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The High Efficiency Megawatt Motor (HEMM) is being designed to meet the needs of 

Electrified Aircraft Propulsion (EAP).  The key objective of this work is to establish a motor 

technology which simultaneously attains high specific power (>16kW/kg ratio to 

electromagnetic weight) and high efficiency (>98%) by judicious application of high 

temperature superconducting wire and integrated thermal management.  Another important 

feature is to achieve the performance goals with an eye to aircraft integration constraints.  An 

electromagnetic analysis was performed which shows that the proposed HEMM design meets 

the performance objectives if key current capability and mechanical constraints are achieved. 

Sensitivity of motor power and performance to those parameters is illustrated.  The HEMM 

technology could be applied to a range of aircraft types that require megawatt level electrical 

power. 

I. Introduction

ASA Glenn Research Center is developing the High Efficiency Megawatt Motor (HEMM) with the goal of

demonstrating  a motor that has both high specific power (16kW/kg electromagnetic weight goal) and high

efficiency (99%  stretch goal).  Electrified Aircraft Propulsion (EAP) is the target application for this electric machine. 

Requirements for the prototype machine are based on the Single-Aisle Turboelectric Aircraft with Aft Boundary Layer 

(STARC–ABL) concept. 1  HEMM is a partially superconducting, synchronous wound field machine that can operate 

as a motor or generator  (Figure 1).  It combines a self-cooled, superconducting rotor with a semi-slotless stator, 

allowing the motor to achieve exceptional specific power and efficiency without incurring the external cooling weight 

penalty which commonly impacts superconducting machines.  The combination of the described elements allows a 

motor to be built that essentially operates like any traditional (nonsuperconducting) motor when viewed externally as 
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a system, however it incorporates superconductors on the rotor to create a strong airgap magnetic field that enables 

specific power and efficiency performance that cannot be achieved using normal conductors or permanent magnets. 

  
Figure 1.  High Efficiency Megawatt Motor (HEMM) concept design 

A. Importance of Efficiency 

 Although at first glance the difference between a 

95% and 99% efficient machine may seem insignificant, 

it is actually quite consequential because the losses, 

which manifest themselves as heat, are five times lower 

for the 99% case compared to the 95% case (Figure 2).  

Electric machine efficiency propagates to aircraft-level 

impacts through the sizing of the thermal management 

system, the impact of multiple conversions, and the 

direct impact to fuel burn. 

 Thermal management of electrical components on 

the aircraft poses new challenges compared to turbine 

engine thermal management. The aircraft internal 

combustion or turbine engine’s thermal efficiency may 

range between 10%-50% depending on size; however, in 

these systems a significant portion of the waste heat 

leaves with the exhaust, and contributes to thrust.  

Conversely, in the electrical system all of the waste heat 

is absorbed locally into the powertrain and structure 

unless active thermal management is used.  The 

temperature of the waste heat is also important; electrical 

machines typically have maximum hot spot temperatures between 105-220⁰C, whereas converters which are used to 

control motors typically have maximum hot spot temperatures in the 85-150⁰C range.  The components are usually 

cooled by a flow of air, oil, or water/glycol which needs to be about 10-50⁰C lower in temperature than the hot spot 

limit.  In the case of an aircraft operating on the worst case hot day, with margin, the rejection temperature for the heat 

exchanger may be in the range of 60⁰C.  Analyzing these approximate numbers, the thermal system will collect heat 

in the range of 75⁰C to 170⁰C (depending on the temperature ratings of the components), and needs to reject heat at 

around 60⁰C.  One conclusion from this analysis is that the component temperature ratings probably need to be above 

130⁰C, which rules out the use of some of the lower end materials for these systems.  A second conclusion is that the 

overall temperature delta probably will not be more than 100⁰C; this is problematic since heat exchanger size scales 

with the inverse of temperature delta.  Heat can possibly be rejected either to the airstream or to the fuel, however, 

this approach is also potentially problematic.  Airstream rejection leads to additional drag, while rejection to the fuel 

provides a finite heat sink which is already nearing maximum capacity in some aircraft designs. 

