

Dynamic Analyses of the Proposed Habitable Exoplanet Astrophysics Facility

SPIE August 2019 J. Brent Knight NASA/MSFC/ES63

HabEx

- HabEx is one of 4 large astrophysics facilities being considered by the 2020 decadal
 - It is intended to, among other things, directly image planetary systems around sun-like stars
 - Its main goal is to directly image earth like exoplanets and characterize their atmospheric content
- The current design is on the order of 17.2X5.25 m and the Primary Mirror (PM) is 4 m in diameter
- Performance requirements include an extremely stable system

Line of Sight Stability (Jitter)	< 0.5 milli-arc-seconds per axis
Wavefront Error Stability	1 to 250 pm depending on coronagraph and spatial frequency

Objective

2017

- As part of the HabEx Pre-Phase A (feasibility) study, structural dynamic analyses have been performed to provide Systems Engineers (SE) with order of magnitude estimates of dynamic responses
 - Results are consistent with feasibility studies and are based on first cut requirements, assumptions, and simplified inputs
 - These results are rolled into system level performance predictions
 - The objective of this presentation is to describe the models used, simulations performed, and results

Jitter

- Line Of Sight (LOS) jitter < 0.5 mas per axis
 - Equates to low Nanolevel allowable linear and rotational jitter motion
- Dynamic analyses were performed to predict jitter due to Attitude Control System (ACS) dynamic inputs
 - **<u>Ring Down</u>** Transient ring down associated with turning the system
 - ACS thrusters will start turning the system then fire again to stop that motion
 - How long does it take for transient jitter to subside?
 - Jitter while pointing at a target and collecting data
 - Micro-Thrusters (MT) will be used to maintain orientation
 - Thrust level is expected to change, ramp up/down, very slowly
 - Considered to have no frequency content
 - The MT have a continuous noise level up to 10 Hz and then it ramps down
 - The MT noise is the only identified dynamic disturbance during science windows

Model

- The analyses was performed via the Finite Element (FE) method
- MSC/NASTRAN was used as the solver and MSC/PATRAN was the pre/post processor
- The two primary systems are the Spacecraft (SC) and the telescope
 - SC
 - Modeled by JPL personnel
 - Telescope
 - Modeled by MSFC personnel

Model

- The SC and Telescope FEMs were integrated by JPL personnel
- FEM details

		-
Grid	106381	
Linear Elements	7382	
Planar Elements	109023	
Solid Elements	128	
Point Elements	9596	
RBE2 Elements	302	
RBE3 Elements	53	'
MPC's	12	

Integrated HabEx FEM

Approximately 636K DOF

• FEM mass properties

Mass, Kg	10,687
CGx, m	0.00
CGy, m	25
CGz, m	2.04

Model Mirror Models

Analysis Input Loads and Locations

• Ring Down

- JPL provided thrust loads associated with a simple maneuver
- Step function applied at 2 of the 4 ACS thruster locations – Y axis selected
- 8.8N for 20.5 s, drift 368 s, -8.8N for 20.5 s

4 ACS thruster locations and 4 large MT pod locations 90° apart

• Jitter

- MT noise is the disturbance during science windows
- Noise input at all 8 MT locations
- Large MT pods
 - F=0.8 µN, .1<f<10 Hz (spec)
 - F=0.8 µN, .1<f<20 Hz (applied)
- Small MT pods
 - F=0.4 µN, .1<f<10 Hz (spec)
 - F=0.4 µN, .1<f<20 Hz (applied)

4 small MT pod locations 90°apart

Analysis Output/Results

- NASTRAN Multi-Point Constrain (MPC) equations were incorporated to calculate Relative Motions (RM) within the solution sequence
- Per HabEx SE request, MPCs were written to calculate RM's between the PM/SM, the PM and Tertiary Mirror (TM), and the SM/TM

Ring Down Analysis

- Physically, ring down is a transient event
- To assess the design to estimate the ring down time a NASTRAN transient (time domain) dynamic analysis (Solution 112) was performed
 - Required damping of .05% was used
 - No ring down time requirement has been determined in this feasibility study
 - In the absence of a requirement, the simulation was run 5 minutes past the "stopping thrust"
 - PM/SM RM for each DOF was output
 - The max RM 5 minutes after the last thrust was reported

- PM to SM Relative Motion was the selected metric
- X Direction

Peak after 5 minutes = 1.2E-4 pm

- PM to SM Relative Motion
- Y Direction

Peak after 5 minutes = 4.1E-4 pm

- PM to SM Relative Motion
- Z Direction

Peak after 5 minutes = 1.0E-4 pm

- PM to SM Relative Motion
- Ox Direction

Peak after 5 minutes = 2.3E-5 pico-radians

- PM to SM Relative Motion
- Oy Direction

Peak after 5 minutes = 1.4E-6 pico-radians

- PM to SM Relative Motion
- Oz Direction

Peak after 5 minutes = 4.4E-7 pico-radians

Ring down Conclusion

- No required time to regain stability after thruster induced transients has been determined
- The maximum linear RM is on the order of 10-4 pm after 5 minutes of settling time
- The maximum rotational RM is on the order of 10-5 p-rad after 5 minutes of settling time
- The LOS stability requirements are in the nm range
- Therefore, with small fractions of pm range motion predicted, 5 minutes of settling time is a conservative number to use in this early study

Jitter Analysis

- Jitter is a continuous event that occurs as long as the source vibration is in operation
- It is well suited for a frequency response or harmonic dynamic analysis
 Force, μN
- Damping was required to be .05%
- Results were predicted up to 350 Hz

Noise specified to 10 Hz

Conservatively applied out to 20 Hz

Frequency, Hz

Jitter Results

 Results up to 300 Hz were provided to the HabEx SE team and were rolled into system level performance assessments

NASA/MSFC/ES63/J. Brent Knight

Final Comments

- Feasibility fidelity dynamic analyses have been performed for the HabEx Pre-Phase A engineering effort
- Based on the provided FEM and required inputs, no show stoppers were identified