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Lattice Structures
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ECLSS 4-Bed Molecular Sieve (4BMS-X) Heater Plate



Lattice Structures

• Lattice Structures are 

repeating patterns which can 

be applied to Additively 

Manufactured (AM) parts

• Four lattice topologies were 

selected for assessment (1)

– Dode Medium – 13% Relative 

Density (%RD)

– Diamond – 20%RD

– Octet Truss – 30%RD

– Rhombic Dodecahedron –

20%RD

• Two unit cell sizes were 

down-selected

– Coarse: 5mm

– Fine: 2mm
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Lattice Structures

Advantages

• Reduced mass, retain stiffness

• Variable relative density and 

surface area

• Tailorable thermal conductivity (k) 

to specific applications

Limitations

• Computationally expensive for 

analytical modeling

• Limited material property data 

(traditional properties are 

unreliable)
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Lattice Structures

Early Modeling Attempts

• Steady State

• Dimensions

– Width: 20mm

– Length: 20mm

– Thickness: 0.98mm

• Assumed Constant 

Aluminum Properties

– k = 205 W/m-K

– Cp = 0.9 J/g-K

– ρ = 2700 kg/m3
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Lattice Structures
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Effective Thermal 

Conductivity (𝒌𝒆𝒇𝒇)

𝑘𝑒𝑓𝑓 =
𝑄𝐿

𝐴∆𝑇

𝑄 - Heat Flux

𝐴 - Cross-Sectional Area 

𝐿- Length

Δ𝑇 - Differential Temperature

Thermal Diffusivity (α)

𝛼 =
𝑘𝑒𝑓𝑓
𝜌𝑒𝑓𝑓𝐶𝑝

𝐶𝑝 - Specific Heat Capacity

Effective Density (𝝆𝒆𝒇𝒇)

𝜌𝑒𝑓𝑓 =
𝑀𝑚𝑜𝑑𝑒𝑙

𝑉𝑚𝑎𝑥

𝑀𝑚𝑜𝑑𝑒𝑙 - Mass of the model

𝑉𝑚𝑎𝑥 - Volume of bounding 

envelope



Lattice Structures
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Dode ThickDode MediumSolid

Fin Type
Surface Area

(mm2)

Volume

(mm3)

Mass 

(g)

keff

(W/m-K)

α

(mm2/s)
Void Fraction

Solid 878 392.00 1.058 204.90 84.32 0.000

Dode Medium 934 49.96 0.135 11.04 35.64 0.873

Dode Thick 1240 97.54 0.263 22.54 37.28 0.751
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Lattice Structures
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Effective Thermal Conductivity vs. Void Fraction
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• Models which contain lattice 

only come in .stl (Standard 

Tessellated Language) format

– .stl (Right) is a specialized file 

type for 3D Printers

– Converts a CAD solid into a 

hollow shape bounded by 

triangles with a normal direction 

• Computationally expensive

– Radiation effects are difficult to 

usefully incorporate

Modeling Shortcomings
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.stl File Example (2)

– Convection/CFD has not been attempted, could be problematic 

• Limited material property data (traditional properties are 

unreliable)



Experiment Design
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• Internal funding was 

obtained at Marshall 

Spaceflight Center (MSFC) 

to experimentally measure 

the thermal conductivity 

through lattice structures 

and non-fully dense solids

• The experiment will create 

a capability unique to 

MSFC

• This experiment is 

currently in the 

design/procurement phase



• Well established standards are available to determine 

the k of homogeneous materials

– ASTM E1225-13 Thermal Conductivity of Solids Using the Guarded-

Comparative-Longitudinal Heat Flow Technique

– ASTM D5470-17 Thermal Transmission Properties of Thermal 

Conductive Insulation Materials

• Measuring k through complex geometries/non-

homogenous materials has not been standardized

• Notable changes:

– Much smaller samples (max ~30x30x30mm cube)

– Samples will not be homogenous

– No guard will be used (excessive with upper and lower meter bars)

– Test will occur in vacuum (10-2 to 10-3 torr) to mitigate convection

– Meter bar conductivity will be selected based on estimated sample 

conductivity (not necessarily >50 W/m-K)

Experiment Design
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Experiment Design
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Experiment Design

• Heater

– Several heaters are being considered

– 20 watts(W) or less of power will be applied to the experiment

• Instrumentation

– Meter bars and samples will be instrumented with at least three 

4-wire RTDs

– Chiller has built in temperature measurement and control to 

maintain 20ºC±0.1 up to 250W

• Samples

– At least three different sample thicknesses will be measured at 

least three times for repeatability and reliability
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Experiment Design

• Picture of the completed setup
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Modeling Correlations

• Correlated thermal math models of lattice 

structures are needed to inform the design 

and optimization of specific applications 

utilizing additive manufacturing.

• Depending upon the application, the thermal 

model may need to consider all modes of 

heat transfer: conduction, radiation and 

convection to a stationary or moving fluid.

• Radiation and convection may be 

computationally prohibitive for large or 

complex geometries.

• A simplified network method to model 

conduction through a lattice structure is 

illustrated.

• An individual lattice cell may be parsed into 

nodes and conductors. The nodes represent 

“junction” points where the beams that 

define the lattice structure meet.

• Temperature is computed via an energy 

balance at each node based on conductive 

heat transfer through the beams.   
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Future Work

• Finish procurement 

• Build test system/apparatus

• Verify system with sample of known conductivity

• Test initial samples

• Correlate model results with experimental data

• Numerous potential applications including Cryogenic 

Fluid Management and Nuclear Thermal Propulsion 
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y = 149.84x2 - 352.19x + 203.31

y = -207.8x + 208.88
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