 The impact of component efficiency is compounded by the need for multiple conversions in an electrical system 

and is translated into a larger total system loss.  A direct current-based system with a turbogenerator will be used as 

an example.  The generator is driven from a turbine, turboshaft, or other prime mover, the output is rectified and 

distributed as dc power, then an inverter is used to drive motors which apply torque to the propulsive fan or propeller.  

This system has four electrical conversion steps: 1) generator – shaft to ac electrical, 2) rectifier – ac to dc electrical, 

 
Figure 2.  Heat to Be Rejected 
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3) inverter – dc to ac electrical, and 4) motor – ac electrical to shaft.  Figure 3 shows the system with state of the art 

technology assumptions and Figure 4 with highly advanced technology assumptions. 

Turbine 

Engine  Generator  Rectifier  Inverter  

Propulsor 

Motor  Propulsor 

  

  
95.0% 

  
95.0% 

  
95.0% 

  
95.0% 

  

       
 

Figure 3.  State of the Art Electrical Components 
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Figure 4.  Highly Advanced Electrical Components 

 

Figure 5 depicts the end-to-end drive system losses 

based on a four conversion dc system, with all four of 

the components varied between 95 to 99% efficiency.  In 

this system, the end-to-end loss drops from 

approximately 20% (95% components) down to less 

than 5% (99% components). 

 

B. HEMM Design Requirements 

 The aeronautics industry has been challenged on many 

fronts to increase efficiency, reduce emissions, and 

decrease dependency on carbon-based fuels. Electrified 

Aircraft Propulsion (EAP), implemented through 

turboelectric, hybrid electric, or all electric propulsion has 

the potential to revolutionize the aviation industry.  

Previous studies have shown that the weight and 

efficiency of the power system must be beyond the current 

 
Figure 5.  Drive System End to End Losses 

  
  Figure 6.  Aircraft Fuel Burn Sensitivity to Electric 

Machine Efficiency 

Figure 7.  Aircraft Fuel Burn Sensitivity to Electric 

Machine Specific Power 
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state-of-the-art to reduce fuel burn on the aircraft. 2,3  Additionally, the exploration of megawatt level components applies 

to a broad range of aircraft concepts ranging from fully turboelectric or electric systems in the nine passenger size, up to 

partially turboelectric systems for single-aisle aircraft.  The HEMM requirements were derived based on the STARC-

ABL single-aisle aircraft concept (Table 1). 
Table 1.  HEMM Prototype Requirements 

Requirement Rationale   

The rated operating power shall be 1.4MW or greater 
From generator power requirements in 2016 STARC-

ABL Aviation paper 

  

The specific power of the electric machine shall be greater than 16 

kW/kg 

Combination of STARC-ABL sensitivity analysis and 

Hybrid Gas Electric subproject goals 

  

The efficiency of the electric machine shall be greater than 98% with 

a stretch goal of 99%. 

Combination of STARC-ABL sensitivity analysis and 

Hybrid Gas Electric subproject goals 

  

The rated operating speed shall be 6800 RPM 
From concept design of  STARC-ABL with geared 

turbofan low spool speed  

  

The thermal management approach shall be based on fluid cooling 

with an inlet temperature of 60⁰C and the use of materials rated to 

220⁰C when possible. 

Based on a UTRC NRA study of a parallel hybrid 

single-aisle aircraft with a 1MW motor connected to 

each turbofan. 

  

II. HEMM Motor Concept Design 

A. Motor Design 

 Permanent magnet, switched reluctance, induction, and wound field machine types are being considered for aircraft 

propulsion electrical systems.  Typically, studies focus on specific power as the key differentiating metric for the 

selection of the motor type. However, other metrics such as efficiency, speed matching with a load or source, ability 

to shut down in a fault condition, thermal management constraints, and electrical system integration considerations 

are equally important for overall system performance.   

