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Additive Manufacture is real…

Successful hot-fire testing of full-scale additive part to be flown on NASA’s Space Launch System (SLS)
RS-25 Pogo Z-Baffle – Used existing design with AM to reduce complexity from 127 welds to 4 welds
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Ref:  Andy Hardin, Steve Wofford/ NASA MSFC



But…don’t say we didn’t warn you!

Intro to Additive Manufacturing
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General Overview and Applications 
• Intro / What is AM (focus on metals)?
• Different Techniques/Comparison and Overview
• Intro of Materials
• Applications of Techniques
• Hot Fire Testing and Flight Examples

Design for AM and Detailed Fabrication Cases 
• Details of Builds Process and Development – L-PBF
• How to Design for AM
• Build Failures
• Post-Processing
• Future Advancements

Overview and Agenda
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• Additive Manufacture (AM): The process of joining materials together 
to create objects from 3D models.

• AM is not the solve-all to manufacture.  Trade AM with other 
manufacturing methods and implement only where appropriate.

• A complete understanding of design, build, and post-processing 
critical to utilization.

• AM takes practice!

Introduction to Additive Manufacture (AM)
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Metallic Additive Techniques

Based on Ref: 
• Ek, K., “Additive Manufactured Metals,” Master of Science thesis, KTH Royal Institute of Technology (2014). 
• Gradl, P., Brandsmeier, W., Calvert, M., et al., “Additive Manufacturing Overview: Propulsion Applications, Design for and Lessons Learned. Presentation,” M17-6434. 1 December (2017). 
• ASTM Committee F42 on Additive Manufacturing Technologies. Standard Terminology for Additive Manufacturing Technologies ASTM Standard: F2792-12a. (2012). 
• Gradl, P.R., Greene, S.E., Protz, C., Bullard, B., Buzzell, J., Garcia, C., Wood, J., Osborne, R., Hulka, J. and Cooper, K.G., 2018. Additive Manufacturing of Liquid Rocket Engine Combustion Devices: A Summary of Process 

Developments and Hot-Fire Testing Results. In 2018 Joint Propulsion Conference (p. 4625). 6
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Other metal additive processes are being developed and exist such as binder-jet, material extrusion, joule printing, material 
jetting, vat photopolymerization, although public data limited at this time.
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Laser Wire 
Deposition

Electron Beam 
Deposition

Laser Hot 
Wire2

Blown Powder 
Deposition

Ultrasonic
Additive

Metallic Additive Manufacturing Processes

1 Precision refers to the as-built state and does not encompass hybrid techniques and/or interim machining operations that would 
increase resolution. There are a lot of other factors not considered in this chart, including heat inputs to limit overall distortion.
2 Technology still under development

Cold Spray

Friction Stir 
Additive/MELD2

Why use one AM technique over another?

Complexity of Features

Cost/Schedule

Material Physics

AvailabilityMaterial Properties Internal Geometry

Speed of ProcessScale of Hardware
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Advantages:
• Components that are highly complex and low 

production rate.
• Features that could not be fabricated by other 

methods.
• Increased design freedom and customization.
• High feature resolution.
• Near net-shape complex geometry.
• Part count reduction.
• Performance improvement (i.e. weight reduction).
• One-off and discontinued parts.
• Shorter lead times.
• Properties better than cast, 10-15% below wrought.

Advantages and Disadvantages of AM
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Disadvantages:
• L/E-PBF limited to weldable alloys 
• Build envelope size limits.
• Design constraints: overhang surfaces, minimum 

hole size.
• Surface roughness.
• As built microstructure will require post 

processing.
• Substantial touch labor.
• Waste generation: spent powder, build plates, 

failed builds.
• MORE expensive than traditional manufacturing 

(high hourly rates offset by reducing labor costs)
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Examples of AM Metallic Alloys

Ni-Base
Inconel 625
Inconel 718
Hastelloy-X
Haynes 230
Haynes 282
Haynes 188

Monel K-500
C276

Waspalloy

Al-Base
AlSi10mg

A205
F357

6061 / 4047

Fe-Base
SS 17-4PH

SS 15-5 GP1
SS 304
SS 316L
SS 420

Tool Steel (4140/4340)
Rene 80
Invar 36
SS347
JBK-75

NASA HR-1

Cu-Base
GRCop-84
GRCop-42
C-18150
C-18200
Glidcop
CU110

Refractory
W

W-25Re
Mo

Mo-41Re
Mo-47.5Re

C103
Ta

Ti-Base
Ti6Al4V
γ-TiAl

Ti-6-2-4-2

MMC
Al-base
Fe-base
Ni-base

Materials developed for L-PBF, E-PBF, and DED processes (not fully inclusive)

Bimetallic
GRCop-84/IN625
C-18150/IN625

Co-Base
CoCr

Stellite 6, 21, 31
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Powder Bed Fusion

Process Illustration.  Image courtesy Simufact.

