort to evaluate other ionic liquids. 

 

II. Background 

The CDRILS process is enabled by the unique properties of the selected organic ionic liquids.  These materials are 

liquid at room temperature, and, because they are salts, have a negligible vapor pressure.  They are nonflammable, 

non-toxic, easily handled liquids with viscosities low enough for rapid mass transfer and fluid flow.  While carbon 

dioxide is soluble in many ionic liquids, certain ionic liquids have a specific affinity for carbon dioxide and therefore 

are selective for carbon dioxide over nitrogen and oxygen.  As described in earlier papers, 1-ethyl-3-

methylimidazolium acetate (EMIM Ac) is the current choice ionic liquid used for CDRILS.   

T 
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Figure 1 shows a schematic for the CDRILS process.  Cabin air containing carbon dioxide, water, and possibly 

trace contaminants is drawn into the process by a blower.  In some configurations, as in Figure 1, a membrane 

dehumidifier is used to remove water vapor for return of humidity to the cabin before the air enters the scrubber.  The 

scrubber is a hollow fiber membrane contactor that allows intimate contact between the air and a stream of ionic liquid, 

while keeping these two streams physically separated.  Carbon dioxide is selectively removed from the air, but, since 

water is quite soluble in the ionic liquid, water is also removed.  The cleansed air is returned to the cabin.  The CO2-

laden ionic liquid passes through a heat exchanger to heat to the stripping temperature (typically 50-60°C) before it 

enters the stripper.  The stripper is also a hollow fiber membrane contactor, where carbon dioxide and water are drawn 

from the ionic liquid under vacuum, separated by condensation of water, and recovered as pure components for storage 

or for immediate use, such as by a Sabatier reactor as used on the International Space Station for the first step in 

recovery of oxygen from carbon dioxide.   

Figure 2 shows the mass transfer processes in a 

hollow fiber membrane contactor used as a scrubber.  

Clean ionic liquid enters the bundle of hollow fibers at 

one end and leaves from the opposite end.  Cabin air 

enters the shell surrounding the hollow fiber bundle at 

one side and leaves from the opposite side in a 

countercurrent configuration compared to the liquid 

flow.  Air and its components contact the ionic liquid 

through the porous walls of the hollow fibers, and, 

driven by solubility, carbon dioxide and water transfer 

from the gas to the liquid phase. The ionic liquid and 

nitrogen and oxygen remain separated by the hollow 

fibers in the tube and shell sides, respectively. How 

effective this process is in removing carbon dioxide 

and water from the air depends on the capacity of the 

ionic liquid for each and on the mass transfer rate for 

each across the gas-liquid interface in the membrane.  

The mass transfer processes in the hollow fiber 

membrane contactors at the stripper are similar. Ionic 

liquid containing carbon dioxide and water from the 

scrubber is fed in through the contactor. Carbon 

dioxide and water transfer through the porous hollow 

fiber walls from the liquid to the gas phase for 

 
 

Figure 2: Membrane contactor in scrubber 

configuration. 

 

Cabin Air:
N2, O2, 

CO2, H2O
contaminants

Ionic Liquid
with CO2, H2O

Hollow 
Fibers

Clean
Ionic Liquid

Clean 
Cabin Air: 

N2, O2

CO2,
H2O

Ionic Liquid
with CO2, 

H2O

Clean
Ionic Liquid

Cabin Air:
N2, O2, 

CO2, H2O
contaminants

Clean Cabin
Air: N2, O2

CO2, H2O

 
 

Figure 1: Generalized CDRILS System Schematic. 
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recovery. Many of the contaminants present in the cabin air are absorbed into the liquid at the scrubber. Work is 

planned  to further understand the fate of contaminants in the CDRILS system, such as in the work described in Section 

IV. 

 

III. Long Term Stability of Ionic Liquids and Contacted Materials 

A. Ionic Liquid Stability 

This team has previously reported on the chemical analysis of samples of EMIM Ac aged under sparging dry air 

at room temperature for five months and at 60°C for 1 month.1 The initially reported tests have been continued, and 

a third sample has been aged at 90°C, and aliquots have been taken periodically for analysis. The samples have been 

compared to control samples of pure EMIM Ac by 1H NMR and ATR-FTIR spectroscopies and by elemental 

analysis for evidence of changes in chemical composition due to thermal oxidative degradation. 

