

EXPLORE

Enabling a Near-Term Interstellar Probe with the NASA's Space Launch System

Robert Stough SLS Utilization Manager

SLS LIFT CAPABILITIES

Payload to LEO	95 t (209k lbs)	95 t (209k lbs)	105 t (231k lbs)	105 t (231k lbs)	130 t (287k lbs)	130 t (287k lbs)
Payload to TLI/Moon	> 26 t (57k lbs)	> 26 t (57k lbs)	34–37 t (74k–81k lbs)	37–40 t (81k–88k lbs)	> 45 t (99k lbs)	> 45 t (99k lbs)
Payload Volume	N/A**	9,030 ft ³ (256m ³)	10,100 ft ³ (286m ³)**	18,970 ft³ (537 m³)	10,100 ft ³ (286m ³)**	34,910 ft ³ (988 m ³
Low Earth Orbit (LEO) represents a typical 200 km circular orbit at 28.5 degrees inclination			*EUS	5 – SLS Exploration Upper	Stage	
Trans-Lunar Injection (TLI) is a propulsive maneuver used to set a spacecraft on a trajectory that will cause it to arrive				EUS*	-	
at the Moon. A spacecraft performs TLI to begin a lunar transfer from a low circular parking orbit around Earth.				Booster x2	► =	
The numbers depicted here indicate the mass capability at the Trans- Lunar Injection point.				BOO		
Not including Orion/Service Module volume	SLS Block 1 Crew	SLS Block 1 Cargo	SLS Block 1B Crew	SLS Block 1B Cargo	SLS Block 2 Crew	SLS Block 2 Carg
Maximum Thrust	8.8M lbs	8.8M lbs	8.8M lbs	8.8M-9.8M lbs	11.9M lbs	11.9M lbs

PIONEER

VOYAGER

PLUTO

0667

VOYAGER 1

PIONEE

SPACE LAUNCH SYSTEM: MORE VOLUME

90' 62.7' 47' 32.8'

Enclosure	5.1m PLF	8.4m USA	8.4m USA PLF	8.4m PLF, Short	8.4m PLF, Long	10m PLF
Туре	5m PPL	8.4m CPL	8.4m PPL	8.4m PPL	8.4m PPL	10m PPL
l an ath	47.0 ft	32.8 ft	47.2 ft	62.7 ft	90 ft	90 ft
Length	14.3 m	10.0 m	14.4 m	19.1 m	27.4 m	27.4 m
Diamatan	16.7 ft	27.6 ft	27.6 ft	27.6 ft	27.6 ft	32.8 ft
Diameter	5.1 m	8.4 m	8.4 m	8.4 m	8.4 m	10.0 m
Internal Discussion	15.1 ft	24.6 ft	24.6 ft	24.6 ft	24.6 ft	29.9 ft
Internal Diameter	4.6 m	7.5 m	7.5 m	7.5 m	7.5 m	9.1 m
Augilable Maluma	6,274 ft ³	10,100 ft ³	11,260 ft ³	21,930 ft ³	34,910 ft ³	46,610 ft ³
Available Volume	177.6 m ³	286.0 m ³	319 m ³	621 m ³	988 m ³	1,320 m ³
Potential Availability (No Earlier Than)	COTS	2022	2023	2023	2024	2028

COTS: Commercial Off-the-Shelf CPL: Co-manifested Payload PPL: Primary Payload PLF: Payload Fairing

