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Abstract 

Transition from fossil fuels to synthetic drop-in fuels without the need to change existing combustors is the 

current research topic. The combustor performances such as cold-day ignition limits, lean blow-out (LBO) 

limits and altitude relight limits are the main focus points. The objective of this work is to evaluate the effect 

of different fuel candidates on the operability of gas turbines by comparing a conventional petroleum-based 

fuel with one other alternative fuel candidate. Time filtered Navier-Stokes simulations (TFNS) and K-LES 

are performed to examine the performance of these fuels at the stable conditions close to blow-out in a referee 

combustor rig. 

                                                              Introduction 
 

Recent more stringent emission standards have enticed the development of more fuel-efficient and low-

emission combustion system for aircraft gas turbine applications. There is also interest in producing 

“alternative jet fuels” from various non-petroleum sources that consist solely of hydrocarbons and that 

provide essentially identical performance to that from petroleum-derived jet fuels. However, the cost is high 

to develop the technical data for the acceptance of the fuel standards. While these alternative jet fuels must 

meet current requirements for key parameters such as heat release, there are many other factors to be 

examined before accepting each alternative jet fuel for aviation use, including combustor operability 

characteristics, such as lean blowout (LBO), cold start, and high-altitude relight. In the present work, 

simulations of the approach to lean blow-out for a conventional and an alternative jet fuel are performed and 

analyzed for a single-cup, swirl-stabilized RQL (rich-burn, quick-mix, lean-burn) combustor [1]. This RQL 

combustor is the Referee Rig for the National Jet Fuels Combustion Program (NJFCP) [2] which has 

performed LBO tests for a number of conventional and alternative jet fuels. The two fuels considered are an 

average jet fuel (denoted as “A2” in the NJFCP) and a test fuel (C1) consisting of 100% Gevo ATJ fuel, 

which contains highly branched C12 and C16 paraffin and will distillate 80% of its components at 

temperatures less than 200oC (while A2 requires temperatures of 230oC or above to distillate 80% of its 

components)[3]. 

 

 

The objective of the present work is to compare the results obtained from the TFNS (time filtered Navier-

Stokes) and LES simulations with the experimental data [1]. The open source version (OpenNCC) of National 

Combustion Code (NCC) currently under-development at NASA Glenn Research Center will be used for the 

calculations. OpenNCC adopts the data structure of arbitrary polyhedrons that permit cells of arbitrary shape 

to be used: cells can have an arbitrary number of faces and faces can have an arbitrary number of points. A 

brief summary of the code is listed here. The code solves the compressible Navier-Stokes equation while the 

preconditioning is optional for simulating the low Mach number flow. A second order accurate central or 

upwind scheme is used for spatial discretization of the Euler fluxes in TFNS or LES governing equations. A 

third order accurate central or upwind scheme is available as well via Taylor series expansion for spatial 

discretization of the Euler fluxes. For a typical spray reacting simulation, the third order SLAU2[4] flux 

splitting method for the inviscid flux requires 40 percent more computer-time compared against that of the 

second order SLAU2 scheme.  A second order accurate central scheme is used for discretization of the 

Laplacian terms in the governing equations. For the temporal integration, the options include: (1) non-

iterative second order predictor-corrector MacCormack scheme; (2) non-iterative global-time-step multi-

stage Runge-Kutta scheme; (3) dual-time sub-iterative 3-4-5-stage Runge-Kutta scheme. Four available 

turbulence models in the code are summarized in Table 1 from the coding point of view.  



                                                                                                                                                               

Turbulence 

Model 

Turbulence Stresses  Eddy Viscosity K-Destruction 

Term  

Coefficients 

 TFNS Quadratic & Cubic CμρK2/ε ρε RCP: Prescribed 

K - LES   Linear CνρK0.5Δ Cερ(K)1.5/Δ Cν, Cε: Prescribed or 

computed by LDKM 

scheme 

 LES Linear  (CsΔ)2ρ|𝑆| N/A Cs, Prescribed 

TFNS/LES Quadratic & Cubic Min(CμρK2/ε, 

(CsΔ)2ρ|𝑆| ) 

Max(ρε, 

Cερ(K)1.5/Δ) 

RCP: Prescribed 

Cε, Cs:  Prescribed 

Table 1  Turbulence Models in the code. 