• Laser Powder Bed Fusion (L-PBF)
• Basic Process: Layer-by-layer powder-bed 

approach where desired features are melted 
using a laser and solidify.

• Advantages: High feature resolution, complex 
internal designs such as cooling channels.

• Disadvantages: Scale limited and does not 
provide a solution for all components.

• Electron Beam Melting
• Basic Process: Similar to L-PBF, but uses an 

electron beam. 

• Advantages: Performed in-near vacuum, which 
is useful for reactive materials such as Ti6A4V. 



L-PBF Operations

EOS M290, IN718
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L-PBF Scale vs. Engine Scale

Gradl, P.R., Brandsmeier, W. Alberts, D., Walker, B., Schneider, J.A. Manufacturing Process Developments for Large Scale Regeneratively-cooled Channel Wall Rocket Nozzles 
Paper presented at 63nd JANNAF Propulsion Meeting/9th Liquid Propulsion Subcommittee, December 5-9, 2016. Phoenix, AZ. 

90” 46”

Nozzle Exit Dia.

70” 56”

SSME/RS-25

Engine

J-2X, Regen Only RD-180RL-10A-4

SLM Build 
Boxes

10x10x10 15.5x24x19

(inches)

12

L-PBF Build 
Boxes
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Directed Energy Deposition (DED)

Blown Powder Directed Energy Deposition (DED)
• Basic Process: Coaxial laser energy source with 

surrounding nozzles that inject powder (within inert 
gas) fabricating freeform shapes or cladding

• Advantages: Large scale (only limited by gantry or 
robotic system), multi-alloys in same build, high 
deposition rate

• Disadvantages: Resolution of features, rougher 
surface that L-PBF, higher heat input

*Process pictures courtesy RPM Innovations and DM3D 
(photo credit: Tyler Martin)
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Directed Energy Deposition (DED)

Video Credit: Tyler Martin



Paul Gradl
Additive Manufacturing Rockets
Additively Manufactured Rocket Engines
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Rapid fabrication using blown powder Directed Energy Deposition (DED) 
of channel wall nozzle liners to reduce lead time and cost >50%

~75% complete

1/2 scale RS25 channel wall nozzle liner (without coolant channels)

Large Scale Example of DED

44” dia and 48” height (JBK-75)



Various Directed Energy Deposition 
(DED) Technologies

Blown Powder Deposition / Hybrid
Melt pool created by laser and off-axis nozzles 
inject powder into melt pool; installed on gantry 
or robotic system

Electron Beam Deposition (wire)
An off-axis wire-fed deposition technique using 
electron beam as energy source; completed in a 
vacuum.

Laser Wire Deposition
A melt pool is created by a laser and uses an off-
axis wire-fed deposition to create freeform 
shapes, attached to robot system

Arc-Based Deposition (wire)
Pulsed-wire metal inert gas (MIG) welding process 
creates near net shapes with the deposition heat 
integral to a robot

Freeform fabrication technique focused on near net shapes as a forging or casting 
replacement and also near-final geometry fabrication. Can be implemented using 
powder or wire as additive medium. 

Integrated and Hybrid AM
 Combine L-PBF/DED
 Combine AM with 

subtractive
 Wrought and DED

*Photos courtesy DMG Mori 
Seiki and DM3D

NASA L-PBF/DED

16
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Comparison of L-PBF with DED
Laser Powder Bed Fusion (L-PBF) Directed Energy Deposition (DED)

Feature Resolution / Complexity High resolution of features
Wall thicknesses and holes <0.010”

Medium resolution of features
Walls >0.040” and limited holes

Deposition Rate Low build rates
<0.3 lb/hr

High Build rates
lbs per hour (some systems >20lb/hr)

Multi-alloys / Gradient Materials Monolithic materials in single build Option for multi-alloys or gradients 
within single build