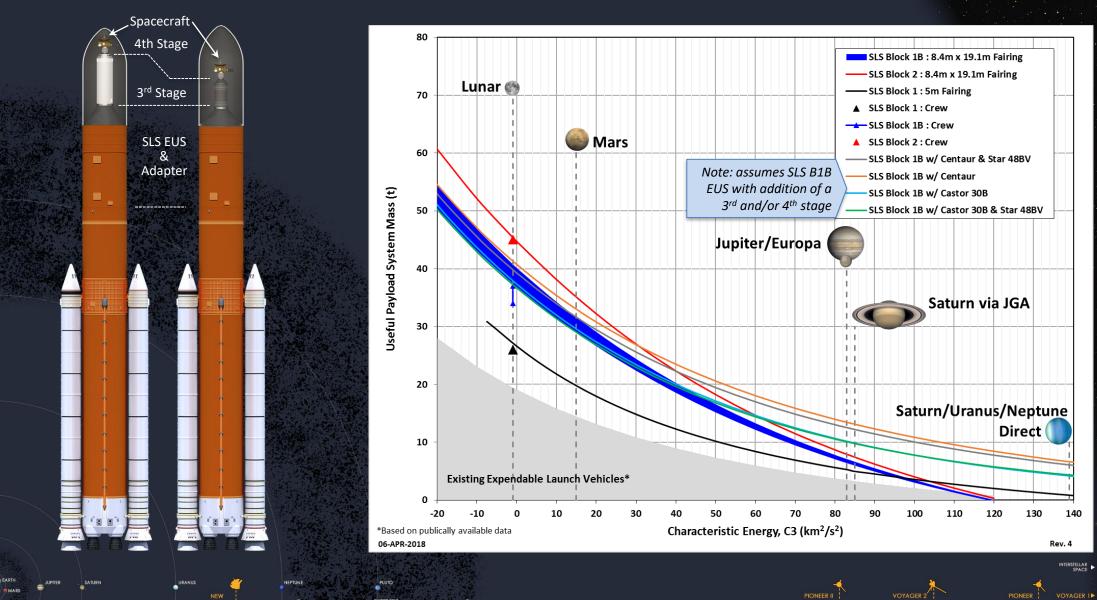
5m Fairing with Science Payload

250m³

Science Missions

400m³

Orion with Science Missions


400m^{3 PIONEER}

8.4m Fairing with Large Aperture Telescope

^{AGER 1▶} 1,200m³

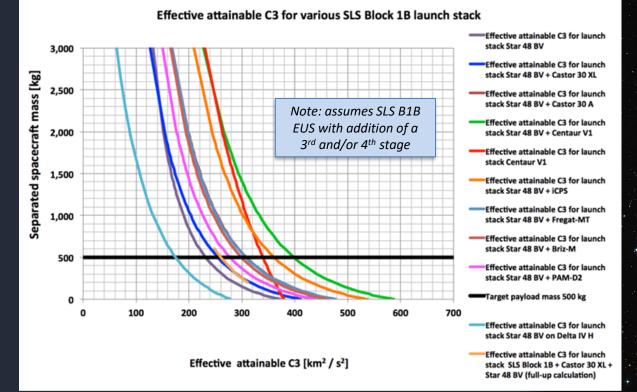
SLS 3RD/4TH STAGES INCREASE C3 PERFORMANCE

BILLIONS > 0

WHAT IS INTERSTELLAR PROBE?

- "Interstellar Probe" is a mission through the outer heliosphere and to the nearby "Very Local" interstellar medium or VLISM (up to 1000 AU)
- Interstellar Probe uses today's technology to take the first explicit step on the path of interstellar exploration
 - Heliosphere: How does the heliosphere interact with our galactic surroundings?
 - Kuiper Belt Objects: Discover new worlds to understand the origin of our solar system
 - Circum-Solar Dust Disk: Reveal the unseen 3D dust distribution to understand planetary formation

 Interstellar Probe can pave the way, scientifically, technically, and programmatically for longer interstellar journeys that would require future propulsions systems

