The Effects of Low-Shear Simulated Microgravity on Soil Bacterium Pantoea agglomerans

Steven Russell Summer 2019 NIFS Intern NASA John F. Kennedy Space Center, FL 32899 University of North Dakota, Grand Forks, ND 58202

Objectives

- Determine growth rate of *Pantoea agglomerans* in simulated microgravity and normal gravity conditions.
- Determine antibiotic susceptibility of Pantoea *agglomerans* after exposure to simulated microgravity and normal gravity conditions.
- Have Fun 🕲

Materials

- Rotary Cell Culture System (RCCS)
- High Aspect-Ratio Vessel (HARV)
- Strain of Pantoea agglomerans (ISS Isolate)
- Spectrophotometer
- Trypticase Soy Broth (TSB) and Agar (TSA) Plates
- Mueller-Hinton Agar Plates
- Antibiotic Infused Disks
- GraphPad Prism (Statistical Analysis)
- High Spirit and a Good Attitude $\ensuremath{\textcircled{\sc o}}$

Panotea agglomerans

- P. agglomerans
- Gram-negative
- Rod-Shaped
- Motile peritrichous
- Enterobacteriaceae Family (E. coli, Klebsiella, Salmonella, Shigella, and Yersinia pestis)

Low- Shear Simulated Microgravity (LSSMG)

- RCCS
- HARV
- Low Shear no bubbles in vessel once filled
- Constant rotation rate
- Vertical Rotation (Fig.1) = Simulated Microgravity
- Horizontal No Rotation (Fig.2) = Normal Gravity

"Zero Headspace" HARV

Relevance

- Plant Growth Promoter (Dutkiewicz et. al; Mirsha et. Al)
- AND Plant Pathogen (Cruz et. al, Dutkiewicz et. al)
- Opportunistic Pathogen (Büyükcama et. al, Cruz et. al)
- Immunosuppressed Astronauts (Mann et. al)
- Microbial growth in microgravity (Nickerson et. al)

Hypotheses

- H_{1A} *P. agglomerans* growth rate will increase in LSSMG compared to normal gravity.
- H_{2A} *P. agglomerans* growth rate will decrease in LSSMG compared to normal gravity.
- H_{0A} There will be no change in the growth rate of *P. agglomerans* in LSSMG compared to normal gravity.
- $H_{1B} P.$ agglomerans will become less susceptible to chosen antibiotics after exposure LSSMG compared to normal gravity.
- $H_{0B} P.$ agglomerans will remain susceptible to chosen antibiotics after exposure to LSSMG compared to normal gravity.

Experimental Design – Exp. 1

- Determine growth rate in a shaking flask
- Determine growth rate in LSSMG and normal gravity
 - Experimental Rotated HARVS vertically
 - Horizontal Control HARVS
 - Shaking flask as ground control
 - Removed sample
 - Read optical density (OD)
 - Plated to confirm starting concentration

Exp. 1 Trial 2 Results – Cont.

LSSMG v. Control Log Scale

Time Hour

Experimental Design – Exp. 2

- "Time Point" Experiment
 - Chose 4 time points
 - 2 vessels per time point
 - * Experimental (vertical) and control (horizontal) 8 vessels total
 - Removed 2 vessels at each time point
 - * Harvested the entire vessel OD, plated for counts and for antibiotic test
 - Also ran a shaking culture

Exp. 2 Results –Growth Curve

Experimental v Shaking Exp.2

■LSSMG -6 ■Cntrl -6 ■LSSMG -5 ■Cntrl -5

1.00E+021.00E+01

1.00E+00

Exp. 2 - Cont.

- Antibiotic Test
 - Kirby-Bauer Antibiotic Susceptibility Test
 - Used to determine antibiotic susceptibility of bacteria
 - Measuring Zone of Inhibition (ZOI)
 - Mueller-Hinton Agar is used.
- Antibiotics
 - Ciprofloxacin (5µg)
 - Tetracycline (30µg)
 - Chloramphenicol (30µg)
- Tested *E. coli* ATC25922 for quality control

Exp. 2 Results – Antibiotics (ZOI)

▲			
Antibiotic	Susceptibility	Intermediate	Resistant
Tetracycline (30µg)	≥ 15 mm	12-14mm	≤11mm
Ciprofloxacin (5µg)	≥21mm	16-20mm	$\leq \! 15$ mm
Chloramphenicol (30µg)	≥18mm	13-17mm	≤12mm

*Based on standards set by the CLSI MS100 for the *Enterobacteriaceae* family.

