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Background & Motivation

- NASA set goals for aircraft efficiency,
emissions, reliability, and noise

- Parallel large & small aircraft development

- Economic benefit of alternative propulsion
- Electrified aircraft propulsion is a key enabler
- Most concepts use direct drive

- Geared drives are almost always mass
optimal

Direct drive
+ Simpler + Optimized motor & fan
= Non-optimal %{\ | + Enables cross shafting
motor and/or fan motor - — More complex
motor gearbox
fan fan = Potentially less reliable

National Aeronautics and Space Administration Design of a Magnetic Gear for NASA’s Vertical Lift Quadrotor Concept Vehicle 3



Background & Motivation

Mechanical gearing Magnetic gearing
Pros Pros
+ High / very high i + Non-contact
torque/mass T + No lubrication

(specific torque)

+ High / very high
efficiency

+ Mature technology

+ Low maintenance

+ Easily integrated in
electric machines

+ Potentially low vibration

cons

— Unknown limits on specific
torque & efficiency

— Requires lubrication — Magnet temperature limit

system(s) — Individual magnet interaction
— Routine & costly maintenance weaker than 1 gear tooth pair

— Strong tonal vibration & cabin noise

cons

— Contact-related wear &
failure
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Concentric Magnetic Gears

Modu!!

Inner Sun Gear

Permanent Magnets

. Soft Magnetic Material

Support Structure
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5aps

Rule of thumb:

Magnetic fields with matching spatial
harmonic order can couple to transmit
torque

Ring and Sun gear have different pole
counts

* Produce different spatial harmonic

Modulator “modulates” the flux of each
rotor so that that have matching spatial
harmonic order in the airgaps
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Concentric Magnetic Gears

Outer Ring Gear
e N 75 ~

Modulator~_« o Air Gaps

" Inner Sun Gear N
Permanent Magnets

Soft Magnetic Material

Support Structure
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cos(0) * cos(a) = %(cos(@ + a) + cos(6 — a))

B, = F * cos(PS = (6 + a))
|—> Number of Sun Gear Pole Pairs

U = Ugypg + Upy * cos(Q * (6 + B))
|—> Number of Pole Pieces

Brs * Uy = Ugyg * F * cos(PS * (6 + a))+

F;ucos((Q+PS)9+PS*a+Q*,8)+
Fxu
> cos((Q — PS)0 —PS*xa + Q = B))

PR=Q+tPS or Q=PRALPS
|—> Number of Ring Gear Pole Pairs
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Concentric Magnetic Gears

Gear Ratio

Mechanical Analogous concentric

planetary magnetic gear
gear

Q Selection Gear Ratio
PR-PS PR
Ring Gear =
PR+PS
PR
PR-PS I?S =5 1
Modulator 0 PR
PR+PS = +1
PS PS
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Background & Motivation

Phase |

2017

~
 How do they work? (PT-1)

« Can they be lightweight? (PT-2)
J

N\

Phase Il

2018-2019

» Can they be efficient? (PT-3) N =~  ,

« Can they be efficient and light

weight? (PT-4) ’

N\

Phase llI

2019-2020

<
* How to pair them with motors?
« Can they be reliable?

J
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PT-2 PT-3 >98%
45 Nm/kg Efficient
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Enabling Design Principles

Lightweight and Efficient Magnetic Gears

Halbach Arrays

Magnet Laminations

Minimize Modulator Thickness
Minimize Airgaps

R
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Enabling Design Principles

Halbach Arrays

One Pole Pair

- Eliminate need for back iron ( * \
. - T | v Traditional
Increase magnet per pole count: | (N) (S) Magnet Array
* Improves Array specific flux
T ¢« ¢ S 4 Magnets
* Suppresses Eddy Current Loss N | W | ) | () | PerPole Pair
« Magnet fill percentage loss | - | Nk | 5 | 6Magnets
(N) | (Nw) GEV} (NEV 1 Per Pole Pair
8 Magnets
(N) |£NW]‘ (W) ‘[‘SW]‘ {s) ‘ {%FJ | (E) ‘{NFJ Per POlE Pair
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Enabling Design Principles