ATR-FTIR experiments and carbon, hydrogen, and nitrogen (CHN) elemental analyses of samples aged at room 

temperature for 17 months, at 60°C for 1 year, and at 90°C for 6 months show no change in chemical composition of 

the ionic liquid within the error of the methods. The ATR-FTIR spectra in Figure 3 show no changes in intensity or 

wavenumber bands, nor formation of any new bands, that would indicate the presence of any species in the sample 

other than EMIM Ac. Seven samples of fresh ionic liquid examined by CHN elemental analysis produced C/N 

wt%/wt% ratios of 3.40 ± 0.09, which is in agreement with the stoichiometric ratio for EMIM Ac of 3.43.  None of 

the liquids aged at any of the three temperatures have C/N ratios to date that are outside of the expected range (Table 

1). The only experimentally significant change in liquid composition detected by either technique was variation in 

water content, which was consistent for each sample between both techniques and indicates only absorption and 

desorption of water from the air. 

 Samples aged at each of the three temperatures were also compared by 1H NMR spectroscopy in DMSO-d6 (Figure 

4). Figure 4A compares the overall spectra of a fresh sample versus the three aged samples, while Figures 4B-C 

magnify two regions of interest by 1500 and 375 times, respectively. Neither the samples aged for 17 months at room 

temperature nor the samples aged at 60°C for 1 year demonstrated an increase in or formation of impurities of greater 

than 0.5 mol% (experimental resolution). Note that the two impurity peaks detected at 3.2-3.1 ppm in the samples 

     
 

Figure 3: ATR-FTIR spectra for EMIM Ac before and after aging under air at 25°C, 60°C, and 90°C. 

Table 1: Summary of combustion analysis for carbon, hydrogen and nitrogen 

for EMIM Ac after aging under air at 25°C, 60°C, and 90°C. 
 C/N ratio (wt%/wt%, ± 0.09) 

Temperature Fresh Aged 6 months Aged 12 months Aged 17 months 

25°C 3.52 3.34 3.26 3.45 

60°C 3.45 3.36 3.48 - 

90°C 3.46 3.39 - - 
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aged at 60°C and 25°C were present in the starting samples and did not grow over time. The sample aged at 90°C for 

6 months, however, did reveal several new peaks present at ~1-3 mol%.  These most likely result from accumulation 

of trace products of thermal degradation. This observation indicates the importance of avoiding temperatures as high 

as 90°C in the CDRILS system. 

The vapor pressure of EMIM Ac itself is too low to measure by conventional means, and to our knowledge there 

is no experimental vapor pressure for EMIM Ac available in the literature. To confirm the lack of volatility of EMIM 

Ac, a sample of pure, dry EMIM Ac was repeatedly heated to 70°C under vacuum for five hours and then weighed 

for evaporative loss. After more than 25 hours of heating and 33 hours under vacuum, the final weight of the ionic 

liquid was identical to the starting weight of the ionic liquid to five significant figures, with a standard deviation 

between the five measurements of 0.01%. This reproducibility supports the negligible vapor pressure of the ionic 

liquid. Thus, introduction of EMIM Ac vapors to the cabin air is not a concern for CDRILS, especially since the cabin 

air in CDRILS is exposed only to EMIM Ac at the scrubber, which is lower in temperature, at about 35°C, compared 

to the 70°C conditions explored in this test. Similarly, introduction of EMIM Ac vapor to processes downstream of 

the 60°C CDRILS stripper liquid is not a strong concern. 

 

Figure 4: 
1
H NMR spectra for EMIM Ac before and after aging under air at 25°C, 60°C, and 90°C. 

  

(A) 
  

(B) 
  

(C) 
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B. Membrane Contactor Stability 

Three candidate hollow fiber types for use in our 

contactors were filled with ionic liquid and aged at 

room temperature or 60°C, and the contactors were 

tested for CO2 scrubbing performance periodically. 

Testing conditions were identical between tests and 

between fiber types.  Effective CO2 mass transfer 

coefficients were computed and normalized 

compared to modules before aging to produce Figure 

5.  Each point represents the average of 2-3 aged 

modules. A small decrease in effective mass transfer 

coefficient is observed over time and can be expected 

in full-sized modules. Thus, the full-scale CDRILS 

system must be sized to account for this slow change. 

Lab-scale aging tests are ongoing with these and with 

larger modules. 