The liquid spray solver is based on a Lagrangian scheme and various well-established models for droplet 

drag; the Frossling[5] and Faeth[6] vaporization models coupled with the constant droplet internal heating 

and it employs models for gas-film valid over a wide range of low to intermediate droplet Reynolds 

numbers. 

Results and Discussion 

 A patched mesh of 12,640,138 hexahedrons (provided by UTRC through Ga Tech) was acquired to study 

approach to lean blowout for this combustor. The mesh is patched together by nine blocks. The mesh 

resolutions are not too compatible between blocks. The interface among the blocks is mainly achieved by 

linear interpolation of the primitive variables.  

The injection system consists of two outer axial swirlers and an inner radial swirler with a pressure-swirl 

atomizer nested in the center (See Figure 1). The atomizer and the radial swirler are located upstream of the 

exit plane of the axial swirlers. Dilution holes are located at two axial positions along upper and lower walls 

of combustor with three holes at the first row (45mm downstream of the injector exit plane), and four holes 

at the second row further downstream. The LBO tests start at a stable flame condition near LBO (2.07 atm 

combustion chamber pressure and overall equivalence ratio of 0.096) and the lower the fuel flow rate in 

controlled and repeatable manner until LBO occurs (determined by the rapid drop of the signal from a 

photodiode directed at the combustor primary zone). The average time required to ramp the fuel down to 

LBO during actually testing was typically 200-300 sec. 

 

 

Figure 1 A middle plane cut of the patched grid.  Number of elements is 12,640,138 hexahedrons. 

Injection system consists of two outer axial swirlers and an inner radial swirler. The resolutions of the 

meshes between the patched grids are barely compatible.  

X 

Y 

Z 



                                                                                                                                                               

 

Case 1. Non-reacting flow simulations: all liner and dome flows are modelled by uniform effusion 

cooling  

 

A represented plot of the grid is shown in Figure 1.  A non-reacting flow simulation is conducted using the 

following boundary conditions. At the inlet, the mass flow rate is 0.3914 kg/s, the static temperature is 394 

K. The back pressure at the exit of the extended outlet block set to 207,000 Pa. All walls are no-slip and 

adiabatic.  

 

All dilution holes and the three swirlers are gridded by the patched grids, some interface boundary 

conditions are needed. At the moment, only simple interpolations of the primitive variables are conducted 

for the patched grids and there is no effort yet to make them satisfying interface flux conservations. 

Therefore, it is quite noticeable that the mass is not fully conserved across the patch-grid interfaces, 

particularly for the reacting cases because of elevated dynamics of the pressure. 

 

The uniform effusion cooling conditions at the combustor dome are 3.216 kg/s per m2 ( 0.0250 kg/s) and 

394 K on one side of the walls and -5.3802 kg/s per m2 (-0.0250 kg/s) on the other side of walls since the 

size of wall areas are different. 

 

 

Similarly, the uniform effusion cooling conditions at: (1) the forward liner are 3.1608 kg/s per m2 (0.04188 

kg/s) and 394k versus -1.6618 kg/s per m2 (-0.04188 kg/s) and 394 K, (2) the middle liner are 2.92 kg/s per 

m2 (0.04266 kg/s) and 394 K versus -2.3797 kg/s per m2 (-0.04266 kg/s)and 394 K, (3) the aft liner are 

2.2679 kg/s per m2 (0.06575 kg/s) and 394 K, versus -1.8867 kg/s per m2 (-0.06575 kg/s) and 394 K, (4) 

the side slot liner are 46.53 kg/s per m2 (0.06575 kg/s) and 394 K versus -46.53 kg/s per m2 (- 0.06575 

kg/s) and 394 K. For simplicity, in the current work, the mass flow from the side slot liner has been folded 

into the aft liner. The total mass flow rate for the entire combustor is 0.3914 kg/s after in and out 

cancellations for the film-cooling boundary conditions. The boundary conditions used are the same as those 

of the benchmark operating conditions for the AFRL referee rig. 