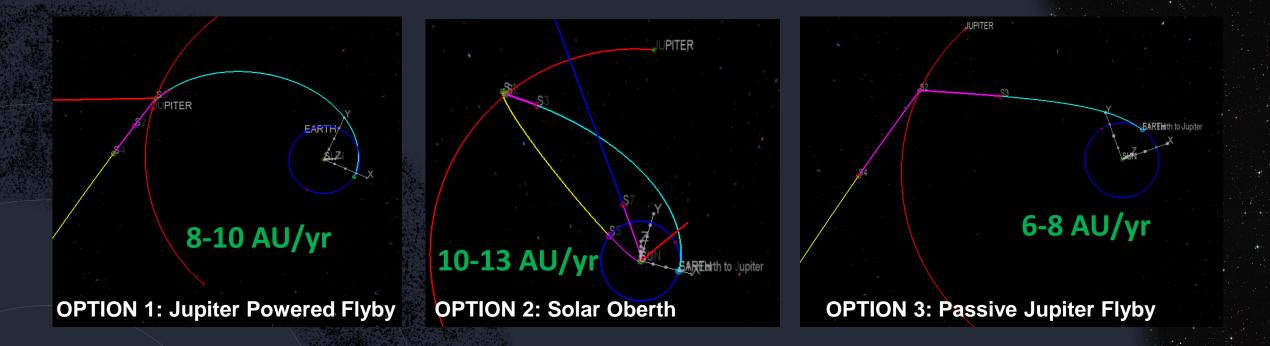


JOHN HOPKINS APL: INDEPENDENT LAUNCH VEHICLE STUDY

Key Decision Points

BILLIONS

- Asymptotic Velocity leaving the Solar
 System of 2x that of Voyager's 7.2 AU/yr
- ->300 km²/s² launch energy
- Pragmatic approach to achieving high C3 energy
- Fit within typical spacecraft and payload constraints
 - Adequate payload, launch vehicle, and ancillary hardware margins for mass and volume
- SLS was selected given that that it was the only vehicle to achieve C3s greater than 300 km²/s²



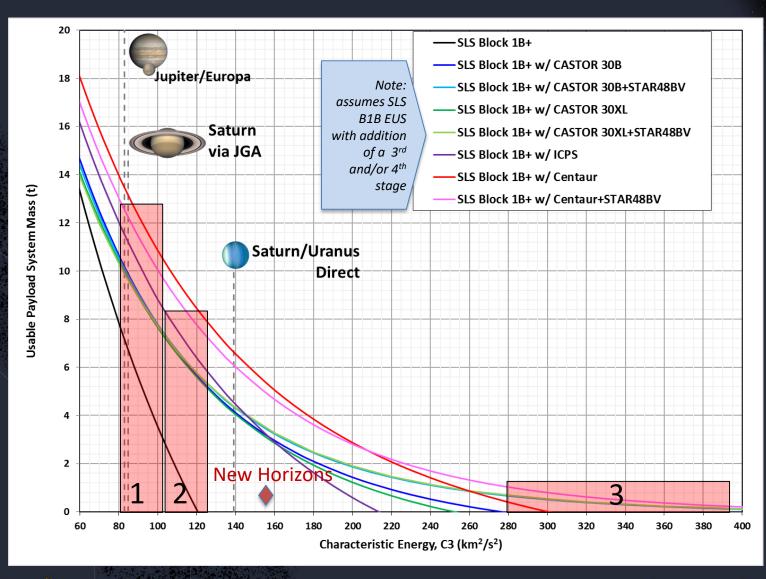
VOYAGER 1

MISSION DESIGN OPTIONS

DE MILES

DVEGA Mission Option Has Not Been Traded

PIONEER



MISSION DESIGN OPTIONS

HORIZONS

ASTEROID BEI

BILLIONS > 0

PIONEER

PIONEER I

SPACECRAFT DESIGN

- Assuming a New Horizons-like spacecraft
 - Mass 400-900kg
 - Based on New Horizons, Pioneer, Parker Solar Probe, and Voyager Spacecraft
 - Targeting a 50-year lifetime
 - Ulysses/New Horizons RTG
 - Solar shield concepts developed by Parker Solar Probe Design Team

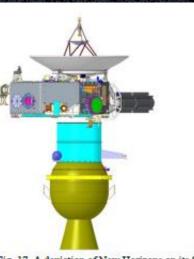


Fig. 17. A depiction of New Horizons on its STAR 48Bpowered upper stage.