 HEMM is a wound field machine type with a superconducting rotor and normal operating temperature stator. 4, 5, 6 

This configuration was selected based on initial trade studies for balanced performance.  Another important 

operational benefit of the wound field machine is that it can be shut down by de-energizing the field winding; unlike 

the permanent magnet machine; de-energizing removes force from the drive shaft without the need for mechanical 

decoupling.  In this case, the stator of the HEMM is designed to use a typical fluid or air cooling loop.  For the 

prototype machine, it is anticipated that the cooling loop will be a dielectric oil with an input temperature of 60⁰C.  

The top level parameters of the motor design are shown in Table 2 and the cross section is shown in Figure 8. 

 Typically, machines have to trade specific power and efficiency; however, both are crucial for a successful 

design.2,3  The HEMM has the potential to achieve high specific power and efficiency goals simultaneously because 

it utilizes superconducting wires in the rotor, which provide a much higher air gap field capability than permanent 

magnets, normal wound field conductors, or an induction rotor.  Employing superconducting coils provides a dramatic 

improvement in magnetic field generated because the direct current resistance is zero in the superconductor at the 

Table 2.  Motor Design Parameters 

Parameter Value 

Motor  Wound field synchronous 

  Rated Power 1.4 MW 

  Rated Speed 6800 RPM 

  Rated Voltage 1200V 

  Rated Current 360A 

Layout   

  Poles 12 pole 

  Phases 9 
 

 
 

Figure 8.  Motor Cross Section 
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correct operating conditions.  However, superconducting machine applications have been limited because 

superconductors require cryogenic temperatures to operate, which typically requires a separate cryogenic fluid cooling 

system, adding mass, volume, and complexity to the overall system.  

 The HEMM incorporates a cryocooler in the rotor of the machine, and connects the cold tip of the cryocooler to 

the superconducting coils conductively, thereby eliminating the need for any external cryogenic equipment or any 

cryogenic fluids.  A cryocooler is being designed that can lift 50W of heat from a 50K cold tip and reject to a 300K 

ambient environment.  This cryocooler is also intended to be light weight (<10kg), small diameter (<100mm), and 

able to withstand 6800RPM rotation about its central axis such that it can be integrated in the shaft of the HEMM.  As 

a result of the incorporation of those subcomponents within the motor, HEMM will interface with the aircraft in the 

same way as any standard electric machine, avoiding the additional mass, volume, and infrastructure which would be 

required with a traditional superconducting machine. 

B. Stator Design 

 A semi-slotless stator with thin teeth and single turn Litz wire windings is used.  The stator parameters are shown 

in Table 3, and the stator cross section is shown in Figure 9.  The teeth do not serve a significant role 

electromagnetically, however they do provide a heat removal path and a physical constraint for the stator winding.  

Since this machine uses superconductors, it is possible to achieve a high air gap magnetic field; as a consequence, the 

stator windings are exposed to a high fluctuating field, necessitating the use of Litz wire to minimize eddy current 

losses in the windings.  Additionally, in order to keep the output voltage of the machine under 1200V, a single turn 

winding will be used.  A nine phase configuration was chosen to allow minimization of the harmonic content and 

yield a slight performance benefit compared to a three phase machine.   

 The stator of the HEMM also functions as the vacuum enclosure for the rotor, and has a cooling jacket that runs 

through the airgap, resulting in a fairly large airgap between the stator and rotor.  Although the large airgap impacts 

performance, the penalty is not as significant in a machine with superconducting field windings as compared to a non-

superconducting field winding because the superconducting configuration enables a very high number of amp-turns 

in a small rotor coil without resistive loss.  The vacuum enclosure is incorporated in the stator using a thin wall 

composite tube.  This enclosure maintains vacuum around the superconducting motor rotor, thermally isolates it, and 

dramatically reduces windage drag losses.  The stator is designed with a direct liquid cooling loop, which circulates 

from a manifold at the inner surface of one end winding, across the length of the air gap, around the other end winding, 

back through a series of channels in the backiron, and finally across the outer diameter of the first end winding. 