 The structural integrity of the contactor materials 

after prolonged exposure to ionic liquid and heating 

is also critical. The contactors are made of a metal 

housing, an epoxy-based tubesheet that anchors the 

fibers in place at the ends of the modules and separates the shell and tube sides of the contactor, and the fibers 

themselves. Housing materials are selected to be light-weight and resistant to corrosion by the ionic liquid. We have 

previously reported the structural integrity of tubesheet material exposed to ionic liquid1. The force at break for fresh 

fibers and for fibers aged in ionic liquid at 25°C and 60°C is used to evaluate the strength of the fibers. With five 

samples per data point in Figure 6, the data for Fiber type #1 shows no experimentally significant change in either 

force at break or Young’s modulus after 7 months compared to fresh fiber. Tests with the other two fiber types are 

ongoing. 

 

 Strong adhesion of the fiber and tubesheet materials to each other after prolonged exposure to ionic liquid and 

heating is also important for structural integrity. Two studies designed to understand these properties were performed. 

In the first study, tubesheet samples were prepared with fibers extending several centimeters from one end of the 

tubesheet. The samples were aged dry at 60°C, and fibers were periodically pulled until either the fiber broke or 

slipped out of the tubesheet. Several types of custom tubesheet have been identified for which the force required to 

pull fibers from the tubesheet is higher than the force required to break them after 120 days of aging. This indicates 

strong adhesion between the fibers and the tubesheet. In the second study, vacuum of <5 torr was applied to the shell 

side of modulated fiber to evaluate the resistance of the tubesheet/fiber interface and of the hollow fiber itself to 

  
 

 

Figure 5: Normalized effective scrubber CO2 mass 

transfer coefficients for lab-scale hollow fiber modules 

aged exposed to ionic liquid at 25°C and 60°C. 

 

          
 

 

 

Figure 6: Force at break and Young’s Modulus of hollow fibers aged at 25°C and 60°C exposed to EMIM Ac. 
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leaking ionic liquid. Figure 7 demonstrates 

three approaches used in this study. Dye was 

added to the ionic liquid to facilitate visual 

detection of leaks. The first approach (Figure 

7A) directly tests the leak resistance of the 

hollow fiber under vacuum, as the tube side of 

the fibers is connected to an ionic liquid 

reservoir and vacuum is pulled on the shell 

side. One such test of fiber leak resistance has 

demonstrated 6 months to date with no 

detectable ionic liquid on the shell side of the 

fiber. In the second approach (Figure 7B), the 

fibers are air-filled because they are uncut at 

both faces of the tubesheet, while ionic liquid 

fills a reservoir above the tubesheet and 

surrounding the fibers. One test on an 

optimized tubesheet design has so far survived 

over 4 months with no detectable ionic liquid 

on the shell side of the contactor or inside the 

hollow fibers. Finally, lab-scale contactors 

with looped fiber encased in tubesheet only at the top end allows the same type of tests to be conducted at elevated 

temperature (Figure 7C). Any contactors that do not resist leaks well begin to accumulate ionic liquid in the collection 

flask, which can be weighed periodically for comparison of various samples’ ability to resist leaks. Whether a fiber is 

eventually wetted and begins to leak liquid depends on the fiber and liquid types, temperature, and pressure differential 

between liquid and gas. These and other tests of fiber and tubesheet long-term resilience to ionic liquid are ongoing. 

 

IV. Alternative Ionic Liquid Research 

Recent computational and experimental studies have led to the identification and synthesis of a new class of ILs 

based on aprotic heterocyclic anions (AHA).4 Computer modeling suggested that the incorporation of aprotic anions 

would inhibit the formation of a hydrogen bond network between CO2 adducts, thus preventing the increase in 

viscosity that is observed in most IL sorbents as CO2 is absorbed. Experimental work with ILs based on the 

trihexyltetradecylphosphonium (P666(14)
+) cation and several AHAs showed excellent CO2 absorption for many of these 

ILs, particularly for lower partial pressures of CO2, and no increase in viscosity with CO2 uptake.5 However, the 

literature  contains limited CO2 capacity data for very low partial pressures of CO2, little information about the kinetics 

or rates of CO2 sorption and desorption, and no information on the long term stability of ILs when exposed to real 

world use conditions, all of which is required for the design of systems that use these ILs as sorbents. 

Figure 7: Vacuum tests on systems containing ionic 

liquid, hollow fiber, and tubesheet. 
  

(A) 
  

(B) 
  

(C) 
  

     

 

 
 

Figure 8. Cations and anions selected for study. 



 

International Conference on Environmental Systems 
 

 

8 

This study will fill these holes by examining a number of AHA-based ILs (Fig. 8) for use as drop-in replacements 

for the EMIM Ac sorbent currently used in the CDRILS system. AHA ILs based on the P666(14)
+ were selected for 

study due to these ILs being well characterized in the literature, while the other three selected cations are likely to be 

water miscible as ILs and thus suited for use in a binary water-IL mixture such as the one currently used in CDRILS. 