From Figures 2 to 5, the contours of TFNS speed, x-velocity, y-velocity and pressure are shown 

respectively. It is observed that the recirculation zones are quite noticeable due to the primary and the 

secondary dilution jets. However, the jet bending due to the dilution is less noticeable due to the liner flow 

diversion that is not gridded. Though the jet bending is symmetric. 

 

 

Figure 2 A middle z plane cut of the speed for the non-reacting flow. 



                                                                                                                                                               

 

Figure 3 A middle z plane cut of the axial velocity for the non-reacting flow. 

 

Figure 4 A middle z plane cut of the y-velocity for the non-reacting flow. 

 

Figure 5 A middle z plane cut of the pressure for the non-reacting flow. 

The flow split between the three swirlers and the two rows of the dilution holes is computed and compared 

to the experimental measurements. The locations of the mass flow split computed by the code are shown in 

Figure 6. However, the experimental data are obtained by blocking all components except the particular 

component whose data is to be collected. The results are listed in Table 2. The computed mass flow rates 

are the results of TFNS option. For the each of the three swirlers, the relative error of the mass flow rate is 

more than 10 percent. The overall relative error of the mass flow rates for the whole swirlers is around 7 

percent. It is because the patched surfaces between the swirlers and the forward combustor are poorly 

defined. This reason plus the lack of the flux conservation of the boundary conditions for the patched grids 

is the main cause of the high errors. The relative errors of the mass flow for the two rows of the dilution 

holes are much smaller. It is because the patched surfaces between the aft-inlet component and the forward 

and aft combustors are flat and well defined. 



                                                                                                                                                               

 

 

Non-reacting flow split EXP, 

kg/s 

TFNS, 

kg/s 

Error 

=(TFNS-

EXP)/EXP 

Exit of Radial swirler 0.0143 0.0112 -21% 

Exit of Axial inner swirler
 

 

 

0.0189 0.0208 10% 

Exit of Axial outer swirler  0.0246 0.0302 22% 

Exit of all swirlers 0.0578 0.0622 7% 

Exit of Dilution row 1 0.0395 0.0382 -3% 

Exit of Dilution row 2 0.0454 0.0409 -10% 

Table 2 Comparison of measured and computed mass flow rates for the swirlers and the dilution 

rows. 

 
 

 

 

Case 2. Reacting flow simulations: Cat-A2 as the fuel 

 
The air related boundary conditions used in this case are the same as Case 1. 

 

The averaged formula of the Cat-A2 (Designation of POSF11498) is represented by C11.4H21.7.  

 

A reduced hybrid chemistry (Hychem) model[8]. is used for the mechanism of the real Cat-A2 fuel. The 

non-stiff version of the reduced mechanism consists of 31 species and 202 reactions for the purpose of 

lowering the cost of the finite chemistry simulations. 

 

The liquid properties are prescribed from T. Edward experimental database [4] that includes the density, 

heat capacity, viscosity and latent heat of vaporization, shown in Table 3. The gas properties are prescribed 

from H. Wang’s HyChem model [8]. 

 

The first overall equivalence ratio selected for Cat-A2 fuel is 0.096 for the stable operating condition.  The 

spray boundary conditions applied are briefly described here. The liquid boundary conditions are created 

such that at 2 mm downstream of the physical fuel injector, there are six rings of distinguished spray 

droplets formed. Each ring has its (1) cumulative distribution function, (2) inner and outer injection angles 

of the ring, (3) represented SMD computed from CDF as a reference, (4) particle speed, (5) mass flow rate 

 Dilution row 1 

Axial external swirler 

Axial inner swirler 

Radial swirler 

Y:transverse 

X:axial 
Z 

Figure 6 Locations of the mass flow split computed by the code. 