Option 1: Jupiter Powered Flyby

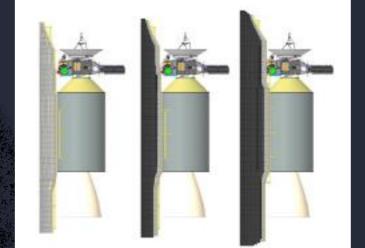
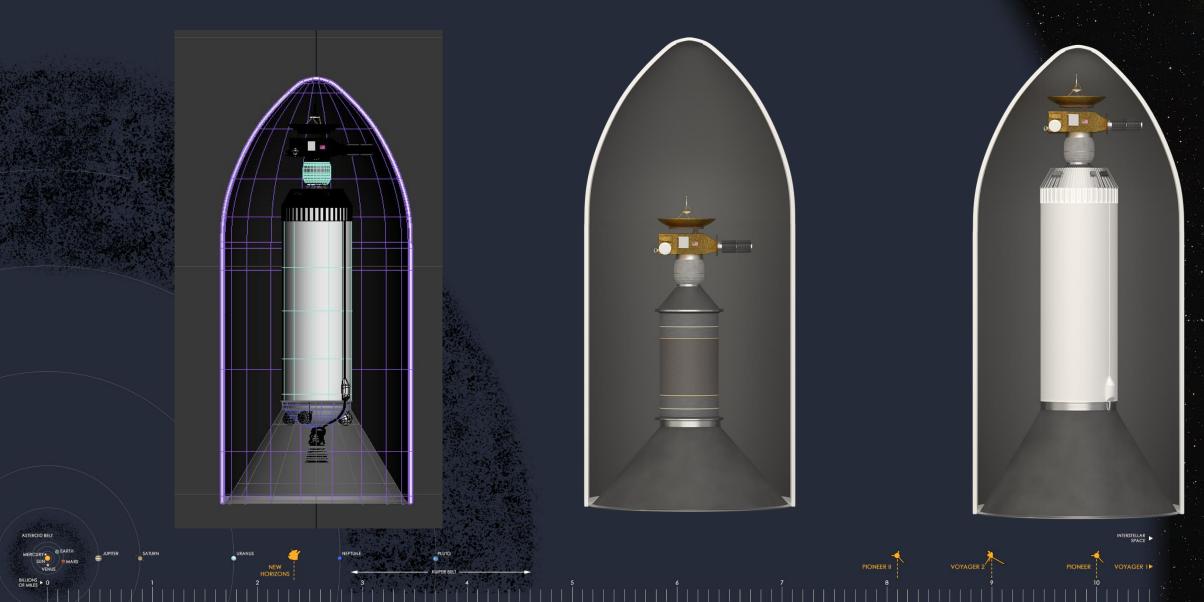



Fig. 19. New Horizons spacecraft on a CASTOR 30XL. From left to right are configurations for perihelia at $5 R_s$, 4 R_s and 3 R_s . The progression of shield complexity is obvious along with required shield size growth with the increasing solid angle subtended by the Sun with decreasing perihelion distance.


Option 2: Solar Oberth

Option 3: Jupiter Passive Flyby

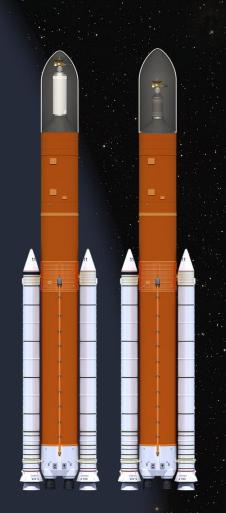
INTEGRATED SPACECRAFT/ PAYLOAD ELEMENT PACKAGING

NOTIONAL PROJECT SCHEDULE

BILLIONS .

	L- Years	Notional Dates	Note: Dates are Task Start Dates	L- Months	L- Years	
	11	1-Jun-18	Mission Formulation Start	132	11	
	10	30-Jul- 18	Launch System Configuration and Performance Trades (start)	125	10	
	9	9-Jun-20	Eng agement Studies with launch Vehicle and Stage Providers	103	9	
Interstellar Probe Parallels	9	9-Jun-20	Launch System Configuration, Trajectory and Performance Trades (w/NASA KSC)	103	9	Park
llar Prot	9	9-Jun-20	Spacecraft Phase "A" Start	103	9	Parker Solar Probe
be Po	8	2- Mar-21	ISP Performs Program Cost, Performance, and Risk Trade Studies	94	8	Pro
aralle	7	24-May-22	Space craft Phase B Start	79	7	be
els	3	6- Aug- 25	Launch Chicken system Selection (by NASA)	41	З	
	з	6- Aug- 25	Spacecraft Mission Phase C Start	41	ω	
	2	20-Sep- 26	Spacecraft Integration and Test Start	27	2	
	1	15-Feb-28	Spacecraft Environmental Testing start	11	1	
	0	27-Jul- 28	Launch Campaign Start at the Launch Site	5	0	
		1/1/2029	Launch Date	0	0	

