

Design of a Magnetic Gear for NASA's Vertical Lift Quadrotor Reference Vehicle

ThomasZacharyJustinTallericoCameronScheidler

NASA Glenn Research Center

Materials and Structures Division Rotating and Drive Systems Branch

> 2019 Electrified Aircraft Technical Symposium August 22-24, 2019 Indianapolis Indiana

www.nasa.gov

Design of a Magnetic Gear for NASA's Vertical Lift Quadrotor Concept Vehicle 1

Outline

- Background and Motivation
- Concentric Magnetic Gears
- Enabling Design Principles
- Preliminary Design
 - Design Code
- Final Design
 - Efficiency
 - Thermal
 - Structural
- Conclusions

Background & Motivation

- NASA set goals for aircraft efficiency, emissions, reliability, and noise
- Parallel large & small aircraft development
 - Economic benefit of alternative propulsion
- Electrified aircraft propulsion is a key enabler
- Most concepts use direct drive
- Geared drives are almost always mass optimal

Geared drive

- + Optimized motor & fan
- Enables cross shafting
- More complex
- Potentially less reliable

Background & Motivation

Mechanical gearing

Pros

- High / very high torque/mass
 (specific torque)
- + High / very high efficiency
- + Mature technology

Cons

- Contact-related wear & failure
 - Requires lubrication system(s)
 - Routine & costly maintenance
- Strong tonal vibration & cabin noise

Magnetic gearing

Pros

- + Non-contact
 - + No lubrication
 - + Low maintenance
- Easily integrated in electric machines
- + Potentially low vibration

Cons

- Unknown limits on specific torque & efficiency
- Magnet temperature limit
- Individual magnet interaction weaker than 1 gear tooth pair

• Rule of thumb:

Magnetic fields with matching spatial harmonic order can couple to transmit torque

- Ring and Sun gear have different pole counts
 - Produce different spatial harmonic
- Modulator "modulates" the flux of each rotor so that that have matching spatial harmonic order in the airgaps

$$\cos(\theta) * \cos(\alpha) = \frac{1}{2}(\cos(\theta + \alpha) + \cos(\theta - \alpha))$$
$$B_{rs} = F * \cos(PS * (\theta + \alpha))$$
$$\longrightarrow \text{Number of Sun Gear Pole Pairs}$$

$$u = u_{avg} + u_m * \cos(\mathbf{Q} * (\theta + \beta))$$
Number of Pole Pieces

$$B_{rs} * u_m = u_{avg} * F * \cos(PS * (\theta + \alpha)) + \frac{F * u}{2} \cos((Q + PS)\theta + PS * \alpha + Q * \beta) + \frac{F * u}{2} \cos((Q - PS)\theta - PS * \alpha + Q * \beta))$$

 $PR = Q \pm PS$ or $Q = PR \pm PS$ Number of Ring Gear Pole Pairs

Gear Ratio

Analogous concentric magnetic gear

Design of a Magnetic Gear for NASA's Vertical Lift Quadrotor Concept Vehicle 7

Background & Motivation

Lightweight and Efficient Magnetic Gears

- 1. Halbach Arrays
- 2. Magnet Laminations
- 3. Minimize Modulator Thickness
- 4. Minimize Airgaps

Halbach Arrays

- Eliminate need for back iron
- Increase magnet per pole count:
 - Improves Array specific flux
 - Suppresses Eddy Current Loss
 - Magnet fill percentage loss

Traditional Magnet Array

4 Magnets Per Pole Pair

6 Magnets Per Pole Pair

8 Magnets Per Pole Pair

Magnet Laminations

- Suppress magnet eddy current loss
- Can enable >99% efficiency
- Magnet Fill percentage
- To enable high efficiency
 - High magnets per pole
 - Small magnet laminations

Magnet Laminations

- Suppress magnet eddy current loss
- Can enable >99% efficiency
- Magnet Fill percentage
- To enable high efficiency
 - High magnets per pole
 - Small magnet laminations

Minimize Modulator Thickness

- Electromagnetically:
 - There is an optimum Modulator
 Thickness
 - Typically ~1.5 mm
- Mechanical structure limits
 thickness
 - Sandwiched between airgaps
- PT-2: 2.6 mm thickness
- PT-4: 2 mm thickness

150 140 140 130 120 120 120 120 100 100 90 80 0 1 2 3 4 5 Modulator Radial Thickness (mm)