                                                                                                                                                               

of the spray. The actual values are listed in Figure 7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Liquid Physical 

Properties 

 Units Cat-A2 Cat-C1 

Density Kg/M3 -0.74617*T+1018.26 -0.72*T+967.01 

Heat Capacity
 

 J/Kg/K 4.28*T + 723.0 4.10*T+753.0 

Viscosity Pa-S 0.08949*exp(-0.01394*T) 1.89212*exp(-0.02393*T) 

Vapor Pressure Pa 10.**(28.95-3000.4/T-

6.5*log10(T)-0.0004*T) 

10.**(28.9-3000.4/T-

6.5*log10(T)-0.0004*T) 

Latent Heat J/Kg 380000*[(Tc-T)/(Tc-298]0.375 360000*[(Tc-T)/(Tc-298]0.375 

Critical Temperature K 760.4  740.2 

Table 3 Liquid physical properties fitted in terms of temperature. 

A middle slab cut of time-averaged axial velocity and averaged axial recirculation velocity are shown in the 

left and right panels of Figure 8. In Figure 9, the time-averaged transverse velocity on a middle slab cut 

Is shown. The bending of the dilution jets is noticeable.  

From Figures 10 to 12, the contours of time-averaged K-LES speed, pressure and temperature in a central 

slab cut normal to the z axis are shown respectively. The higher speed accelerated in the exit area of the aft-

combustor could be contributed due to the chemical mechanism used.  The pressure distribution in the aft-

combustor compartment is quite uniform. The temperature distribution in the combustor is somewhat 

unsymmetrical and one higher temperature zone exists in lower portion of the combustor. The values of the 

temperature drop very quickly from the first row of the dilution hole to the second row of the dilution hole.  

The time-averaged C1 mass fraction is shown in Figure 13. It shows that the injected liquid fuel is mainly 

vaporized in the swirler cup due to well organized recirculation zone shown in the right panel of Figure 8.  

The time-averaged OH mass fraction and experimentally measured OH* PLIF are shown in Figure 14. 

 

Temporal efficiency of A2 fuel evaporations of five various equivalence ratios are shown in Figure15. 

The base line equivalence ratio is 0.096 which is recorded from 10 MS to 42 MS. When time is at 26 MS, a 

new simulation with the equivalence 0.078, which is stepped down from 0.096, has started while the 0.096 

simulation is continuing. At 28 MS, 0.082 and 0.082 simulations, which are stepped up from 0.078, have 

begun while 0.096 and 0.078 simulations are continuing. At 38 MS, another new simulation with 0.088 

equivalence ratio starts while others are continuing. 

Figure 7 CDF from Purdue PDPA spray measurements and spray boundary conditions. 



                                                                                                                                                               

 

Figure 9 A middle slab cut of time-averaged transverse velocity. 

 

Figure 10 Time-averaged velocity magnitude in a central z-normal cut plane. 

 

Figure 11 A middle slab cut of time-averaged pressure.

 

Figure 12 A middle plane and slab cut of time-averaged temperature. 

Figure 8 A middle slab cut of time-averaged axial velocity and time-averaged axial recirculation velocity.  



                                                                                                                                                               

 

 

Figure 13 Time-averaged Cat-A2(POSF10325) mass fraction in a central z-normal slab cut. 

 

Figure 14 Experimental OH* chemiluminescence versus averaged LES OH mass fraction. (OH* is 

not available from LES predictions) 

 
Figure 15 (a) Temporal efficiency of Cat-A2 fuel evaporations of various equivalence ratios. (b) 

Instantaneous temperature contours with atMS. 

 

In Figure 16, temporal efficiency of A2-fuel heat release rates of five equivalence ratios are shown. The 

unsteady heat release rates of the equivalence ratios 0.078, 0.081 and 0.082 are all reduced to near zero. 