Magnet Laminations

- Suppress magnet eddy current

PT-4 Sun Gear Loss Vs Sun Magnet Lamination Size

2500
loss P
- Can enable >99% efficiency -
- Magnet Fill percentage %500_ //
- To enable high efficiency 8 /
« High magnets per pole E /
» Small magnet laminations “—p

0 5 10 15 20 25 30 35 40 45 50
Sun Magnet Lamination Size (mm)
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Enabling Design Principles

Magnet Laminations

- Suppress magnet eddy current
10SS 52 mm

- Can enable >99% efficiency
- Magnet Fill percentage
- To enable high efficiency

« High magnets per pole

« Small magnet laminations
1 mm
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Enabling Design Principles

Minimize Modulator Thickness

* Electromagnetlca”y. Specific Torque Vs Modulator Thickness

* There is an optimum Modulator , 150
Thickness S 140
 Typically ~1.5 mm £ 130
S _ 120
- Mechanical structure limits 2 <10
thickness sg < 100
- Sandwiched between airgaps % 70
w 80

- PT-2: 2.6 mm thickness R 0 1 2 3 4 5

Modulator Radial Thickness (mm)

« PT-4: 2 mm thickness
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Enabling Design Principles

Minimize Modulator Thickness

Outer Ring Gear

- Electromagnetically:

* There is an optimum Modulator
Thickness

Inner Sun Gear

* Typically ~1.5 mm

- Permanent Magnets

- Mechanical structure limits .MM
thickness

Support Structure

« Sandwiched between airgaps
- PT-2: 2.6 mm thickness

« PT-4: 2 mm thickness
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Enabling Design Principles

Air Gap Thickness

- Potential to double magnetic
gear specific torque o

Achievable Specific Torque Vs Mechnical Airgap Size

200

- Smaller airgaps reduces optimal
modulator thickness

150

100

- Development area to improve
magnetic gears:

50

2D Electromagnetic Specific Torque (Nm/kg)

Modulator structure that enables : e z
. Mechcnical Airgap (mm)
smaller airgaps and smaller
modulators
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Preliminary Design

PT — 4 Design

- Quadrotor Referance Vehicle
- NASA's RVLT Project
- Single Passenger Air Taxi
- 4 Rotors
- 680 RPM (low noise)

« 16.1 kilowatts
- ~8000 RPM motor

National Aeronautics and Space Administration

.7&,

NASA'’s Vertical Lift Quadrotor Referance Vehicle

Design of a Magnetic Gear for NASA’s Vertical Lift Quadrotor Concept Vehicle 16



Preliminary Design

A 45

Performance Targets— ~97%
| TS 12
Nominal 226 N
Operating Point | [TEVETISS  ©20 =P\
10,000 Hours

1400 N

105 Kg

1203 Nim

Quadrotor Load —__ 604 Ni
Estimates 100
26

0.25 adis

0.25 ads
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Preliminary Design

Preliminary Design

- Preliminary Studies

* > 97% possible with magnet
laminations

Results of PT-3 Dynamic Testing

Avg. Corrected Efficiency, %
— . l ]

N\~

//1§;;ra{xﬂa$edrﬁgyyéi__J//

ek
S
-

Validated by PT-3 testing
 Thermal closed

o0
O
~~
%
e
(6%
-

« Mass was the question mark

- Electromagnetic and Structural
Design Code Developed

1. Total Gear Mass Effects
2. Modulator Structure

Output Torque, Nm
@)
-
‘ % %
KG{
% %L k

(\®)
=

i\
|

544_ ap

100 300 500 700 900 1100 1300 1500
Output Speed, rpm

3. Sun magnet retaining hoop
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Preliminary Design

Design Code Architecture

Bearing a.nd Rotor Design
Shaft Design Code
Code
A
Modulator
»  Structural
Analysis
h 4
Initial ,| Carbon Fiber ,| Electromagnetic ,| Rotor Design . Mass
Parameters Hoop Sizing 2D FEA Code Optimization
A
Bearing and
» Shaft Design
Code
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Preliminary Design