Materials Available High number of materials available 
and being developed

High number of materials available 
and being developed

Production Rates Higher volume with several parts 
in a single build

Generally limited to single builds; longer 
programming/setup time

Scale / Size of components Limited to existing build volumes 
<15.6” dia or 16”x24”x19”

Scale is limited to 
gantry or robot size

Added Features / Repair No (limited) ability to add material 
to existing part

Can add material or features 
to an existing part

Different methods for 
different components!
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Examples of Additive Propulsion Components
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Additive Manufacturing Rocket Engines

35K Hot-fire Testing under LCUSP Project – Bimetallic Additively Manufactured Chamber



AM Process Flow

Part design
Model 

Checks

Machine 

Parameters
L-PBF Build

Powder 

Removal

Verify Powder 

Removal

Stress Relief
Remove part

from plate

Heat 

Treatments

Dimensional 

Scans

Final 

Machining

Surface 

Finishing

Final 

Inspections

Mechanical 

Testing

Part 

Complete

Each process step also includes a series of additional tasks in 
order to properly design, build, or complete post-processing 
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• Holes & Passages
– Size limits (Horizontal: Min: 0.4 mm, Max: 8 mm; Vertical: Min: 0.4 mm, Max: unlimited).
– Channel surface roughness variable on size: powder sintering for smaller OD and overhang angle for larger OD.
– Hole sag in the Z-axis: circular hole becomes a horizontal ellipse, vertical ellipse becomes near-circular hole.

1 mm hole array micrographs (45°) Hole size & surface 
roughness

Self-Supporting Angles. 
Courtesy EOS.

The design engineer of the 21st century is successful if parts can be repeatedly and economically manufactured.

Candidate 
Part 

Selection

Design

Optimization 
for AM

FEA  
Design 

Verification

Additive 
Manufacturing

Mechanical 
& Material 
Verification

Holistic AM Design Flow & Considerations

Courtesy Melissa Orme, Morf3D
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Part Orientation, Supports, Slicing

Supports examples

Hybrid crown & perforated block support Sacrificial powder removal 
features

Sacrificial features-
interfaces

The purpose of support structures in metal AM are to hold down the part to the build plate, 
preventing upward distortion.  Supports are sacrificial and are built less dense and thin.

AMPed LOX Impeller Iterations vs. overhang surfaces.  Courtesy Marty Calvert.
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Build Process

Laser Focus Diameter.  Courtesy EOS.

Stripe Exposure Strategy. Courtesy EOS

Chess Rotated Exposure Strategy. Courtesy 
Concept Laser.

Hatch spacing Beam Offset.  Courtesy EOS.

Parameter Description

Thickness (t)
Powder layer 

thickness (mm)

Power (P)
Laser power set-point 

(W)

Speed (V)
Laser scan speed 

(mm/s)

Hatch Distance 
(D)

Distance between 
centerlines of weld 

pools (mm)
Overlap Melt pool overlap (%)

Beam Offset 
(BO)

Compensates for melt 
pool size to part (mm)

Scan Pattern
Continuous, Chess, 

Stripes.

Melt Pool Track

~80 
µm

Melt Pool Diameter 
(~150-200 µm)
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Porosity & melt pool path in AlSi10Mg Melt pool path in AlSi10Mg

Gas porosity in AlSi10Mg.  Trace H2O reacts with Al to form H2

bubbles in the melt pool that are trapped upon solidification.

Shrinkage (keyhole) porosity in IN718 results from high 
laser power or fast scan speed.

Melt pool depth of IN718

Scan Strategy & Microstructure
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Printing Exercise #1

Your widget will change the world……..how can you print it?



Printing Exercise #1

Create 
CAD

Generate 
STL

Create Build 
Layout

Off to the 
Machine!

Build 
Software

Create Single Part 
Layout



Printing Exercise #1

What happened?!?!

Weak supports
Thin keychain was 

straight up and 
down. Large lever 
arm with recoater

Supports on 
part features



Improvements to build plan.

Stronger supports Canted with respect 
to recoater arm

Canted with respect 
to build plate

Printing Exercise #1

No supports on features

Successful build!

Another Canting 
Example.



Witness marks on the surface and interior

Edge Porosity

Sub-Surface Defect

Hatch

Edge Porosity can result from an excessive beam offset.