Table 3.  Stator Design 

Parameter Value 

Type Semi slotless 

Iron  

  Inner Diameter 306mm 

  Outer Diameter 377mm 

  Stack Height 125mm 

  Slots 108 

  Slot Width 8mm 

  Slot Depth 19.5mm 

  Skew 3.33 degrees 

  Cooling Channel 3.5 mm 

Winding  

  Number of Phases 9 

  Layout Lap, 2 Layer, Over/Under 

  Number of Turns 1 

  Litz Wire 8x8 mm, 6000 strands x 40AWG 

  Coil Slot Span 9 

  Phase/Group Offset 6/2 
 

 
Figure 9.  Stator Cross Section 
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C. Rotor Design 

 The HEMM rotor is a twelve pole, unlaminated, cobalt iron rotor, wound with dc superconducting coils.  Key rotor 

parameters are shown in Table 4, and the rotor cross section is shown in Figure 10. 

 The use of superconducting wires to create a high field in a motor without conduction losses greatly improves the 

electric machine’s performance relative to a system that uses non-superconducting windings.  In the HEMM 

application, the superconductor is carrying direct current (dc), not alternating current (ac); thus no new superconductor 

technology needs to be developed, and the conductive losses in the rotor will be near zero.  The challenge in the rotor 

coil design is to minimize mechanical stress and fatigue while maintaining a good electromagnetic circuit and 

conductive cooling path.  Additional factors that limit the maximum current allowed in the superconductor are the 

operating temperature and field that the superconductor is exposed to.  The current density used in the performance 

estimate was adjusted to include the impact of these two factors, plus margin. 

 The rotor coil design risks are minimized by limiting the surface speed of the rotor, and by using a relatively mature 

superconductor-based composite conductor.  The surface speed of the HEMM rotor is 100m/s, which is one third to 

one half the surface speed of many high specific power motor designs; in addition to the risk reduction, this lower 

surface speed and corresponding lower rotor speed provides an additional benefit, as it allows the machine to be 

directly coupled to a turbofan (when utilized as a generator) or to a propulsor, i.e., a fan or propeller (when used as a 

motor) without the need for a gearbox.  The rare-Earth barium copper oxide (REBCO) type superconductors have a 

relatively high superconducting temperature (92K critical temp), and are commercially available in lengths of several 

hundred meters.  This length is sufficient to wind each level of the proposed HEMM rotor coils using a single piece 

of wire.  Although commercially available REBCO composite tapes are relatively mature, the stability in this 

application (temperature, cyclic magnetic field, and cyclic, multi axial mechanical stress environment) must still be 

confirmed. 

D. Thermal Conditions 

The thermal conditions are key to estimating the 

performance of any motor.  Temperature conditions used 

for the electromagnetic analysis of the HEMM machine 

were found through separate thermal finite analysis, and 

imposed as fixed temperatures for this work.  

Temperatures of key components are shown in Table 5. 

The stator temperature analysis was done by finding 

anisotropic thermal conductivities for the windings 

based on the properties of the Litz wire and the potting 

compound, using the losses estimates from the 

electromagnetic analysis has the heat loads, and building 

a simplified thermal FEA model which included the geometric relationships of the motor and the boundary conditions  

Table 4.  Rotor Design 

Parameter Value 

Type dc wound field 

Iron  

  Inner Diameter between 189.4 to 200mm 

  Outer Diameter 300mm 

  Length 125mm 

  Number of Poles 12 

  Tooth Width 34mm 

Coil  

  Rated Current 51.5A 

  Number of Turns 916 turns per pole 

  Coil Cross Section 14.9 mm wide x 16.75 mm tall  

  Operating condition 62.8K temperature, 2T field 

  Conductor YBCO superconductor 4mm x 0.065mm 
 

 
Figure 10.  Rotor Cross Section 

Table 5.  Thermal Conditions 

Component Temperature (⁰C) Temperature (K) 

Stator core 60 333 

Stator windings 135 408 

End turns 135 408 

Rotor core -213 60 

Rotor coils -213 60 
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imposed by the liquid cooling loop.  Significant 

uncertainty exists in the estimation of the effective 

thermal conductivity of the potted Litz wire; tests are 

planned to reduce that uncertainty. 