The five anions were selected as ILs containing these anions have high affinity for CO2, even at low partial pressures.5  

The performance of the candidate IL sorbents will be evaluated both for their effectiveness as CO2 sorbents and 

for their compatibility with existing CDRILS hardware. In addition to measuring the CO2 capacity for each IL, the 

rate of absorption and desorption will also be quantified, along with the viscosity of the ILs, and the selectivity of the 

ILs for CO2 compared to N2 or O2. The properties will be measured both for neat ILs and for ILs containing water. 

The compatibility of the new ILs with the materials used for wetted surfaces in CDRILS will also be determined 

through contact angle measurements and long duration corrosion testing. Additionally, the stability of the AHA ILs 

when exposed to common contaminants found in cabin air will be examined. 

 

V. Scale-up 

A. Brassboard CDRILS Design  

Scaling the CDRILS test equipment from the previously reported lab-scale prototypes1 to a brassboard unit has 

required a systematic approach.  On the laboratory scale, the scrubber and stripper were built and tested separately 

then integrated to create the complete CDRILS unit.  As separate units, the scrubber and stripper are effective tools to 

measure mass transfer coefficients and other parameters needed for scale-up and for model development, as discussed 

below. Following initial tests on the separate scrubber and stripper units, the two halves have now been integrated to 

establish proof-of-principle that the entire system can operate as expected.  In the integrated system, continuous liquid 

recirculation between scrubbing and stripping allows the liquid composition and the scrubbing and stripping 

performance to reach an operating steady state. Since a stripper unit that removed effectively all of the carbon dioxide 

from the liquid would be unrealistically large or demanding in power, the ionic liquid returned from the stripper to the 

scrubber contains some residual carbon dioxide, while a scrubber tested separately typically receives rigorously clean 

ionic liquid. Similarly, water absorbs into the ionic liquid in the scrubber, while a fraction of the water in the liquid is 

removed in the stripper until both rates are equal and the process achieves steady state. The connection between CO2 

and water absorption and desorption  provides valuable insight, even on the small scale, about expected steady state 

operation on a full-scale CDRILS unit. The construction of a second lab-scale prototype is also in progress. This 

integrated CDRILS breadboard prototype will be devoted to a long-term study to detect any changes in performance 

or failure modes over time. 

 In parallel with this effort, a CDRILS brassboard system has been designed, and its construction is nearing 

completion.  The brassboard unit is designed to test and optimize full-scale hollow fiber contactors and other 

components at a range of operating conditions and to provide data for continued improvement of the system models. 

Scale-up presents a series of new challenges, including scale-up of the membrane contactors themselves, and must 

include proper design of the system around the contactor properties.   

 Design of a hollow fiber membrane module requires attention to a number of factors.  Even a smaller module than 

the CDRILS design can hold > 60,000 fibers, and it requires skill and attention to smoothly lay these out into the shell.  

To minimize the number of modules, and thus the size of the system, higher packing densities are required, but too 

high a packing factor can lead to inefficient performance.  The ends of the module are sealed with a tubesheet.  This 

epoxy layer creates the boundary between the ionic liquid-filled manifold at the inlet and outlet and the gas-filled 

contacting zone and must therefore be durable and leak-free.  Figure 9 shows the face of the tubesheet from a contactor 

module with a typical packing density. 



 

International Conference on Environmental Systems 
 

 

9 

In contrast to modules for use in industrial applications, CDRILS modules must be short enough to fit into the 

locker sizes for possible missions.  Since there is a practical limit to module diameter, the CDRILS approach is to 

have several scrubber or stripper modules mounted in parallel rather than to use a single contactor.  This approach 

also allows for internal redundancy and easier maintenance.  The brassboard unit as currently built accomodates four 

full-size contactors operated in parallel at the scrubber and four more in parallel at the stripper.  Regardless of the 

number of contactors operated in parallel, any individual contactor should produce the same performance under the 

same individual operating conditions. Thus, scaling the module requirements for a larger or smaller CDRILS system 

simply involves increasing or decreasing the number of contactors in parallel. 