However, the unsteady heat release rates of the equivalence ratios 0.088 and 0.096 are hovering around the 

targeted values. It is projected here that the threshold equivalence ratio of the near blow-out and lean blow-

out locates between 0.088 and 0.082.   

 

In Figure 17, the temporal comparisons of normalized heat release rate and normalized T4 of A2 fuel at 

are shownSince both normalized values are all at 80%, it shows that the temperature at the 

Exp. Cat-A2, OH* 

chemiluminescence 

image 

Cat-A2, 



MS 

(b) 

(a) 



                                                                                                                                                               

combustor exit is consistent with the heat generated in the combustor. 

 

 

Figure 16 Temporal efficiency of A2-fuel heat release rates of various equivalence ratios.  

 

Figure 17 Temporal comparisons of normalized heat release rate and normalized T4 of Cat-A2 fuel 

at  

The flow split between the three swirlers and the two rows of the dilution holes is computed and is shown 

in Figure 18. The total mass flow of all three swirlers that enters the forward combustor is about 18.24 % of 

the inlet mass which is larger than that of 15.9% of the inlet mass for the non-reacting case. The effective 

equivalence ratio from all the swirler flowrate is about 0.53. The primary equivalence ratio from the swirler 

flowrate, a quarter of the first dilution jet flowrate and the dome effusive cooling flowrate is around 0.38. 

The total mass flowrate of all two dilution rows that enter the combustor, forward and aft, is 24.06% of the 

inlet mass which is larger than that of the non-reacting mass flow, 22.4% of the inlet mass.  

In Figure 19, the normalized temporal evolutions of mass at inlet and at outlet are shown. The relative 

errors, 0.29% and 2.89%, are acceptable. 

 

0.081: Step up from 0.078 

0.082: Step 
up from 
0.078 

0.088: Step 
down from 
0.096 



                                                                                                                                                               

 

Figure 18 Temporal evolution of reacting mass flow split through three swirlers and two dilution 

holes of A2 fuel at  

 

Figure 19 Temporal evolution of mass at inlet and at outlet of Cat-A2 fuel at  

 

 

Case 3. Reacting flow simulations: Cat-C1 as the fuel 
The air related boundary conditions used in this case are the same as Case 1 and Case 2. 

 
The overall equivalence ratio selected for Cat-C1 fuel is also 0.096. It is a rather steady operating condition 

reported from the experimental data.   

The averaged formula of the Cat-C1 (Designation of POSF11498) is represented by C12.6H27.2. 

A reduced hybrid chemistry (Hychem) model[7]. is used for the mechanism of the real Cat-C1 fuel. The 

non-stiff version of the reduced mechanism consists of 26 species and 182 reactions for the purpose of 

lowering the cost of the finite chemistry simulations. 

 

The liquid boundary conditions are the same as the Case 2. 

The liquid properties are prescribed from T. Edward experimental database [5,6] that includes the density, 

heat capacity, viscosity and latent heat of vaporization, shown in Table 3. The gas properties are prescribed 

from H. Wang’s HyChem model [7]. 

 

A middle slab cut of time-averaged axial velocity and averaged axial recirculation velocity are shown in the 

left and right panels of Figure 20. In Figure 21, the time-averaged transverse velocity on a middle slab cut 

Is shown. The bending of the dilution jets is noticeable.  

 

From Figures 22 to 24, the contours of time-averaged K-LES speed, pressure and temperature in a central 

Combustor 

inlet 

 

Combustor 

exit 

 

Extended 

inlet 

0.391 

Kg/S 



                                                                                                                                                               

slab cut normal to the z axis are shown respectively. The higher speed accelerated in the exit area of the aft-

combustor could be contributed due to the chemical mechanism used.  The pressure distribution in the aft-

combustor compartment is quite uniform. The temperature distribution in the combustor is somewhat 

unsymmetrical and one higher temperature zone exists in lower portion of the combustor. The values of the 

temperature drop very quickly from the first row of the dilution hole to the second row of the dilution hole. 