Build Artifacts
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Short feed where insufficient/non-uniform powder distribution occurs.  Over time the powder layer will be excessively thick when 
corrected and the laser melt pool will not be sufficiently deep to bond the thick layer to  substrate underneath.  The re-coater blade is 
eventually damaged by curling.

Swelling (curling) results from geometries that taper (overhangs)  to thin segments and are susceptible to local overheating then swelling.  
The thin segment can then be curled by the re-coater blade resulting in downstream short feeds.  This can result in part delamination.

Build Failure Examples
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Part separation from support structure

Machine to machine variation Damaged re-coater blade

Unsupported overhanging surface. Courtesy Travis Davis. Corrupted build file

Stray vectors

Build Failure Examples
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Printing Exercise #2

It’s simple geometry, what couple possibly go wrong?



Printing Exercise #2

Create 
CAD

Generate 
STL

Off to the 
Machine!

Build 
Software

Set Machine Build 
Parameters



What happened?!?!

Printing Exercise #2



What happened?!?!

Printing Exercise #2



What happened?!?!...Another Clue

Printing Exercise #2



• Large amounts of sintered material -> Thermal stresses in build plate

• Bolt broke

• Corner elevated resulting in offset of parts
• Laser doesn’t know (or care) so it keeps printing original coordinates onto 

“new shifted datum”

Printing Exercise #2



What happened?!?!

Printing Exercise #2



• Root Cause: Second bolt 
broke causing an 
additional shift in build 
plate

• Symptom 1: Offset in 
laser/part datum

• Symptom 2: Newly 
created layers now 
“overhung” and were 
able to curl and separate

• Symptom 3: Recoater
blade strikes deformed 
layers and is damaged

• Symptom 4: Complete 
recoater mayhem

Printing Exercise #2

Recoater piece

Recoater trough



• Use a thicker build plate

• Increased dosage factor on 
build setup

Printing Exercise #2



What happened?!?!

Printing Exercise #2

• Residual stresses in 
part were allowed to 
remain (part not 
removed from plate, 
no heat treat, etc.)

• Crack initiated and 
eventually spread 
through part.



Post-Processing

Plate removal (band saw or wire EDM)Stress Relief

Sieve Powder

Unpack & Vacuum

Support Removal

Vibration & Mechanical Removal Downdraft Table Compressed Air Sintered Powder
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• Heat control is critical and can cause significant deformations or failures
• May be driven by original design (too thick or thermal gradients too high across 

varying cross sections)

• May be impacted by adjacent parts or witness specimens

• Material curl caused by coater arm damage
• Based on knife edges during design

• Stops and starts are also common in 3D prints, causes witness lines
• Refill of powder in dose chamber

• Issue observed that requires visual

Distortion, Curl, Re-start Marks

43

Cracking from Residual 
Stresses during build Material curl on knife edgeRestart line observed post-build



Stress Relief Heat Treatment
• Stress Relief  – Reduces residual stress as a result of the L-PBF process.

‒ IN718: 1065 ± 14 °C, 1.5 hrs -5/+15 min in  argon, furnace cool venting to air as soon as allowable.

• Recrystallization – Microstructure change from dendritic (stressed) to equiaxed grains (stress free).

L-PBF induced residual stress of IN718 distorting 316L build 
plate.

Residual stress induced failure.

Cooling shrinkage behavior.

Nucleation, Recrystallization & Grain Growth 44



Microstructure of IN718

IN718 Microstructure. Courtesy Reed.

• IN718 is a precipitation strengthened alloy1,2

‒ γ matrix solid solution: Ni-Cr, face-centered cubic (FCC).
‒ γ′ phase: Ni3(Al, Ti, Nb), FCC.
‒ γ′′ phase: Ni3Nb, body centered tetragonal (BCT).
‒ δ phase: Ni3Nb, orthorhombic (needle-like).
‒ MC-type carbide phase: (Nb,Ti)C, FCC.
‒ Laves phase: (Fe,Ni)2Nb, hexagonal close packed (C14). Intermetallic prone to cracking.

• Solidification sequence1,2

‒ L→ L + γ (1359 °C), L→ γ + MC (1289 °C), L→ γ + Laves (1160 °C).
‒ δ phase precipitate (solid state reaction) at 1145 ± 5 °C.
‒ γ′ and γ′′ phases precipitate at 1000 ± 20 °C.

1Courtesy Mostafa et. al, 2017. 
2Manikandan, 2015.

3Courtesy Bhadeshia, 2018.Time-Temperature Transformation Diagram-IN7181. Microstructural change & phase evolution of IN7181.