Design Code Results

- Assumed 80C Operating Temp
- N52M Neodymium Magnets

Total Gear Mass Vs Radius

« Highest Grade with 80C operating T gﬂ e v
- Fe,,Co,V, Modulator 5 P pPs=4
. Parametric sweeps of radius £ ° I Ezz
and PS = e
- Designs under 4.5 Kg G Ps=8
« 5-7 Sun Gear Pole Pairs (PS) 1
] 0.075 0.085 0.095 0.105 0.115
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Final Design

Selected Electromagnetic Design

PT-4 Electromagnetic Design Parameters

- - 5
Limits electrical frequency 104.1
52
Reasonable Modulator Thickness 7.878
Good Ring Magnet Thickness 2
3.302
Eliminates Symmetry 61
To reduce torque ripple 56
4
2.3

Outer Modulator Span Angle 5.44

Pole Piece Fillet Radius (mm 0.127

Magnetic Mass (ko 2.705
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Final Design

Demagnetization of Ring Gear Magnet

3.3 mm Ring Magnet Thickness

* Prevents N-S Demagnetization
2 mm Ring Magnet Width

« Allows E-W Demagnetization
Fixed with Material Change
 N48SH Ring Magnets

T & N/ -
(N) (W) (S) (E)

2 mm

National Aeronautics and Space Administration

Ring gear uses 4-magnet Halbach Array

3.3 mm

Surface: sgqrt(rmm.Mx”2+rmm.My~2) (A/m)

%10
0.11 2
0.105 18
o1 “Illllllllllll.... "y
0095 ’. --. s " 1.6
0. 09 1.4
0.085 ‘ .‘ 1.2
0. 08
0.075 L
0.07 0.8
0.065
0.06 00
0.055 0.4

0.05 0.2
0.045

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 m
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Final Design

Effect of Lamination Size on PT-4 Efficiency

1V w?l? 1 .T,dB
c— <, f )zdt
16pw2 2T

- Ring Magnet Width ~ 2 mm

* P.~w?
- Sun Magnet Width ~12 mm
¢ P.~I?

« For PT-4 selected
e 2 mm Sun Laminations
* No Ring Laminations
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2500

2000 [

-l
Loy
S
o

Sun Gear Loss (Watts)
>
3

500

PT-4 Sun Gear Loss Vs Sun Magnet Lamination Size

0
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Final Design

Efficiency Analysis

- Included Analytical Predictions of
Bearing and Windage Losses

PT-4 Efficiency Map

100
¢ At 20 C — 985 % :E\zoo 98
zZ "
. At 80 C ~ 99% S | o
O
Temperature |[Maximum 2D Output s | 94
Torgue (Nm 2 _
20 370 3 = | 92
303 : | I %0
1 O O 2 7 O : 0 1 (;O 2(.)0 3(;0 4(‘)0 5(.)0 6(;0 7(‘)0 SE.)O

Output Speed (RPM)
Magnetic Gear Efficiency Improves as Temperature Increases, but Torque Capacity is Lost
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Final Design

Thermal Analysis

Surface: Temperature (degC)

- Centripetally Pumped Cooling
e Sun Gear tip speed = 50m/s
« Self cooled

« Assumed 40C Ambient

Magnetic Component | Max Temperature (°C)

Sun Gear Magnets 80
Pole Pieces 85

Ring Gear Magnets 77
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80
0D

75
70
65
g O
60

55

50

45

40

e " v 0.05 0.1
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Final Design

Final Mechanical Design

- Final Mass= 4.6 Kg

- 8% higher than Design Code
Prediction

e Shaft Mass
* Ring Gear Structure

- Carbon Hoop added to Modulator
« Deflection neglected in code
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Conclusions

- PT-4 Final Design
* 49 Nm/kg at Nominal Operating Condition
« EXxpected to be higher at 20C
« >08.5% Efficiency
- Design Code Developed
* Creates preliminary design in < 1 Day

* Under predicted mass by ~8%
« Some improvements needed
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Future Work

- Build and Test PT-4
- PT-5
* Designed for X-57
* Risk Reduction For PT-4
« >97% efficiency without magnet laminations

- Update design code

- Magnetically geared motors

 How best to share magnetic and structural components
between a motor and a magnetic gear?
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Conclusions

Effect of Gearbox on Motor for Quadrotor

- Fan Speed = 680 RPM
- Shaft Power = 16,100 Watts

- Analytical Equations for:
 Torqgue
 Copper Loss
* |ron Loss
« Windage Loss

- Losses under predicted
- No Thermal Considerations
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Gear Ratio