P. agglomerans ZOI Average

- Control
 - Tetracycline: 22.4mm= S
 - Ciprofloxacin: 34.9mm= S
 - Chloramphenicol: 24.3mm= S

- LSSMG
 - Tetracycline: 21.1mm= S
 - Ciprofloxacin: 34.4mm= S
 - Chloramphenicol: 24.4mm= S
- Shaking Ground Control
 - Tetracycline: 22.4mm= S
 - Ciprofloxacin: 35.4mm= S
 - Chloramphenicol: 24.9mm= S

Conclusions

- So far:
 - + Growth Curves: H_{1A} looks promising (Hypothesis 1 is accepted)
 - + Antibiotic Resistance: H_{0B} looks likely (Null Hypothesis is accepted)
- Some significant differences in the growth rate in LSSMG compared to the control during 1hr intervals and media addition.
- No significant change in growth rate in LSSMG compared to the control when ran continuously, chose time points and no media addition
- No change in antibiotic susceptibility.
- Tale of two experiments.

Future Work

- Repeat, Repeat and Repeat again
- Continuously run bacterial culture in RCCS
 - Antibiotic resistance may not have had time to develop
- Addition of an antibiotic resistant microbial species.
 - * Test in LSSMG if there is gene transfer of antibiotic resistance gene to $P\!.$ agglomerans
- Addition of Media vs Harvesting entire Vessel
- Kirby-Bauer on Addition of Media Experiments

Acknowledgements

- Anna Maria Ruby, NASA KSC
 - Dr. Ye Zhang, NASA KSC
- Mary Hummerick, AECOM LASSO
- Dr. Christina Khodadad, AECOM LASSO
 - Jeff Richards, AECOM LASSO
- North Dakota Space Grant Consortium, University of North Dakota
 - Joey Emhof, NIFS
 - The Rest of the 2019 NIF Summer Interns in the "Petri Dish"

Questions?

References

- Büyükcama, A., Tuncerb, Ö., Gürb, D., Sancakb, B., Ceyhana, M., Cengiza, A.B., Kara, A., "Clinical and microbiological characteristics of Pantoea agglomeransinfection in children," *Journal of Infection and Public Health*, Vol. 11, 2018, pp. 304-309.
- Cruz, A. T., Cazacu, A, C., Allen, C. H., "Pantoea agglomerans, a Plant Pathogen Causing Human Disease," Journal of Clinical Microbiology, Vol. 45, No. 6, 2007, pp. 1989-1992.
- Dutkiewicz, J., Mackiewicz, B., Lemieszek, M. K., Golec, M., Milanowski, J., "Pantoea agglomerans: a mysterious bacterium of evil and good. Part III. Deleterious effects:infections of humans, animals and plants," *Annals of Agriculture and Environmental Science*, Vol. 23, No. 2, 2016, pp. 197-205.
- Mann V, Sundaresan A, Mehta S. K., Crucian B, Doursout M.F., Devakottai S., Effects of microgravity and other space stressors in immunosuppression and viral reactivation with potential nervous system involvement. *Neurology India* Vol. 67 No. 8, 2019, pp. 198-203.
- Mirsha, A., Chauhan, S. P., Chaudhry, V., Tripathi, M., Nautiyal, C. S., "Rhizosphere competent Pantoea agglomerans enhances maize (Zea mays) and chickpea (Cicer arietinum L.) growth, without altering the rhizosphere functional diversity," *Antonie van Leeuwenhoek*, Vol. 100, No. 3, 2011, pp. 405-413.
- Nickerson, C., Ott, M., Wilson, J.W., Ramamurthy, R., Pierson, D.L., "Microbial Responses to Microgravity and Other Low-Shear Environments," *Microbiology and Molecular Biology Reviews*, Vol. 68, No. 2, 2004, pp. 345-361.