TFAWS Passive Thermal Paper Session

Thermal Characterization of 3D Printed Lattice Structures Travis Belcher, NASA MSFC Greg Schunk, NASA MSFC

Presented By Travis Belcher

ANALYSIS WORKSHOP

&

THEANS

TFAWS LaRC 2019 Thermal & Fluids Analysis Workshop TFAWS 2019 August 26-30, 2019 NASA Langley Research Center Hampton, VA

- Lattice Structures
- Experiment Design
- Modeling Correlations
- Future Work

NASA

ECLSS 4-Bed Molecular Sieve (4BMS-X) Heater Plate

TFAWS 2019 - August 26-30, 2019

- Lattice Structures are repeating patterns which can be applied to Additively Manufactured (AM) parts
- Four lattice topologies were selected for assessment (1)
 - Dode Medium 13% Relative Density (%RD)
 - Diamond 20%RD
 - Octet Truss 30%RD
 - Rhombic Dodecahedron 20%RD
- Two unit cell sizes were down-selected
 - Coarse: 5mm
 - Fine: 2mm

Dode Medium (13%RD) Diamond (20%RD) Octet Truss (30%RD) Rhombic Dodecahedron (20%RD)

TFAWS 2019 - August 26-30, 2019

Advantages

- Reduced mass, retain stiffness
- Variable relative density and surface area
- Tailorable thermal conductivity (*k*) to specific applications

Limitations

- Computationally expensive for analytical modeling
- Limited material property data (traditional properties are unreliable)

Lattice Regen Chamber Demo

Early Modeling Attempts

- Steady State
- Dimensions
 - Width: 20mm
 - Length: 20mm
 - Thickness: 0.98mm
- Assumed Constant Aluminum Properties
 - k = 205 W/m-K
 - $C_{p} = 0.9 \text{ J/g-K}$
 - $\rho = 2700 \text{ kg/m}^3$

NA SY

Effective Thermal Conductivity (k_{eff})

$$k_{eff} = \frac{QL}{A\Delta T}$$

- Q Heat Flux
- A Cross-Sectional Area
- L- Length
- ΔT Differential Temperature

Thermal Diffusivity (α)

$$\alpha = \frac{k_{eff}}{\rho_{eff}C_p}$$

 C_p - Specific Heat Capacity

Effective Density (ρ_{eff})

$$\rho_{eff} = \frac{M_{model}}{V_{max}}$$

M_{model} - Mass of the model *V_{max}* - Volume of bounding envelope

Solid

Dode Medium

Dode Thick

Fin Type	Surface Area (mm²)	Volume (mm³)	Mass (g)	k _{eff} (W/m-K)	α (mm²/s)	Void Fraction
Solid	878	392.00	1.058	204.90	84.32	0.000
Dode Medium	934	49.96	0.135	11.04	35.64	0.873
Dode Thick	1240	97.54	0.263	22.54	37.28	0.751

TFAWS 2019 - August 26-30, 2019

Effective Thermal Conductivity vs. Void Fraction

TFAWS 2019 – August 26-30, 2019

Modeling Shortcomings

- Models which contain lattice only come in .stl (Standard Tessellated Language) format
 - .stl (Right) is a specialized file type for 3D Printers
 - Converts a CAD solid into a hollow shape bounded by triangles with a normal direction
- Computationally expensive
 - Radiation effects are difficult to usefully incorporate

.stl File Example (2)

- Convection/CFD has not been attempted, could be problematic
- Limited material property data (traditional properties are unreliable)

Experiment Design

- Internal funding was
 obtained at Marshall
 Spaceflight Center (MSFC)
 to experimentally measure
 the thermal conductivity
 through lattice structures
 and non-fully dense solids
- The experiment will create a capability unique to MSFC
- This experiment is currently in the design/procurement phase

- Well established standards are available to determine the *k* of homogeneous materials
 - ASTM E1225-13 Thermal Conductivity of Solids Using the Guarded-Comparative-Longitudinal Heat Flow Technique
 - ASTM D5470-17 Thermal Transmission Properties of Thermal Conductive Insulation Materials
- Measuring k through complex geometries/nonhomogenous materials has not been standardized
- Notable changes:
 - Much smaller samples (max ~30x30x30mm cube)
 - Samples will not be homogenous
 - No guard will be used (excessive with upper and lower meter bars)
 - Test will occur in vacuum (10⁻² to 10⁻³ torr) to mitigate convection
 - Meter bar conductivity will be selected based on estimated sample conductivity (not necessarily >50 W/m-K)

TFAWS 2019 - August 26-30, 2019

- Heater
 - Several heaters are being considered
 - 20 watts(W) or less of power will be applied to the experiment
- Instrumentation
 - Meter bars and samples will be instrumented with at least three 4-wire RTDs
 - Chiller has built in temperature measurement and control to maintain 20°C±0.1 up to 250W
- Samples
 - At least three different sample thicknesses will be measured at least three times for repeatability and reliability

• Picture of the completed setup

Modeling Correlations

- Correlated thermal math models of lattice structures are needed to inform the design and optimization of specific applications utilizing additive manufacturing.
- Depending upon the application, the thermal model may need to consider all modes of heat transfer: conduction, radiation and convection to a stationary or moving fluid.
- Radiation and convection may be computationally prohibitive for large or complex geometries.
- A simplified network method to model conduction through a lattice structure is illustrated.
- An individual lattice cell may be parsed into nodes and conductors. The nodes represent "junction" points where the beams that define the lattice structure meet.
- Temperature is computed via an energy balance at each node based on conductive heat transfer through the beams.

- Finish procurement
- Build test system/apparatus
- Verify system with sample of known conductivity
- Test initial samples
- Correlate model results with experimental data
- Numerous potential applications including Cryogenic Fluid Management and Nuclear Thermal Propulsion

References

- 1) Mireles, O. R. (2018). *Thermal, Fluid, Mechanical, and Microstructural Property Characterization of Additively Manufactured Lattice Structures*. Retrieved from: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20 180006367.pdf
- 2) Working with File Types. (2019). Retrieved from: https://www.simplify3d.com/support/articles/workingwith-file-types/

Backup Slides

302

294

Square Perforated

Backup Slides

TFAWS 2019 – August 26-30, 2019