γ FCC 
structure3

γ' FCC 
structure3

γ’’ BCT 
structure3
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Hot Isostatic Press (HIP)

HIP – Closeout porosity and potential to heal defects.

HIP pore close-out. Courtesy Metal AM, Winter 2017.

MSFC HIP Furnace

L-PBF IN718 Tensile Strength vs. Condition. Courtesy Hazeli.

Monel K500 SEM BSE micrographs 500x (L) and 1600x (R) showing porosity 
along grain boundaries.  Courtesy UA Senior Materials Team.



Solutionize & Age Heat Treatment

• Solutionize: Creates γ as the only stable phase in solution then quench to 
supersaturate the solution.

‒ AMS 5664: 1066 ± 13°C, time thickness dependent, air quench.

• Age: γ’’ nucleate uniformly in the microstructure and grown to an optimal size.
‒ AMS 5664: 760°C for 8h (γ’’ forms), cool to 650°C, hold for 20 h (γ’’ grow), air 

cool.

Notional Phase Diagram- IN718General phase diagram showing heat treatments.

MSFC Vacuum Furnace
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NDE

Structured Light Scanning CAD-scan data comparison

• Structured Light Scanning
– Surface mapping
– Geometric distortion/deviation
– Limited spatial resolution
– Equipment expensive but operation 

relatively inexpensive

• X-ray radiography & CT
– Detect trapped powder 
– Large flaws
– Limited spatial resolution

(excludes micro-focus CT)
– Material determines scan 

time/resolution
– Expensive & time consuming

• Other
– Visual / Borescope
– In-situ
– Ultrasonic
– Penetrant
– Infrared

Radiograph showing powder filled channels CT showing trapped powder in a manifold

Known flaws in AlSi10Mg block.  Left: Regular CT.  Right: Micro-CT 48

Visual Borescope

In-situ Inspections



• As built roughness
– PSD & parameters influence Ra.
– High cycle fatigue (HCF) knock down 

due to near-surface porosity.

• Surface finish modification
– Shot peen
– Tumble
– Machine
– Extrude/slurry hone
– Chemical etch
– MicroTek (removes 0.05 mm)
– Electro-polish

Surface Finish Modification

Material Ra (μm)
Inconel 718 5.05
GRCop-84 5.44
AlSi10Mg 3.29

Typical as-built surface roughness (L-
PBF)As-built surfaces of AlSi10Mg on Concept Laser X-Line.Software induced tesselation 49



Printing Exercise #3

I want to try something I’d actually use…



Closed Centrifugal Compressor Impellors

51

Prepare for 
Printing

Post Process

Print and Remove 
Part

Inspect

Design for 
AM

Material:
SS 17-4 PH

Printing Exercise #3

!
What happened?!?!



Closed Centrifugal Compressor Impellors
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Prepare for 
Printing

Post Process

Print and Remove 
Part

Inspect

Design for 
AM

Material:
Inconel 718

Ti-6Al-4V

Printing Exercise #3

Looks Good So It 

Must Be Right?

How Can We 

Make Sure?
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Support material 
remains after extrude 
hone finish

Printing Exercise #3

NDE Destructive Evaluation Application 
Testing

Allison, T.C., Moore, J.J., Rimpel, A.M., Wilkes, J.C., Pelton, R., Wygant, K., “Manufacturing and 
Testing Experience with Direct Metal Laser Sintering for Closed Centrifugal Compressor 
Impellers,” Proceedings of 43rd Turbomachinery Symposium, Houston, TX, September 2014.



• Covered impeller for a compressor 
operating near the critical point in 
sCO2 cycle.

• Made using DMLS using Inconel 718

• Hanwha Techwin and SwRI have 
tested several impellers manufactured 
using this process

– Internal testing has shown very good material 
properties can be achieved

• Passed spin testing for balance, over-
speed, and performance 

– Geometry scaled up and performed in air.

• The resulting design is expected to 
achieve a significant range 
improvement over a traditional stage 
design. 

3D Printed Part (Unfinished) 3D Printed Part (Finished)
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Printing Exercise #3

Extend Into New Applications

Pelton, R., Allison, T.C., Smith, N., Jung, J., “Design of a Wide-Range Centrifugal 
Compressor Stage for Supercritical CO2 Power Cycles,” Proceedings of ASME 
Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, 
Charlotte, NC, June 2017.
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Advances in Additive Manufacturing
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Support structure etching.  
Courtesy CO. School of Mines.