 Additionally, the brassboard is designed to incorporate other features not present in the lab-scale unit such as 

optional membrane dehumidification, a realistic vacuum pump and condenser, and more realistic thermal 

management. These features provide the opportunity to demonstrate some of the key features of CDRILS that were 

not readily demonstrated on the laboratory scale.  The CDRILS brassboard can simulate cabin air that has been pre-

dried by a membrane dehumidifier, as did the lab-scale unit, but it can also optionallly incorporate (a) membrane 

dehumidifier module(s) between the simulated cabin air supply and the scrubber unit. This option allows for more 

thorough testing of the ability of CDRILS to act not only as a carbon dioxide scrubber but also as a humidity control 

system. As part of the humidity control system, water is stripped from the ionic liquid along with carbon dioxide at 

the stripper. The water must be separated from the carbon dioxide before being fed to the Sabatier. The preferred 

method for this separation is in a custom compressor/condenser that is currently under development.  Finally, in order 

to minimize the power requirements of heaters and chillers as liquid is recirculated between the scrubber and stripper 

at different temperatures, the CDRILS brassboard unit makes use of a recuperative heat exchanger. 

 

B. Brassboard CDRILS Unit 

A schematic of the CDRILS brassboard unit is shown in Figure 10, and a photo of the test stand that is nearing 

completion of construction is shown in Figure 11.  No attempt has been made to optimize size, weight or volume since 

the purpose of this unit is to demonstrate CO2 removal performance on full-scale contactors and components  and to 

collect operational data for further system and model optimization.  Instead, additional sensors are included compared 

to a future flight unit, and the components are spread out for easy modification or maintenance. CO2 concentrations 

and humidity of cabin simulant air before the scrubber and treated air after the scrubber are measured, as are the CO2 

and oxygen concentrations and humidity of the product CO2 stream, and temperatures, pressures, and flow rates of 

gas and liquid streams at the module and system level. Treated air can also be sampled individually from each scrubber 

contactor to ensure consistent performance between contactors. Aliquots of ionic liquid can be removed for 

determination of water content by Karl Fischer titration. Liquid pumps and heaters provide steady flow and 

         

 
 

Figure 9: Tubesheet design for a hollow fiber membrane module and micrograph of fibers. 
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temperature control on gas and liquid lines and on each contactor. A control system allows for semi-automated 

operation and continuous data logging. 

 The brassboard unit includes four parallel hollow fiber contactors at the scrubber and four at the stripper. In Figure 

11, one module is shown in place for the scrubber and one for the stripper.  The parallel plumbing is completed such 

that each module is in an identical environment to the other three. This ensures that any inconsistencies between 

contactors can be identified based on differences in sensor measurements to optimize the modulation process. 

Additionally, any performance observed on four modules can easily be scaled to expected performance on more or 

fewer modules. Equipment has been selected that allows air and liquid flow rates to be varied over a wide range so 

that the brassboard can be operated with as few as one module and up to more than four modules each at the scrubber 

and the stripper. This flexibility will aid in accurate scaling predictions from the data and facilitate optimization of the 

component and system models. 

 

 

 

 

 

 
 

Figure 10: Schematic of the CDRILS brassboard unit. 
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VI. Component Model Development 

While the experimental work reported in this and earlier papers has established the use of an ionic liquid to scrub 

carbon dioxide from air and recover it in a stripper, the connection between these lab-scale experiments and a full-

scale CDRILS unit takes the form of multiple models.  Component models are used to synthesize the experimental 

results into preliminary designs for larger scale units and will be validated and corrected using experimental data from 

the larger scale unit.  These models then contribute to the system model of the entire CDRILS unit, which predicts 

size, weight, power and cooling.  Separate but related component models are required for the scrubber and the stripper. 

The scrubber modules can each be considered to be a continuous countercurrent contactor in which the gas phase 

(cabin air) and the liquid phase (ionic liquid) are continuously flowed through the device.  Key variables include the 

length and active area of the contactor and the flow rates and compositions of the gas and liquid phases.  To evaluate 

the efficiency of removal of carbon dioxide and water from the air, the equilibrium capacity of the ionic liquid for 

dissolved gases must be known.    The modeling approach to the CDRILS scrubber must account for shifts in the 

composition of the two phases while passing through the contactor since they impact the equilibrium capacities and 

the rate of mass transfer between the phases.  