 

Figure 21 A middle slab cut of averaged transverse velocity. 

 

Figure 22 Velocity magnitude in a central z-normal slab cut. 

Figure 20 A middle slab cut of (a) time averaged axial velocity and (b) time averaged axial recirculation velocity 

of Cat-C1 fuel at  

(a) (b) 



                                                                                                                                                               

 

Figure 23 A middle slab cut of averaged pressure 

 

Figure 24 A middle slab cut of time-averaged temperature 

The time-averaged C1 mass fraction is shown in Figure 25. It shows that the injected liquid fuel is mainly 

vaporized in the swirler cup due to well organized recirculation zone shown in the right panel of Figure 20.  

The time-averaged OH mass fraction is shown in Figure 26. Temporal efficiencies of C1 fuel evaporations, 

heating rate and T4 forare shown in Figure 27 respectively. The evaporation rate for is 

stable and close to the injected rate, 0.002549 kg/s.  

 

 

Figure 25 Time-averaged C1(POSF11498) mass fraction in a central z-normal slab cut.  

 

Figure 26 Time-averaged LES OH mas fraction. (OH* is not available from LES predictions) 



                                                                                                                                                               

 

Figure 27 Temporal efficiency of Cat-C1 fuel evaporations, heating rate and T4 at 

 
Figure 28 Temporal evolution of reacting mass flow split through three swirlers and two dilution 

holes. 

 

The flow split between the three swirlers and the two rows of the dilution holes is computed. The total mass 

flow of all three swirlers that enters the forward combustor is about 17.87 % of the inlet mass which is 

larger than that of 15.9% of the inlet mass for the non-reacting case. The effective equivalence ratio from 

all the swirler flowrate is about 0.54. The primary equivalence ratio from the swirler flowrate, a quarter of 

the first dilution jet flowrate and the dome effusive cooling flowrate is around 0.4. The total mass flowrate 

of all two dilution rows that the enter the combustor, forward and aft, is about 22.81% of the inlet mass 

which is slightly more than that of 22.4% of the inlet mass for the non-reacting case. 

 

Concluding Remarks 

In this paper, the strategy of using K-LES in analyzing the sensibility of two aviation fuels in a referee 

combustor rig which is a single-cup, swirl-stabilized RQL (rich-burn, quick-mix, lean-burn) combustor is 

developed.  

 

A non-reacting case using the same benchmark boundary conditions as the experiment is investigated with 

TFNS approach on a patched grid of 12640138 hexahedrons. The numerical solutions moderately predict 

the non-reacting flow field in terms of the profiles of mean flow split.  

 

For the reacting cases, an average jet fuel (denoted as “Cat-A2” in the NJFCP) and a test fuel (Cat-C1) are 

selected for the sensitivity study.  

 

Five calculations for Cat-A2 fuel with consecutive decreased equivalence ratios were performed to examine 



                                                                                                                                                               

the combustion characteristics starting at stable conditions near lean blow-out to lean blow-out in order to 

understand the trend of the stabilization mechanisms. 

 

Only one calculation for Cat-C1 fuel was performed due to the constraint of the time. The simulations of 

Cat-C1 fuel indicated that at  the temperature fields were at sustainable conditions. 

 

The simulations of Cat-A2 fuel indicated that at  and the temperature fields were at 

sustainable conditions. At which was stepped down from the values of the unsteady heat 

release rate reduced to near zero in roughly 10 MS.  After 2 MS stepped down from , the 

equivalence ratio was stepped up from 0.078 to 0.082 and 0.081. After another 8 MS, both the 0.082 and 

0.081 cases approached the blow out, i.e. the unsteady heat release rates were almost zero. It is projected 

that the threshold of the near blow out and lean blow for the Cat-A2 fuel would be between   and 

based on the value of the unsteady heat release rate


 

For the future work, the capability of LES and different spray conditions in analyzing the sensibility of 

more aviation fuels on stable combustion conditions near blow-out and lean blow-out approaching will be 

investigated. 
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