Specific Torque Vs Modulator Thickness

Minimize Modulator Thickness

- Electromagnetically:
 - There is an optimum Modulator
 Thickness
 - Typically ~1.5 mm
- Mechanical structure limits
 thickness
 - Sandwiched between airgaps
- PT-2: 2.6 mm thickness
- PT-4: 2 mm thickness

Air Gap Thickness

- Potential to double magnetic gear specific torque
- Smaller airgaps reduces optimal modulator thickness
- Development area to improve magnetic gears:

Modulator structure that enables smaller airgaps and smaller modulators

PT – 4 Design

- Quadrotor Referance Vehicle
 - NASA's RVLT Project
 - Single Passenger Air Taxi
 - 4 Rotors
 - 680 RPM (low noise)
 - 16.1 kilowatts
 - ~8000 RPM motor

NASA's Vertical Lift Quadrotor Referance Vehicle

		Requirement	Value
		Target Total Gear Mass	4.5 kg
Performance largets		Target Gear Efficiency	>97%
Nominal		Gear Ratio	~12:1
		Output Torque	226 Nm
Operating Point		Output Speed	680 RPM
Quadrotor Load Estimates		Required Bearing Life (99% Reliability)	10,000 Hours
		Thrust Load	1400 N
		Propeller Mass	10.5 Kg
		Propeller Hub Moment (Worst Case)	1203 Nm
		Propeller Hub Moment (Nominal Case)	604 Nm
		Nominal Propeller Hub Drag	100 N
		Max Turning Acceleration	2 G's
		Nominal Yaw Rate	0.25 rad/s
		Nominal Pitch Rate	0.25 rad/s

Preliminary Studies

- > 97% possible with magnet laminations
 - Validated by PT-3 testing
- Thermal closed
- Mass was the question mark
- Electromagnetic and Structural
 Design Code Developed
 - 1. Total Gear Mass Effects
 - 2. Modulator Structure
 - 3. Sun magnet retaining hoop

National Aeronautics and Space Administration

Results of PT-3 Dynamic Testing

Design Code Architecture

Design Code Results

- Assumed 80C Operating Temp
- N52M Neodymium Magnets
 - Highest Grade with 80C operating T
- $Fe_{49}Co_{49}V_2$ Modulator
- Parametric sweeps of radius and PS
- Designs under 4.5 Kg
 - 5-7 Sun Gear Pole Pairs (PS)
 - >.09 m radius

Selected Electromagnetic Design

	PT-4 Electromagnetic Design Parameters		
Limite electrical frequency	Sun Pole Pairs	5	
Linits electrical frequency	Magnetic OR (mm)	104.1	
	Axial Length (mm)	52	
Reasonable Modulator Thickness	Sun Magnet Thickness (mm)	7.878	
Good Ring Magnet Thickness	Modulator Thickness (mm)	2	
	Ring Magnet Thickness (mm)	3.302	
Eliminates Symmetry	Modulator Pole Pieces	61	
To reduce torque ripple	Ring Pole Pairs	56	
Re-optimized Pole Piece Geometry-	Inner Pole Piece Span Angle	4	
	Mid Pole Piece Span Angle	2.3	
	Outer Modulator Span Angle	5.44	
	Pole Piece Fillet Radius (mm)	0.127	
	Magnetic Mass (kg)	2.705	

Demagnetization of Ring Gear Magnet

- Ring gear uses 4-magnet Halbach Array
- 3.3 mm Ring Magnet Thickness
 - Prevents N-S Demagnetization
- 2 mm Ring Magnet Width
 - Allows E-W Demagnetization
- Fixed with Material Change
 - N48SH Ring Magnets

Effect of Lamination Size on PT-4 Efficiency

•
$$P_c = \frac{1}{16} \frac{V}{\rho} \frac{w^2 l^2}{w^2 + l^2} \frac{1}{T} \int_0^T (\frac{dB}{dt})^2 dt$$

- Ring Magnet Width ~ 2 mm
 - $P_c \sim w^2$
- Sun Magnet Width ~12 mm
 - $P_c \sim l^2$
- For PT-4 selected
 - 2 mm Sun Laminations
 - No Ring Laminations

Efficiency Analysis

- Included Analytical Predictions of Bearing and Windage Losses
- At 20 C ~ 98.5 %
- At 80 C ~ 99%

Temperature	Maximum 2D Output
(°C)	Torque (Nm)
20	370
80	303
100	270

Magnetic Gear Efficiency Improves as Temperature Increases, but Torque Capacity is Lost