Quadrotor Motor Efficiency Vs Gear Ratio and EM Mass
0.98

4 0.97
10.96

10.95

10.94

0.93

0.92

0.91

0.9

5 6 7
Electromagnetic Mass (kg)
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Enabling Design Principles

Halbach Arrays

e One Pole Pair
- Improve Specific Torque

« Don’t need back Iron Working Face

« Higher Specific Flux than traditional N & N > 4 Magnets
array (N) (W) (S) (E) Per Pole Pair
- Improve efficiency Back Face
« Lower Harmonic Distortion N B A O e 6 Magnets

+  More Magnets per pole (N) g (NwW) g (Sw) g ) f (SB) § (NE) | per Pole Pair

1V w?i? 1fT dB

C 7 16p W2+I2T

“25N2
O(dt) dt
SEE N N E 8 Magnets
e WKLl N foaowfw) fswl o Feo | ® fme

Per Pole Pair

2

« P.~w
Arrows denote magnetization direction*
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Enabling Design Principles

Minimize Modulator Thickness

- Electromagnetically there is a
specific torque optimum modulator

thickness

That thickness is typically less than
what can be achieved mechanically.

- Subjected to high magnetic forces

« Gear’s output torque
« Radial force
« Modulator is sandwiched by airgaps

« Pole pieces do not provide structure
« Point of failure in PT-2 and PT-3
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Enabling Design Principles

Minimizing Airgap

- Less Reluctance Between Rotors

« Lowers optimum modulator thickness

- Less Pole to Pole Leakage

* Increases optimum rotor pole counts
« Lower reluctance between poles

« Lowers optimum modulator thickness

- Reduces Efficiency

« More unmodulated flux crosses airgaps

National Aeronautics and Space Administration

2D Electromagnetic Specific Torque (Nm/kg)

Achievable Specific Torque Vs Mechnical Airgap Size

250
200
150
100

50

0 0.5 1 1.5 2 2.5
Mechcnical Airgap (mm)
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Concentric Magnetic Gears

Magnet Laminations
- Enables >99% Efficiency

212 2500 P.T'4 Slf" Gea,' Loss V. Mag'net La'minatilon Siz'e
1V w<l“ 1 T, dB
T e T 16, v do (g dt
° |<< w TEzooo
£

) PCle %1500-
- Magnet Fill Percentage Decreases 3 \

- Lowers Torque g‘m'
) PT-S 500

 1mm Laminations

0 5 10 15 20

« >98% Efficiency i Mgt L
« ~80% magnet fill
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Concentric Magnetic Gears

Flux Modulation Example:
10 Pole Pair Ring Gear Only

Surface: Magnetic flux density norm (T)

Radial Magnetic Field Produced By a Modulated Ring Gear

0 n B 0 N ,.
A f A A A A A A A

=

0.1r
0.09r
0.08f
0.07r
0.06f
0.05r
0.04r
0.03r
0.02-
0.01r

— Data From Simulation ||
J y y \ V y V — cos(40*theta) I
_ 0 0.5 1 1.5
1 ! 0 Coordinate, phi component (rad)

0 0.05 0.1 m
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Concentric Magnetic Gears

Flux Modulation Example:
Add 11 Pole Piece Modulator

Radial Magnetic Field Produced By a Modulated Ring Gear

Surface: Magnetic flux density norm (T)

0.1r
0.09
0.08f
0.07¢
0.06f
0.05f
0.04f
0.03f
0.02r
0.01f

/\\' |V ‘\I / “‘v "\" Il / \
/ '\ [ \I “‘ "n\ ‘||' \\ j (
‘l “‘ A} \ I|| | |l | \
v | V V .\H}

," 'l| |y‘

| i\ ‘|||

| ||

{‘ ‘l J’

\lll //'\

'|| ‘f \ B
| [ |}
l\ / ll| i
| |
[ 1]

I| \ \
171 \ ; * — Data From Simulation |]
\ — cos(4*theta)

1.5

0 0.5 1
Coordinate, phi component (rad)

0 0.05 0:1 m

PS=Q—-PR=11-10=1
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