

Optimizing a Coupled Solution for the Orion MPCV Using DPLR and NEQAIR

Oscar Klempay Mentors: Aaron Brandis, Brett Cruden, Ryan McDaniel TSA Summer, 2019

Summer 2019

- Background
- Significance
- Approach
- Data
- Results & Future Work

Background

- Aerothermal CFD has shown that there are two important types of heating on Hypersonic Entry
 - Radiative and Convective Heating

Background (cont.)

- Normal CFD solvers can only solve for convective or radiative heating one at a time
 - Few are able to "couple" the two accurately
 - But a production ready tool is under way...

Background (cont.)

Coupler Iteration	1	2	3	4	5
Radiation Source Term Scaling	0.6	0.8	0.9	1	1

Background (cont.)

- The Coupling Setup script enables the user to easily control parameters
- Each iteration can be tailored with the number of CFD iterations and coarsening of the "radiation grid"

[COUPLER SETUP] iterations = 5 prefix = run [DPLR SETUP] input_dir = inputs inputfile = dplr.inp ridfile = cev.lll.pgrx flowfile = cev.111.pslx orefix = dplr imension = 2 normal line = j [NEQAIR SETUP] input_dir = inputs inputfile = negair.inp orefix = negair batch_jobs = 16 OPTIONS] = 0, 0, 1, 1, 1 = 5000, 5000, 3500, 3500, 3500 dplr igalign dplr istop coupler iskip coupler_jskip = 2, 1, 1, 1, 1 coupler_scale_divq = 0.6, 0.8, 1.0, 1.0, 1.0 [DPLR BATCH] n procs = 100valltime = 03:00:00 jobname = couple dplr queue = batch stdout = run dplr.out [NEQAIR_BATCH] procs = 64alltime = 04:00:00 obname = couple negair ueue = batch stdout = run negair.out [D2N BATCH] walltime = 00:30:00 jobname = couple d2n stdout = run d2n.out [N2D BATCH] walltime = 00:30:00 obname = couple n2d stdout = run n2d.out [SYSTEM SETUP] setup_commands = ulimit -s unlimited

Significance

7

- Most flow simulations can get away with being uncoupled or loosely coupled because the radiative energy is minimal compared to the total energy of the gas
 - However, for high-speed entries, radiative energy is a major sink in the shock layer and a source in the boundary layer, which reduces the bow shock standoff distance and reduces the convective and radiative heating rates at the wall

Significance

 Another way to show the effect of *radiative cooling* is on the forebody surface. For uncoupled solutions, the implied margin is higher and so a more conservative estimate is required.

Significance

My Objectives

Objective 1:

Successfully run a 3D Orion MPCV simulation through the coupler

Objective 2:

Optimize run time of Orion MPCV by testing run time of 2D case through the coupler

My Approach

2D Axi-Symmetric Case (5km/s, 54.6km)

- In order to sort out bugs in the coupler, a 2D case was ran through
 - Several bugs were found in the coupler source code that prevented NEQAIR from working
 - Note how the Radiative Heating is much lower than the Convective Heating at 5 km/s

3D Half Body (5km/s, 54.6km, 0'AoA)

August 8, 2019

2D Peak Heating (10.5km/s, 61km)

As progressive runs are done, the radiative heating on the forebody converges to a lower value

2D Peak Heating (10.5km/s, 61km)

As progressive runs are done, the radiative heating on the forebody converges to a lower value

3D Peak Heating (10.5km/s, 61km,18'AoA)

August 8, 2019

Discussion/Conclusions

- The 3D <u>case is set up and can run several steps</u> through the coupler
 - Recommend that # of batch jobs be split up to 32 and the number of NEQAIR lines be coarsened from 8, to 4, to 2
 - Computational Time: running with 256 processors per NEQAIR file and 300 processors for DPLR
 - Switch from Cedar to Pleiades will speed this up dramatically
- Still errors with some of the NEQAIR lines

Future Work

- Tweak the 3D coupled case further in order to fix NEQAIR stability issues
 - Move from Cedar to Pleiades
- Set up the 3D case to run through a database of entry conditions
 - Varying entry speeds, angle of attack, and altitudes
 - Already done for 2D, still needs to be done for 3D

Lessons Learned

Start Small

 Work from a simple 2D case and troubleshoot errors before running a larger case

Adapt First

 Adapt the uncoupled solution before running it through the coupler

Boundary Conditions

 Check that your boundary conditions are correct before starting or else your solution will not converge

- Glass, David. "Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and Hot Structures for Hypersonic Vehicles." *15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference*, 2008, p. 6., doi:10.2514/6.2008-2682.
- Palmer, Grant E., et al. "Direct Coupling of the NEQAIR Radiation and DPLR CFD Codes." Journal of Spacecraft and Rockets, vol. 48, no. 5, 2011, pp. 836–845., doi:10.2514/1.52043.

A special thanks to everyone in TSA who offered me help along the way: Jeff Hill, Ryan McDaniel, Aaron Brandis, and Brett Cruden

Questions?

National Aeronautics and Space Administration

Ames Research Center Entry Systems and Technology Division