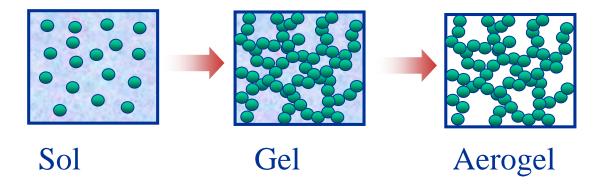
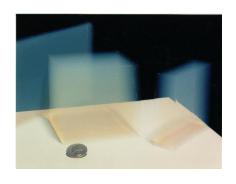



# The 3D Printing of Polyimide Aerogels




Theresa Nosel, University of Connecticut
Jessica Cashman, NASA Glenn Research Center
Dr. Stephanie Vivod, NASA Glenn Research Center



## What are Aerogels?





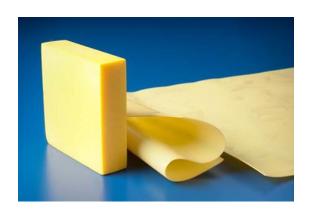
## Typical monolithic silica aerogel

#### Silica Aerogels

- Highly porous material made by removing liquid portion of a wet gel
- Low density ( $< 0.3 \text{ g/cm}^3$ )
- High porosity (> 90 % air)
- High surface area (200 650 m²/g)
   with extremely small pore size (10 40 nm)



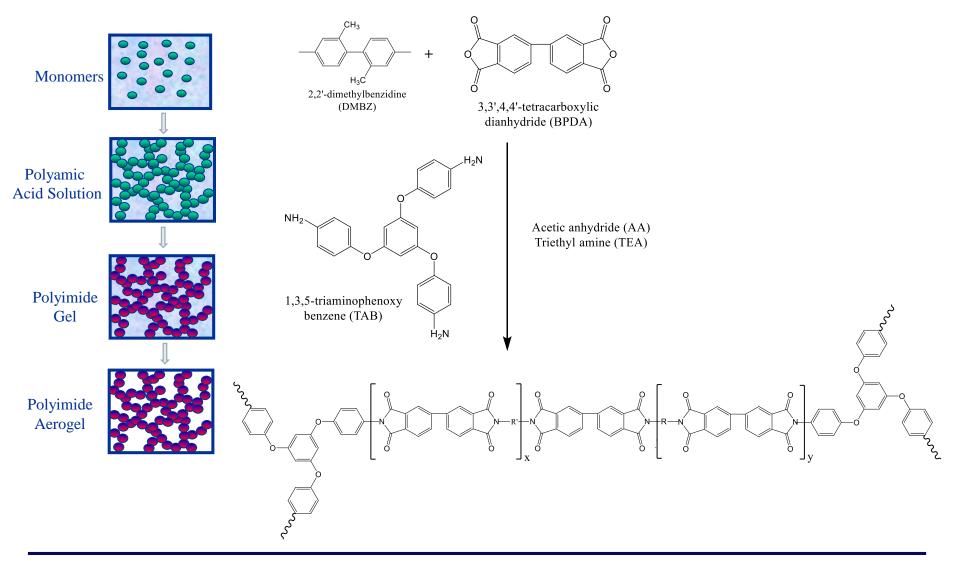





Cosmic dust collector Stardust Mission



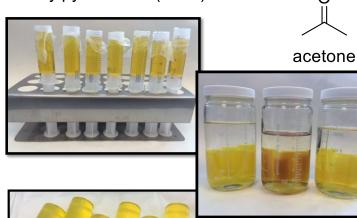
## Cross-linked Aromatic Polyimide Aerogels


- Superior mechanical properties compared to silica aerogels while still maintaining good physical properties (density, porosity, surface area, etc.)
- Low thermal conductivity
- High temperature stability up to 400 °C (short term)
- Moisture resistance depending on backbone chemistry
- Durable and flexible
- Easy to manufacture into thin film







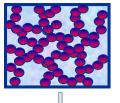

## Reaction Scheme for Cross-linked PI Aerogel



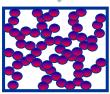
## Supercritical Fluid Extraction



n-methylpyrrolidone (NMP)




10,000 • solid supercritical 1,000 fluid liquid critical point 10 gas triple point 1 200 250 300 350 400 temperature T(K)