Thermal Analysis

- Centripetally Pumped Cooling
 - Sun Gear tip speed = 50m/s
 - Self cooled
- Assumed 40C Ambient

Magnetic Component	Max Temperature (°C)
Sun Gear Magnets	80
Pole Pieces	85
Ring Gear Magnets	77

Final Mechanical Design

- Final Mass= 4.6 Kg
- 8% higher than Design Code
 Prediction
 - Shaft Mass
 - Ring Gear Structure
- Carbon Hoop added to Modulator
 - Deflection neglected in code

- PT-4 Final Design
 - 49 Nm/kg at Nominal Operating Condition
 - Expected to be higher at 20C
 - >98.5% Efficiency
- Design Code Developed
 - Creates preliminary design in < 1 Day
 - Under predicted mass by ~8%
 - Some improvements needed

Future Work

- Build and Test PT-4
- PT-5
 - Designed for X-57
 - Risk Reduction For PT-4
 - >97% efficiency without magnet laminations
- Update design code
- Magnetically geared motors
 - How best to share magnetic and structural components between a motor and a magnetic gear?

Acknowledgements

- NASA Revolutionary Vertical Lift Technology (RVLT) Project
- NASA Internal Research & Development (IRAD) Project
- Glenn Research Center Composites Group
 - Sandi Miller
 - Paula Heimann

29

QUESTIONS ?

Conclusions

Effect of Gearbox on Motor for Quadrotor

- Fan Speed = 680 RPM
- Shaft Power = 16,100 Watts
- Analytical Equations for:
 - Torque
 - Copper Loss
 - Iron Loss
 - Windage Loss
- Losses under predicted
- No Thermal Considerations

0.98 0 9775 0.97 20 0.98 0.96 0.9775 Gear Ratio 0.95 0.94 0.93 0.97 0.96 0.98 0.92 0.97755 0.9775 0.975 0.97 0.91 0.96 0.97 0.97 0 96 0.9 10 9 Electromagnetic Mass (kg)

Quadrotor Motor Efficiency Vs Gear Ratio and EM Mass

Halbach Arrays

- Improve Specific Torque
 - Don't need back Iron
 - Higher Specific Flux than traditional array
- Improve efficiency
 - Lower Harmonic Distortion
 - More Magnets per pole
 - $P_c = \frac{1}{16} \frac{V}{\rho} \frac{w^2 l^2}{w^2 + l^2} \frac{1}{T} \int_0^T (\frac{dB}{dt})^2 dt$
 - $w \ll l$
 - $P_c \sim w^2$

Working Face				
个 (N)	← (W)	↓ (S)	→ (E)	

One Pole Pair

Back Face

↑	↓	لا	⊿
	(S)	(SE)	(NE)

$\uparrow \qquad \bigtriangledown \qquad \leftarrow \qquad \checkmark \qquad \searrow \qquad \rightarrow \qquad \urcorner \\ (N) \qquad (NW) \qquad (W) \qquad (SW) \qquad (S) \qquad (SE) \qquad (E) \qquad (NE)$

4 Magnets Per Pole Pair

6 Magnets Per Pole Pair

8 Magnets Per Pole Pair

Arrows denote magnetization direction*

Minimize Modulator Thickness

- Electromagnetically there is a specific torque optimum modulator thickness
- That thickness is typically less than what can be achieved mechanically.
 - Subjected to high magnetic forces
 - Gear's output torque
 - Radial force
 - Modulator is sandwiched by airgaps
 - Pole pieces do not provide structure
 - Point of failure in PT-2 and PT-3

Minimizing Airgap

- Less Reluctance Between Rotors
 - Lowers optimum modulator thickness
- Less Pole to Pole Leakage
 - Increases optimum rotor pole counts
 - Lower reluctance between poles
 - Lowers optimum modulator thickness
- Reduces Efficiency
 - More unmodulated flux crosses airgaps

Achievable Specific Torque Vs Mechnical Airgap Size

Magnet Laminations

- Enables >99% Efficiency
 - $P_c = \frac{1}{16} \frac{V}{\rho} \frac{w^2 l^2}{w^2 + l^2} \frac{1}{T} \int_0^T (\frac{dB}{dt})^2 dt$
 - I<< w
 - $P_c \sim l^2$
- Magnet Fill Percentage Decreases
 - Lowers Torque
- PT-3
 - 1mm Laminations
 - >98% Efficiency
 - ~80% magnet fill

Flux Modulation Example: 10 Pole Pair Ring Gear Only

Flux Modulation Example: Add 11 Pole Piece Modulator