 The rotor temperature analysis was done by 

estimating the heat load and the cryocooler performance, 

and building a simplified thermal FEA model to represent 

the geometry and boundary conditions.  The estimated 

rotor heat load included: radiation heat transfer, heat leak 

through the torque tube, heat leak through the power 

leads for the rotor winding, windage losses, and rotor 

core losses.   Rotor core loss is particularly difficult to 

estimate, because the source is the eddy current and 

hysteresis losses induced by high order multiples of the 

stator fundamental frequency, and test data for the 

magnetic material at these frequencies and temperatures 

does not exist. 

III. Electromagnetic Performance Estimate 

An initial electromagnetic performance estimate for 

the HEMM motor was performed using a commercial 

sizing code which combines 2D electromagnetic finite 

analysis with a set of motor design rules.  Key parameters 

are used to define the operating condition of the motor, 

the rotor and stator magnetic circuit, and the rotor and 

stator windings.  The trade space was explored through 

manual iteration, in which other modeling and FEA 

modeling packages were used to perform solid modeling 

of the motor, detailed 3D thermal, stress, electromagnetic 

analysis, and also cryo cooler sizing.  Mass and 

performance estimates were made using the motor 

parameters described in Section II.   

A. Torque Estimate 

Estimated torque as a function of speed is shown in 

Figure 11. Torque is current limited and is essentially 

constant at 2000 N-m from zero speed to the rated speed 

of 6800RPM.  Above the 7500 RPM the torque is voltage 

limited and begins to drop off.   

B. Electromagnetic Mass Estimate 

The electromagnetic mass estimate is shown in Table 

6.  The core mass estimates are based on the use of a 

cobalt-iron alloy.  The superconducting rotor coil mass is 

estimated using the properties of the copper substrate 

because that is the dominant wire mass component.  For 

this design approximately 70% of the electromagnetic 

mass is in the core, and 30% of the mass is in the rotor 

and stator windings.  Litz wire mass is estimated using a 

packing factor.  The total electromagnetic mass is 

estimated to be 74.2 kg.  A 10% mass margin is added to 

account for design and analysis uncertainties. 

C. Loss Estimate 

 
Figure 11.  Torque at Rated Parameters 

 
Table 6.  Mass Estimate 

Component Mass (kg) 

Stator core 21.5 

Stator winding 13.77 

Rotor core 29.7 

Rotor coils 9.4 

Total Electromagnetic Mass 74.4 

  

Total Electromagnetic Mass (+10% 

margin) 

81.9 

 

 
Table 7.  Loss Estimate 

Component Loss (kW) 

  Electromagnetic Losses 9.3 

    Stator Core 3.9 

    Stator winding (I^2R) 4.6 

    Stator winding proximity 0.8 

    Rotor core 0.009 

    Rotor coils 0 

  

  Other Losses 4 

    Cryocooler Power 2 

    Bearings 1 

    Vacuum Seals 1 

Total Losses 13.5 

Total Losses(+20% margin) 16.2 
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 A summary of the loss estimation at rated 

operating condition is shown in Table 7.  

Electromagnetic losses were calculated using a 

combination of the above-described commercial motor 

sizing code and spreadsheet calculations for stator 

winding proximity losses. The proximity losses in this 

machine are significant because the stator winding is 

directly exposed to a significant AC magnetic field 

imposed by the rotor field.  As a result Litz wire is 

required to minimize the loss, at the expense of copper 

packing factor in the stator.   

Other losses were calculated using a combination 

of in-house codes for cryocooler power estimation, and 

spreadsheet calculations for proximity and bearing 

losses.  Additional losses were calculated separately to 

account for the total loss in the machine.   

The estimated total losses are13.5kW comprised of  

9.3kW electromagnetic loss, 1kW due to bearing drag, 

2.5kW to power the cryocooler, and 1kW due to seal 

drag.  A 20% loss estimate margin is added to account 

for design and analysis uncertainties resulting in a total 

loss with margin of 16.2kW. 