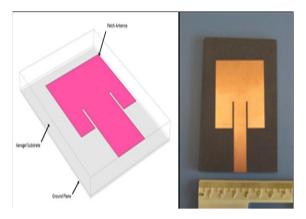

Final stage of aerogel production

O=C=O  $CO_2$ , (I)





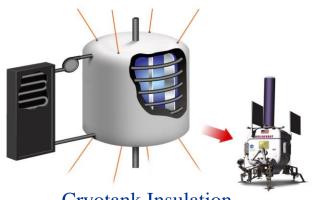





Polyimide Aerogel

Polyimide Gel

## Potential Applications










Sandwich Structure



**Cryotank Insulation** 



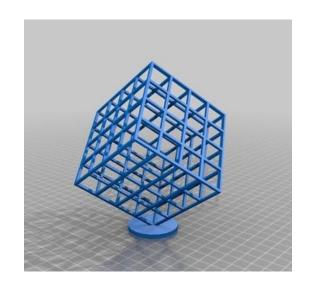






**Heat Shielding** 

**Insulation for EVA Suits** 


Ultra-lightweight, Multifunctional Structures for Habitats and Rovers

# NASA

## Purpose of this Research

- Novel concept for additive manufacturing
- Currently molds are needed to shape aerogels, which limits it's complexity
- Increasing the architectural complexity of aerogels increases its versatility
- Expand polyimide aerogels in its uses for every day life as well as its uses as a material for extreme environments







## Three Approaches



**Direct Printing** 



Mixing Tip



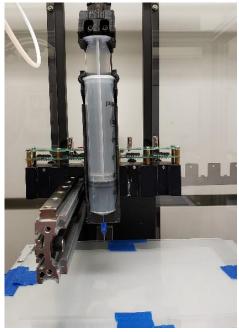
**UV** Curing



### **Common Variables**

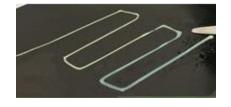
#### Chemical formulation:

- Weight percentage
- Gel time


#### Printer:

- Print speed
- Overlap percentage
- Layer height
- Poly(amic) acid/TEA ratio
- Tip diameter




## **Direct Printing**







Design



Actual

#### **Process**

- Multiple vials of sol
- Mixing in TEA one at a time
- Printing until solidified
- Switch out sol

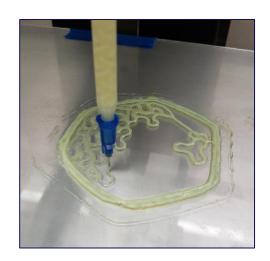


#### Pros

- Predictable
- Can print up to 10 minutes without gelling

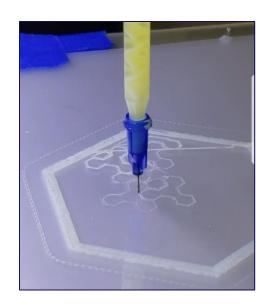
#### Cons

- Long process
- Switching syringes
- Not sustainable for long print jobs
- Sol will gel in syringe


## Mixing Tip






#### **Process**

- Poly(amic) acid in one extruder, TEA in another
- Connected to a mixing tip
- Solidifies soon after extruding



## Overcoming:


- Gelling in mixing tip
- Pressure buildup



## **UV** Curing











- UV curable polyimide
- Varying parameters
  - Intensity
  - o Speed
- Two ways to UV cure
  - o Pen: wavelength 405 nm, high intensity
  - o LED Array: wavelength -405nm, low intensity Then post cure in UV curing chamber

# Conclusions and On-going Work



The process for 3D printing polyimide aerogels can lead to applications in aeronautics, industry, and space. As it becomes a more defined process, more intricate parts can be produced.

#### Continuation:

- Improve printing parameters and formulations
- Improve repeatability
- Demonstrate feasibility of 3D printing UV curable polymers
- Characterize the 3D printed samples



## Acknowledgements

#### **Aerogel team members**

Dr. Baochau Nguyen Dr. Haiquan Guo Jessica Cashman Dr. Stephanie L. Vivod Melica Nikahd

#### **Funding**

NASA LERCIP internship program NASA IRAD: Approaches to Rapid Prototyping of Polymer Aerogels