Increased scale and resolution

High density ceramic AM.  Courtesy Lithoz.

Non-weldable alloys.  Courtesy HRL.

In-Situ Process Monitoring.  
Courtesy EOS.

Engineered platelets to replace powders.
Courtesy SwRI

LPBF of shape 
memory alloys.
Courtesy SwRI

Advanced NDE application for 
qualification (Eddy Current 

Testing shown). Courtesy SwRI

Hermetic metal-ceramic bonds. Courtesy SwRI

Multi-alloys and hybrid techniques



Paul Gradl
256.544.2455
Paul.R.Gradl@nasa.gov

Omar Mireles
256.544.6327
Omar.R.Mireles@nasa.gov
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AM Process Flow
DESIGN & ANALYSIS

- Performance Requirements
-Design for AM, GD&T,  export .stl

BUILD PREPARATION

- Repair .stl

- Build placement & orientation

- Thermal stress/distortion prediction

- Support generation

- Slicing 

- Scan strategy

BUILD OPERATIONS

- Machine preparation

- Build via parameters

- Process Controls

- Powder refill

- Lens cleaning

- Restarts

POST-PROCESS

- Powder Removal

- Stress Relieve

- Support Removal

- Plate Separation

- HIP

- Heat Treatments

- Machine/Surface mod

- Mechanical Testing

NONDESTRUCTIVE EVALUATION

- Structured light scanning

- X-ray CT

-Compare inspection models to CAD

IMPLEMENTATION

- Test & post-ops inspection

- NDE / Destructive evaluation
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Basic Consideration in Design and Printing

• The printer is going to (attempt to) print 
geometry based on the CAD model

• Most 3D printers use .stl files 
(stereolithography)

• .stl files are flat triangles used to approximate CAD 
geometry

• The .stl file is sliced into layers to generate the 
laser toolpath / code

• Have observed significant differences in 
surfaces, although based on geometric 
features

• Finer resolution files are significantly larger 
and machines can be limited on toolpath code

Print File

Example of injector elements with facets

Same CAD file with different export parameters

59Ref: Will Brandsmeier, Kevin Baker, Dwight Goodman



Considerations in Design in Printing

• Angled feature designs are limited (measured 
from horizontal)

• Features <45o normally require support
• Features >45o normally do not require support
• Consider features in all dimensions

• Holes cannot be printed as true holes if larger 
diameter

• Largest unsupported hole ~ .250”
• Smallest hole/feature ~.030”

• Overhangs can be created, but require supports 
(and subsequent removal)

Hole design examples

Angled wall design example

Design support needed 
for flange

Manifold design

Hole examples

B
u

ild
D

ir
ec

ti
o

n

Hole examples
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Considerations in Design and Printing

• Design and analysis needs to consider 
surface finishes for internal and external 
features

• Internal passages may need to be oversized 
to account for burn-thru or undersized hole

• Support material should be understood in 
design phase

• Placement of support material is important

• How support material is removed is equally 
important

• Ask your operator or vendor

• Support material highly dependent on print 
orientation

61
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No support material used

Burn-thru on “roof” feature

Support for 
flange

Ref: Will Brandsmeier, Kevin Baker, Dwight Goodman / NASA MSFC ER34



Considerations in Design and Printing

• Print orientation is critical – evolve the CAD design with AM machine operator or vendor
• Print orientation is not always obvious; supports may be minimized in a complex angled orientation

• Print volume should be considered
• Bolt holes required for the build plate
• Build plate (~1” thick) takes up part of the build height

• Test print in plastic during design phase
• Inexpensive method to identify issues with design and model
• Determine design issues, bad design features and actual feature issues can be resolved with test prints
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Advanced Design for AM

Generative Design.  Courtesy Autodesk.

• Topology Optimization
– Designer provides a design then      

specifies no-mod zones, constraints,   
loads, material, and FS.

– Program generates a design by  
subtracting unnecessary mass regions.

– Apply when interface, flow, or thermal 
features are required but mass reduction 
is desired.

• Generative Design
– Define interface geometries, enclosure, 

constraints, loads, material and FS.
– Software generates numerous point 

designs     and displays an an Ashby chart.
– Select and prioritize optimized designs:         

mass, strength, stiffness.
– Apply when mass and structure dominate.
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Topology Optimized ISS ECLSS APP Manifold, Ti6A4V.  34% mass and 75% cost savings.  Courtesy Zach Jones.