Our basic approach to modeling carbon dioxide and water transfer in the scrubber is identical for the two 

components and can be illustrated graphically for carbon dioxide as in Figure 12, in which the two axes are the mole 

fractions of carbon dioxide in the gas phase and the liquid phase.  The green isotherm line represents the capacity of 

the ionic liquid for carbon dioxide as a function of gas phase mole fraction and is shown as a straight line for simplicity  

The red line, traditionally called an operating curve, represents a CO2 species balance between phases over the 

modeled scrubber  The lower terminus of the red operating line is determined by the desired outlet CO2 concentration 

   

Figure 11: Pictures of the scrubber (left) and stripper (right) of the CDRILS brassboard unit. 
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in the air (y2) and the concentration of CO2 remaining in 

the ionic liquid after the stripper (x2), and the upper 

terminus is determined by the inlet CO2 concentration in 

the air (y1) and the design concentration of CO2 loaded 

into the ionic liquid (x1).  Again, for purposes of 

illustration, the operating curve is shown as linear.  Note 

that the theoretical liquid mole fractions of carbon 

dioxide at equilibrium corresponding to y1 and y2 are 

designated x1* and x2*, and the theoretical gas phase mole 

fractions corresponding to x1 and x2 are y1* and y2*.  The 

desired transit down the operating line can be envisioned 

as a series of steps coming alternatively to equilibrium 

and then return to the operating line. 

 Each “step” in Figure 12 is a theoretical equilibrium 

stage, and this Figure allows for estimation of the number 

of theoretical equilibrium stages required to accomplish 

the specified separation.  The column height equivalent 

of a theoretical stage is evaluated through experiment, and usually correlated to superficial flow rates, surface area, 

and other variables.  Implicit in this approach is the assumption that enough opportunity is given to permit the mass 

transfer between phases to achieve equilibrium.   The CDRILS scrubber model uses a transfer unit approach to 

model performance of the hollow fiber membrane module.  The number of theoretical transfer units needed and the 

corresponding height of a transfer unit are computed from available information.   The height of a transfer unit (HTU) 

is proportional to a number of key variables, principally the number of hollow fibers in the membrane bundle.6  To 

achieve the desired separation, the product of the NTU and HTU must equal the active length of the hollow fiber 

membrane module (Z).   Assuming counter-current flow, dilute solutions, single component scrubbing, and constant 

slope isotherms,  values for NTU and HTU can be calculated for each set of conditions using equations 2 and 3.   

 

 𝑍 = 𝑁𝑇𝑈𝐺  𝐻𝑇𝑈𝐺  (1) 

 

 𝑁𝑇𝑈𝐺 =  ∫
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𝑦−𝑦∗ +  
1

2

𝑦1

𝑦2
ln

1−𝑦2 

1−𝑦1
 (2) 

 

 𝐻𝑇𝑈𝐺 =  
𝐺

𝐾𝛾𝑎0(1−𝑦∗)𝐿𝑀
 (3) 

 

In these equations, NTU is the ratio of mass transfer conductance to the capacity rate for mass transfer.  In equation 

3, G is the gas phase flow rate, Kγ is the overall mass transfer coefficient, a0 is the ratio of the membrane area to the 

contactor volume, and the final term is the logarithmic mean of (1-y*). The final term corresponds to an integrated 

driving force for mass transfer.  As the mass transfer coefficient increases, the height of a transfer unit decreases, and 

the overall length of the module can decrease.  Equation 3 also establishes a relationship between the height of a 

transfer unit and a0.  Since a0 accounts for the number and diameter of membrane modules, and hence the size and 

weight of the scrubber, equation 3 lays out the requirements for sizing the scrubber.  For sizing a scrubber under 

specific operating conditions, an appropriate effective mass transfer coefficient should be applied, as its value varies 

based on operating conditions. For example, the mass transfer coefficient, assumed in these equations to be constant 

throughout a contactor, in fact changes with temperature and water concentration.1  This needs to be borne in mind 

while modeling contactors using this approach.  While this discussion has focused on carbon dioxide removal, an 

analogous treatment is used for water removal from air.  Since the mass transfer coefficient for water is about 10 times 

that of carbon dioxide, a module designed for carbon dioxide removal will typically also be adequately sized for water 

removal. 

This simplified scrubber model forms the basis for routine evaluation of laboratory results.  Effective mass transfer 

coefficients are calculated from data measured with lab-scale modules.  The model and these mass transfer coefficients 

have been used to size the modules and gas and liquid flow rates for the full-scale unit.  Further evalulation and 

validation of the model will occur once the scaled-up CDRILS system is complete.  Scale-dependent effects are 

expected for the hollow fiber contactors, including the effects of pressure and temperature distributions within the 

module and the increased likelihood of shell size mass transfer limitations.  Shell side mass transfer is a frequent focus 

     
 

Figure 12: Scrubber operation conceptualized as a 

series of equilibrium stages 
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in membrane module scale-up and results from stagnant zones developing where dense fiber arrays prevent free gas 

flow.  In these regions the carbon dioxide concentration can be depleted without introduction of fresh gas, which 

reduces the driving force for mass transfer and thus the effectiveness of the module.   

