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Background

* Priming is the process of filling an evacuated pipe line.

— For safety reasons, storable propellants such as hydrazine are
separated from thrusters by one or more valves.

— Once in orbit, the valve is opened, and the evacuated line is
filled with propellant.
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Picture Credit: Moore et al., JSR, 2018.
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Background

« The velocity change when the fluid hits the dead end can
cause a brief pressure surge.
— The pressure rise can be as high as:
AP = pcAV

— For example, if liquid water is suddenly stopped from 10 m/s, the
pressure rise could be:

kg m m
AP = {1000 — (1500—) (10—) = 15 MPa
m S S

e Accurate prediction of maximum pressure aids in the
design of a propulsion system that is not too
conservatively heavy.
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 The Generalized Fluid System Simulation Program
(GFSSP) is a general-purpose computer program to
calculate pressures, temperatures, and flow rates in a
fluid network.

Fluid networks are discretized into nodes and branches.

— Mass and energy equations are solved in the nodes.
— Momentum equation is solved in the branches.
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Georgia Tech Experiment
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Test series varied:
» Reservoir pressure: 2 to 7 atm
« Gas volume proportion: o = L /Ly
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Georgia Tech Experiment
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Nodes 1-11 initially contain liquid water at 102.9 psia.
Nodes 12-20 initially contain air (as an ideal gas) at 14.7 psia.

A Fortran user subroutine fixes all temperatures in model at 60° F. Air
temperature increase by compression is neglected.
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* Predicted peak pressure is 20% higher than experimental.
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Georgia Tech Experiment
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Maximum pressure increases when trapped air length is decreased:
e a=0.448, P, = 250 psia
e a=0.195, P, = 450 psia
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Hughes Aircraft Experiment
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« Test series varied reservoir pressure: 30 to 120 psia
* Pipe diameter: 0.25 In.
* Pipe downstream of latch valve (LV) is initially evacuated.
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Hughes Aircraft Experiment

Supply pressure = 120 psia
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» GFSSP does not understand “empty”, so the evacuated line is initially filled
with ideal gas air at low pressure.
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Hughes Aircraft Experiment
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» Reported maximum pressure is 2350 psia in the dead end at 0.17 sec.
» GFSSP predicts 2279 psia at 0.176 sec.

TFAWS 2019 — August 26-30, 2019 11



Hughes Aircraft Experiment
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» Decreasing initial air pressure of evacuated lines increased the maximum

pressure, although there was little change when P, < 1 psia.

TFAWS 2019 — August 26-30, 2019 12



Hughes Network Experiment
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* Reservoir pressure: 240 psia
* Pipe diameter: 0.25 in.
 R1is the suddenly opening valve.

« R2is a pair of valves that close quickly during priming event.
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Evacuated nodes are modeled as ideal gas air initially at 1 psia.
* Pressure data available at nodes 15 and 28.
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Maximum pressure in lower branch is 1837 psia at node 28. Measured pressure
at this location is 1800 psia.
Maximum pressure in upper branch is 3500 psia at node 9. No test data were

reported for this location.
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Moore et al., JSR, 2019

 Reservoir pressure: 1.5, 2.2, or 2.9 MPa
 Linelengths: 0.510r2.0m

* Line diameters: 6.5, 9.5, or 12.7 mm

* Flow Control Valve C,: 0.037, 1.5, or 4.0
« |Initial air pressure in line: 4, 15, 101 kPa
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Penn State Experiment
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Penn State Experiment
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« Predictions are reasonable for cases with FCV C, = 0.037 and 1.5.
 For cases with C, = 4.0, GFSSP consistently over-predicts peak pressure.

* No clear relationship seen between GFSSP prediction accuracy and tank
pressure or initial line pressure.
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Penn State Experiment
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» Discretization study found that predicted peak pressure values slowly converged
as more nodes were added to model.

« Valve history profile (linear or parabolic) usually had little effect on the peak
pressure, and only a small effect on predicted time of peak pressure.
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Penn State Experiment
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 However, choice of valve opening profile did have an effect on those runs where
the valve was not completely open before the pressure surge time.

« Shorter line with narrow-or-medium diameter.
* Moderate-or-high tank pressure
 High Cv valve with slow opening time (0.075 s)
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Moore et al., JSR, 2019

Penn State paper did not provide line length and minor losses between tank and

flow control valve.

Adding an arbitrary line length between the boundary and the valve decreased
peak pressure, but not enough to match data.
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Discussion

GFSSP’s predictions of peak pressure during a priming event are usually
either accurate or too high.

Models of the Penn State Experiments stress the importance of the valve
opening time and profile shape to the peak pressure prediction when a
slow-opening valve is matched with a small volume to be filled.

Future work:
 More complex fluid networks
« Effect of a cavitating venturi in the line
* Implicit vs. explicit solution of the conservations equations
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