• Relative density & surface area gradients.
• Reduce weight, retain stiffness.
• Gas/liquid permeable solid: porous foam 

& Regimesh replacement.
• Metal Matrix Composite (infiltrate).
• Custom property potential: mimic 

properties of different materials in the 
same part using the same material in 
adjacent regions.

• Computationally expensive.

Lattice Structure Applications

CFM Magnetically Coupled Rotor, 
Heat Exchanger, LAD demos

Green Propulsion Thruster & Stand-Off

ECLSS 4-Bed Molucular Sieve 
(4BMS-X) Heater Plate

Cryo Heat Exchanger-Injector-Condenser Demo KSC O2 Generator Cold-Head

Lattice Regen 
Chamber Demo
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• Standardization is essential for consistent       
and reliable production of flight critical AM 
components.

• NASA cannot wait for organizations to issue 
standards since human spaceflight programs 
already rely on AM:

‒ Commercial Crew
‒ SLS
‒ Orion

• Objective: Develop an appropriate AM standard
‒ MSFC-STD3716 & MSFC-STD-3717.
‒ Draft released in 2015 for peer review.
‒ Final revision released October 2017.
‒ Iterative (living) document.

MSFC AM Flight Certification Standard

Machine repeatability

MSFC-STD-3716 & -3717:  From powder to acceptance
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Printing Exercise #4

What is my material……really?



HIP/Heat Treat
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Prepare for 
Printing

Post Process

Post Machining

Material 
Test

Material:
Inconel 738LC

What Could 

You Learn?

Print and 
Remove Part

Printing Exercise #4



Elongation

(%)

S1 1330 0.2507 162,000 113,000 17.5 27.1 Gage

S2 1330 0.2493 161,100 113,000 16.8 23.9 Gage

S3 1100 0.2498 190,600 111,600 15.4 23.5 Gage

S4 1100 0.2496 191,400 113,100 15.6 22 Gage

R1 1330 0.2507 161,300 114,300 21.6 34.1 Gage

R2 1330 0.2507 161,700 115,200 23.4 37.3 Gage

R3 1100 0.2509 185,800 113,600 15.2 23.1 Gage

R4 1100 0.251 185,700 112,800 14.6 22.1 Gage

Fracture 

Location
Specimen ID

Test 

Temper

Diameter 

(Inches)

Ultimate 

Strength 

Yield 

Strength 

Reduction 

Of Area (%)

1300°F

1600°F

1450°F

1562°F

Historical Cast In738 
Data

Printed
In738LC Data

Printing Exercise #4



• Misconceptions
– MORE expensive than traditional manufacturing 

(high hourly rates offset  by reducing labor costs).
– Waste generation: spent powder, build plates, failed builds.
– Substantial touch labor.

• Disadvantages:
– L/E-PBF limited to weldable alloys (unless additives included).
– Build envelope size limits.
– Design constraints: overhang surfaces, minimum hole size.
– Surface roughness.
– As built microstructure will require post processing.

• Property Variability
– Properties dependent on starting powders, parameters, and post-processing.
– Anisotropic properties in the build direction (Z).
– Size: small-scale vs. full-scale builds.
– Build volume spatial location.

Disadvantages

Spent build plates.

Power from a wet-vacuum.
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Oversized sieved powder.



Turbomachinery

Ref:  Derek O’Neal,
Marty Calvert / NASA MSFC
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Design and Post-Processing Considerations

• Geometric Dimensioning and Tolerancing (GD&T) 
must be considered in design for post-processing

• Cylinders for better positional tolerance at 
feature level

• Grooved for axial location
• Flat surfaces for datums
• Extra holes for powder removal
• Additional stock material for critical features 

that will be post-machined

• Holes only when required or in softer materials
• Existing printed holes can cause machine tools 

to “walk”
• Do not print threads
• Undersize holes for reaming and tapping

Hole offset from port centerline

Holes drilled and tapped 
after AM build
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• Additive manufacturing is enabling materials that were historically 
difficult to process or expensive

• GRCop-84, GRCop42, C-18150.