The CDRILS stripper model incorporates additional complexities that are present in the stripper, such as the fact 

that stripper operation is very sensitive to shell-side pressure.  Since the shell-side pressure is very low and relative 

pressure gradients are high, almost all the simplifying assumptions used to develop the scrubber model are not 

applicable; a more general approach with more detailed assumptions is required.  For example, the carbon dioxide 

permeating through the fibers becomes a significant component of the gas composition so that equations 2 and 3 no 

longer hold true. 

 

VII. Trade Studies using System Model 

As the models for key components like the scrubber and stripper have been refined, the insights from these models 

have been incorporated into a system-level model for the CDRILS system.  This system level model includes the 

modules and the remaining components within CDRILS, including the blower, liquid pumps, heater, chillers, vacuum 

pump, condenser, and the membrane dehumidifier.  The model accepts inputs for cabin conditions, such as the 

temperature, pressure, CO2 partial pressure and relative humidity of the air, as well as system requirements, such as 

the number of crew and the CO2 partial pressure requirement. The key system requirements for all examples discussed 

below are that the system remove CO2 for 4 crew, or 4.2 kg/day,7 and maintain a CO2 partial pressure requirement of 

2 torr. Adjustable parameters for the model include scrubber and stripper performance inputs, such as air and liquid 

flowrates, temperatures and pressures. The model outputs the volume, weight, power, and cooling requirements of 

each component and of the entire system.   

A. Optimizing scrubber efficiency 

 The system model was used to determine the optimal balance between the volumetric flowrate of cabin air into 

CDRILS and the scrubber volume and mass. A scrubber with 100% efficiency, or one that removes 100% of the CO2 

from the air that enters the scrubber, would be infinitely large. However, lower scrubber efficiencies increase the air 

flowrate required to remove the same CO2 load. This increases not only the blower volume, weight and power, but 

also the quantity of water vapor that must be desorbed in the stripper. This additional water vapor in turn increases the 

volume, weight and power of the ionic liquid heater, vacuum pump, and condenser. Figures 13A and 13B show how 

scrubber efficiency can be varied in the system model to predict the optimal balance between a highly efficient 

scrubber and a high air flowrate. Note that selecting a high scrubber efficiency near 90% results in high volume and 

mass, while minimizing power and cooling. However, a similarly low power and cooling can be achieved at scrubber 

efficiencies between 40% and 80%, where the CDRILS volume is also at its lowest and the mass is also minimized. 

Therefore, assuming the conditions in the example, the optimum scrubber efficiency is expected to be in the broad 

range of 40-80%, and a desired design point or operating range can be selected based on the specific integration 

requirements of the broader life support system.  

 

(A) 
  

(B) 
  

Figure 13: A) Volume and mass predictions, and B) electric power and cooling predictions for the CDRILS 

system model for 4 crew, as a function of scrubber efficiency.  
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This flexibility in scrubber efficiency stands in great contrast to solid carbon dioxide scrubbers. Solid adsorbent-

based systems frequently include desiccant beds upstream of the CO2 adsorbent because the solid adsorbent 

competitively adsorbs water over CO2. Thermal desorption from both beds is required to recover the CO2 from the 

adsorbent and the water from the desiccant. Because of their sizes and the heat capacities of their shells, heating and 

cooling the beds to proper desorption and absorption temperatures requires significant time in which beds perform 

little absorption or desorption. Solid sorbent systems are therefore designed to minimize the amount of time spent 

cycling between adsorption and regeneration modes. This translates into large adsorbent beds that are loaded to near 

capacity. To minimize the size, weight, and power required for the desiccant, a high CO2 removal efficiency is required 

of the adsorbant to minimize the amount of water introduced into the system. The need for high CO2 removal efficiency 

with long cycle times and loading to near capacity all contribute to larger adsorbent bed sizing.  In contrast, in 

CDRILS, even without a membrane dehumidifier, the water absorbed into the liquid at the scrubber has a negligible 

effect on the capacity of the ionic liquid for CO2 or the immediate CO2 removal performance. The absorbed water is 

simply removed from the liquid at the stripper to avoid accumulation of water in the ionic liquid over time. Continuous 

liquid circulation allows for operation below the liquid capacity for CO2, where CO2 capture is more rapid. The 

temperatures of the scrubber and stripper do not change during operation, so extra adsorbent is not required as it is 

with solid beds to account for heating and cooling time. High CO2 removal efficiencies are therefore not necessary, 

and scrubber size can be reduced. The tolerance of the CDRILS process to water also presents an opportunity for 

CDRILS to contribute to humidity management of the cabin air, as discussed below.  