D. Rated Performance Estimate vs Requirements 

The estimated rated performance of HEMM meets 

or exceeds the requirements set forth in the beginning 

of the project (Table 8). 

IV. Performance Sensitivity Analysis  

A sensitivity analysis was performed on key 

parameters to understand which parameters have the 

most significant influence on the HEMM motor 

capability.  This is important because, due to the 

uncertainty related to the estimates of the analytical 

models, many aspects of the analytical design of the 

motor have variances which will be found during 

performance testing of the final motor hardware. 

  The analysis is performed by one variable at a time 

while holding the others constant and then computing 

how the resultant power, specific power, and efficiency 

are changing with that variable. 

 Figure 12 shows the sensitivity of specific power 

and efficiency to stator current, rotor current, and air 

gap.  Figure 13 shows the motor power sensitivity to 

those same parameters. 

A. Sensitivity to Stator Current 

The maximum current capability of the motor is 

limited by the hot spot temperature.  Hot spot 

temperature is a function of the effective thermal 

conductivity of the Litz wire, the thermal properties 

and geometry of the stator iron, and the cooling 

approach.  HEMM uses direct liquid cooling with a 

fluid temperature of 60⁰C.  Analytical models of 

various fidelities were used to estimate hot spot 

Table 8 - Design vs. Requirements 

Requirement Estimate 

Performance 

  

The rated operating power shall be 1.4MW or 

greater 
1.42MW 

  

The specific power of the electric machine shall be 

greater than 16 kW/kg 
17.4  kW/kg 

  

The efficiency of the electric machine shall be 

greater than 98% with a stretch goal of 99%. 
98.9%   

The rated operating speed shall be 6800 RPM 6800   

The thermal management approach shall be based 

on fluid cooling with an inlet temperature of 60⁰C 

and the use of materials rated to 220⁰C when 

possible. 

compliant 

  

 

 
 

Figure 12.  Performance vs. Key Parameters 

 

 
 

Figure 13.  Power vs. Key Parameters 
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temperature, and coil tests are planned to confirm the estimates.   Stator current is varied from 300A to 500A around 

the 395A rated point in this study. 

B. Sensitivity to Rotor Current 

The current capability of the superconducting rotor coils is impacted by the coil’s temperature and magnetic field 

exposure.  Although, the magnetic field can be estimated with a high degree of accuracy, the coil temperature is more 

difficult to estimate because it results from the equilibrium between the cryocooler heat lift capability and the sum of 

the heat leak and heat loss on the rotor.  Estimation of the cryocooler performance has uncertainty due to the typical 

variation between a design code and the resultant hardware, along with the fact that the analytical tools available do 

not account for the centrifugal forces from rotation which are inherent to this application.  The main source of the heat 

leak on the rotor is due to radiation, which is quite sensitive to the effective emissivities of the surfaces.    Rotor current 

is varied from 30A to 70A around the 50.1A rated point in this study. 

C. Sensitivity to Air Gap 

Air gap performance sensitivity is particularly interesting in this motor, since the HEMM machine can generate 

considerably more field on the rotor compared to a non-superconducting machine.  The airgap listed is the distance 

between the tips of the very thin metal stator teeth and the outer diameter of the rotor, however, the effective air gap 

is substantially larger, since the teeth are completely saturated, and the stator backiron is 19.5mm further away from 

the rotor than the stator teeth tips. 

V. Summary  

The High Efficiency Megawatt Motor (HEMM) being designed at NASA Glenn Research Center is a wound field 

partially superconducting machine.  The goal of this effort is to develop an electrical machine with efficiency >98% 

and specific power when ratioed to electromagnetic mass >16kW/kg.  A design has been completed and 

electromagnetic analysis shows that it will achieve the required performance if critical design aspects close thermally 

and structurally.  Those design aspects impact the maximum continuous stator current, the maximum continuous rotor 

current, and the air gap.  A power and performance sensitivity analysis was performed against those key parameters.   
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