Combustion Chambers
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Ref:  Chris Protz, Sandy Greene, Ken Cooper/ NASA MSFC



• NASA has developed bimetallic combustion chambers using Copper-
alloy liners and Inconel structural jacket (GRCop-84 to Inconel 625)

• L-PBF to fabricate the liner and DED for structural support

• Similar processes used for Spark Ignition Systems with bimetallic but using 
wrought material and DED (C-18150 to Inconel 625)

Bimetallic Components

Ref:  Chris Protz, Robin Osborne / NASA MSFC 73



Injectors

• MSFC has developed a total of 10 unique AM injectors 
between 2012-2018

• Materials: Inconel 625, Inconel 718, Monel K-500
• Element Types: swirl coax, shear coax, FOF
• Number of Elements: ranging from 6 to 62
• Diameters: ranging from 1.125” to 7.5” 
• Hot fire tests performed on 7 of these 10 AM injectors

• To date, all MSFC injector designs have been manufactured 
with a powder-bed process.  

• Advantages of AM application to injectors:
• Reduction of part count, joining operations, cost, and schedule
• Allows non-conventional manifolding schemes and element designs

• Challenges of AM fabrication of injectors: 
• Feature size resolution (particularly radial to the build direction)
• Excessive surface roughness 
• Removing powder prior to heat treatments (even stress relief) is 

both necessary and challenging

100lbf LOX/Propane Nanolaunch
Injector. Built 2012. Tested 2013. 

1.2K LOX/Hydrogen Injector 
First Tested in June 2013. 

>7200 seconds hotfire

20K LPS Subscale Injector. 
Tested August 2013 

Methane 4K Injector with printed 
manifolds, parametric features. 

Tested Sept 2015.

LOX/Methane Gas Generator 
Injector, Tested Summer 2017

35K AMDE Injector with 
Welded Manifolds, Tested 2015

74Ref: Brad Bullard, Jim Hulka, Sandy Greene, Greg Barnett, Jessica Wood



Nozzles

Laser-Powder Bed Fusion
• Diameter is limited
• High resolution features
• Slow deposition rates

Directed Energy Deposition
• Scale is not limited
• High deposition rates
• Loss of resolution 

(compared to L-PBF)
• (3) DED techniques being 

evolved
• Potential for casting and 

forging replacements

Laser Wire Deposition Arc-Wire Deposition Blown Powder Deposition
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System Integration Example
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Thrust

StructureCCV 
Part reduction: 5 to 1

Mixer (Hidden)
Part reduction: 8 to 2

Oxidizer Turbopump 
Bypass Valve
Part reduction: 5 to1

Injector
Cost Reduction: 30%
Part reduction: 252 to 6
Eliminated braze joints
Tested to 100%

Fuel Turbopump
Schedule reduction by 45%
Part reduction: 40 to 22
Tested to 90,000 RPM

Main Oxidizer Valve
Part reduction: 6 to 1
Successfully tested
(Hidden) 

Oxidizer Turbopump
Part reduction: 80 to 41
Tested to 40,000 RPM.

Main Fuel Valve
Part reduction: 5 to 1
Successfully tested 

Regen 

Nozzle



Directed Energy Deposition

77

Material properties are dependent on a 
number of processing parameters 
(material, build rates, environment, 
orientation… ) => highly variable

Same material => Different DED machines

Directed Energy Deposition Rocket Nozzles
Liquid Rocket Engine Nozzles
3D Metal Printing Rocket Engines

Inco 625 As-Built - Axial

20x 50x 100x

Inco 625 As-Built - Hoop

20x 50x 100x



Build Simulation: Residual Stress & Distortion Failure Prediction

AMPd Engine LOX Impeller (Shrouded) V1 on EOS M290. Build time - $0.3k (3 hrs), Powder - $ 0.01k (0.25 kg), Saw - $0.2k, Plate resurface - $0.2k, Total - $0.71k 

MET1 Injector V1 on EOS M290. Build time - $5.5k (55 hrs), Powder - $ 0.32k (5.82 kg), Saw - $0.2k, Plate resurface - $0.2k, Unsuccessful total - $6.22k. 

Successful total $6.22k. Total Cost $12.44k.  15 minute long simulation. 78



Build Failure Examples

Horizontal Lack of Fusion (LOF) defect from ejecta.

LOF defects decrease mechanical properties such as tensile strength, elongation, high cycle fatigue.

H-LOF defect from insufficient laser power (set 
point or attenuation).

Vertical-LOF defect from wide hatch spacing.

Courtesy  Arthur Brown79