B. Optimizing water removal 

In determining an optimal balance between system size and power, water management is important. Like other 

CO2 absorbents, ionic liquid has affinity for both CO2 and water. In CDRILS, any water that co-absorbs in the ionic 

liquid with CO2 is desorbed in the stripper to maintain the humidity balance in the cabin and to prevent the CO2 

capacity of the liquid from decreasing slowly over time. However, desorption of water at the stripper increases the 

volume, weight and power of the heater, vacuum pump and condenser. To mitigate these negative impacts, the amount 

of water removed can be modulated by adjusting the size of the membrane dehumidifier, which returns the water 

vapor to the occupied space before it would otherwise be absorbed into the ionic liquid at the scrubber. 

 Figure 14 shows the predicted volume, mass, power and cooling for a CDRILS unit operating at 50% scrubber 

efficiency for 4 crew, while absorbing varying amounts of humidity, as controlled by the membrane dehumidifier. 

Without a membrane dehumidifier, absorption of humidity into the ionic liquid drives high power and cooling 

requirements (Figure 14B).  When the amount of humidity allowed to absorb into the ionic liquid is minimized using 

a membrane dehumidifier, power and cooling are also minimized, but the volume of the membrane dehumidifier 

drives the total system volume higher (Figure 14A). From a volume and weight perspective, the optimal humidity 

absorbed is between 4 and 17 kg of water/day.  The water vapor generation rate for crew members is within this range 

at an average of 7.4 kg/day,8  so CDRILS is capable of managing this humidity load in place of the condensing heat 

exchangers used today for humidity removal. 

 

  

(A) 
  

(B) 
  

Figure 14: A) Volume and mass predictions, and B) electric power and cooling predictions for the CDRILS 

system model for 4 crew for various rates of humidity removal.  
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 Humidity removal has been problematic on the International Space Station.  The Common Cabin Air Assembly 

(CCAA) suffers from microbial growth, requiring two alternating condensing heat exchangers to allow for periodic 

dryouts. It is also implicated as a source of siloxane contaminants due to breakdown of a hydrophilic coating, which 

is used in part to prevent bacterial growth in stagnant water.9  CDRILS is likely to avoid these concerns for a few 

reasons. First, humidity removal occurs in the scrubber, where the relative humidity of the air never exceeds that of 

the habitat. Microbial growth in this unit is unlikely because no liquid water is present except that which is dissolved 

in the ionic liquid, which is antimicrobial. Water is carried in the ionic liquid to the stripper, where it is heated and 

removed under vacuum.  Condensation of water occurs from a stream containing only carbon dioxide and water.  

Microbial growth is unlikely here since no oxygen is present in the stream. Because of the preconcentration of CO2 

and humidity in the condenser, the size of this condensing heat exchanger is much smaller than that required to 

condense the same quantity of water vapor from the air. The CDRILS system cannot replace all functions of the 

CCAA, since it does not cool the air or provide the air flowrates needed to ensure sufficient mixing of the cabin air, 

but use of CDRILS as the primary dehumidification approach, with a downsized system to maintain cabin temperature, 

should be considered for future vehicles. 

 

VIII. Conclusions and Future work 

The brassboard unit is soon be completed and will be used to 

validate and refine our component models for predictions such as 

pressure drops and mass transfer coefficients at the full scale.  

Validation of our models will also allow us to validate our trade 

studies, and complete a number of other important studies to 

further refine the development of the CDRILS system.  After 

completion of this brassboard unit, Honeywell will begin work 

on building a prototype for demonstration on the International 

Space Station, through the Center for the Advancement of 

Science In Space (CASIS). This prototype is currently 

envisioned to be similar to that shown in Figure 14.  We 

anticipate refining this design over the next year to be ready for 

this important experiment. 

In work with NASA AES, the studies of alternative ionic 

liquids are just beginning and may lead to the selection of 

alternative liquids with improved characteristics.  An automated 

lab-scale CDRILS system is under construction with plans to 

operate continuously for at least six months to accumulate 

durability information and note any long-term trends.  Extended 

operation of this unit will also improve our understanding of how 

a CDRILS system might operate at full scale.  This test stand may later be used to test the performance of the 

alternative ionic liquids and determine optimal conditions for their use.  
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