PIONEER

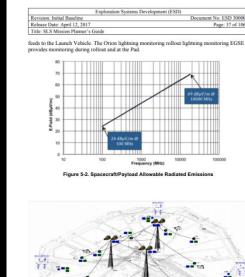

VOYAGER

VOYAGER 1

SLS ENABLES SCIENCE

- SLS is America's heavy-lift vehicle for strategic human exploration and scientific missions
- Manufacturing is complete for the first flight; SLS is nearing the integration phase
- SLS has a flexible architecture and an evolvable upgrade path
- Discussions with the science community are ongoing to determine how SLS can enable breakthrough science missions, such as sending a probe to interstellar space
- SPIE serves as a front door for parties interested in flying SLS; in addition to Interstellar Probe, we are working with Europa Clipper and Lander, Gateway, Human Landers, CubeSats, space-based solar power, large telescopes, and others

MORE TECHNICAL INFORMATION SLS MISSION PLANNER'S GUIDE



SLS Mission Planner's Guide (ESD 30000)

- Google or email: NASA-slspayloads@mail.nasa.gov
- <u>www.nasa.gov/opportunities</u> for payload opportunities and announcements

SPACE LAUNCH SYSTEM (SLS) MISSION PLANNER'S GUIDE

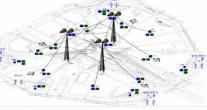
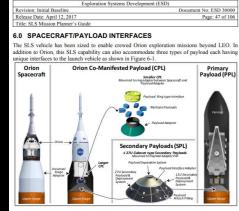
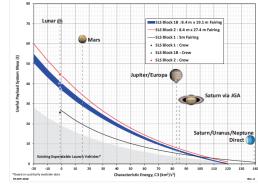



Figure 5-3. LC Pad 39B Lightning Protection S Approved for Public Release; Distribution is Unlimited

Figure 6-1, Range of SLS Spacecraft/Payload Accommodation

- SLS spacecraft/payload USA and PLF accommodations are shown in Figure 6-2 and include: · Orion Spacecraft - crewed spacecraft accommodated on a SLS USA whose destination determines primary mission trajectory via an EUS injection burn
- Co-manifested Payload (CPL) spacecraft/payload accommodated within a SLS USA and on a Payload Adapter, compatible with an Orion trajectory via an EUS injection burn
 - Orion docks and delivers CPL to its final destination (Orion CPL), or post Orion separation, CPL delivers itself to final destination (Independent CPL) Accommodation potential for using a ring accommodation above the Payload
- Adapter for smaller CPLs with or without a larger CPL Primary Payload (PPL) – un-crewed spacecraft/payload accommodated in a SLS PLF and on a Payload Adapter that determines primary mission trajectory via an EUS injection burn
- 27.6 ft (8.4 m) diameter payloads to be accommodated on Block 1B 27.6 (8.4 m) and 33 ft (10 m) diameter payloads to be accommodated on Block 2
- Secondary Payload (SPL) accommodated within a SLS USA or PLF and on a Payload Adapter Fitting; compatible with an Orion or PPL trajectory via an EUS injection burn


Approved for Public Release: Distribution is Unlimited Verify this is the correct version before use.

Exploration Systems Developme	nt (ESD)
Version: A	Document No: ESD 30000
Release Date: TBD	Page: 36 of 133

4.2.4 SLS Lunar Vicinity Performance

Crew and Cargo Missions. SLS Block 1, 1B and 2 configurations can deliver a range of Useful PSM through TLI (C3 = -0.99 km²/s²) shown here in the form of a C3 curve (Figure 4-13) and corresponding C3 data (Table 4-1). SLS Block 1B performance is shown as a range between curves, based on different performance development paths still under evaluation. SLS Block 2 performance is based on the current estimate of the minimum capability expected from a booster life extension concept; more capability may be available as this design matures

Cargo Missions. PPL performance for a Block 1 configuration is represented by a 16.7 ft (5.1 m) diameter PLF that is 62.7 ft (19.1 m) long. PPL performance for Block 1B and Block 2 configurations is represented by 27.6 ft (8.4 m) diameter PLFs that range from 62.7 ft to 90 ft (19.1 m to 27.4 m) long to illustrate a range of capability

TETTETT

EXPLORE

www.nasa.gov

@NASA_SLS

NASASLS

google.com/+nasa

youtube.com/nasa

@explorenasa