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Small nuclear power systems that would provide electricity to 

probes, landers, rovers, or communication repeaters for space 

missions
• Operate in vacuum or on planetary surface (ie. Moon, Mars, more...)

• Use conversion technology to convert heat to electricity for powering spacecraft 

sensors and communications 
• Fractional GPHS (General Purpose Heat Source) offers around 60 watts of thermal input

• LWRHU (Light Weight Radioisotope Heater Unit, often called RHU) offers around 1 watt of 

thermal input for each unit and multiple units could be used

Why Low Power RPS?

Development Goals
• Sufficient power for spacecraft functions

• Long-life and low degradation to ensure power at 

EOM

• Robust to critical environments (vibration, shock, 

constant acceleration, radiation)

• Thermal capability and high efficiency

Dynamic Power Conversion
• 12-16% overall system efficiency possible 

from 1 to 10 watts electrical power output [Ref 1] Conceptualization of Seismic Monitoring 

Stations Being Deployed from Rover [JPL Pub 04-

10, Sept-2004]
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Design Goals
• Long life design (no wear mechanisms)

• 3 kg system mass

• Envelope of 11 cm diameter X  32 cm length

• Performance
• Heat from multiple LWRHU

• At least 1 We power output

• At least 12% system efficiency 

• Maximum of 400 ºC acceptor temperature 

• Maximum of 50 ºC rejection temperature

• Robustness
• Overstroke collision tolerant (limited time)

• Operates in vacuum or atmosphere

• Launch vibration 

• Constant accelerations

• Shock 

• Compliance
• Minimize exported force

• EMI

Low Power Dynamic RPS Concept
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Low Power Dynamic RPS Concept
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Proof of Concept – 1 We design

• Split-Stirling, gas duct between engine and 
alternator compression space

• Gap regenerator – no porous matrix

• Flexure bearings for piston and displacer

• Laboratory design did not minimize mass

• Simulating heat from 8x RHUs using electric 
heater, 350 ºC hot end temp

• Fluid loop heat rejection, 50 ºC cold end

• 100 Hz, 94 psig helium, 4.0 mm Xp, 2mm Xd
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Test Setup
(insulation not shown)
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Convertor Instrumentation
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Instrumentation

• Piston hall effect sensor

• Displacer hall effect sensors 

• Dynamic CS pressure transducer

• Hot end temperature (1x)

• Cold end temperature (1x)

• Alternator housing temperature (1x)

• Electrical heat input

• Alternator output

Displacer 
Hall sensor 

Piston Hall 
sensor 

....----Displacer 

----- Tait housing 
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Testing Sequence
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• Flexure Stiffness Characterization

• Displacer & Piston Resonance Characterization

• Displacer & Piston Position Sensor Calibration

• Convertor Characterization
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Displacer Flexure Stiffness 

Characterization
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Finite element model over predicted 

displacer flexure stiffness by 7% at 

full 2 mm amplitude

Force applied using 

calibrated masses 

> 4x flexures 
{installed as it will 

operate) 

Displacement measured 
using laser sensor 
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Piston Flexure Stiffness 

Characterization
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Finite element model over predicted 

piston flexure stiffness by 13% at full 

4 mm amplitude

Force applied using 
cal ibrated masses 

l 
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Displacer Resonance Characterization
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Displacer amplitude (Xd) versus frequency.

Test setup used for characterizing displacer 

resonance.

Goal: Achieve 102-103 Hz at 2 mm amplitude

Procedure:

• 1 W linear alternator was used as an exciter 

driven by an AC source

• Frequency swept from 90 to 104.75 Hz

• Displacer (mass-spring) assembly allowed to 

resonate

• Adjust number of flexures and mass as needed.
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Piston Resonance Characterization
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Goal: Achieve 95-98 Hz at 4 mm amplitude.

Two Approaches:

• Resonant approach (used for displacer), requires 2x alternators

• Ringdown

• Drive alternator to 4 mm, go open circuit on the alternator.

- A free piston should ring down for >1 second.

- Frequency of oscillation equates to resonance 

throughout the ringdown.

~6 seconds
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Displacer & Piston

Position Sensor Characterization
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Procedure:

• Displacer was excited via harmonic resonance.

• 1 W linear alternator was driven via AC source.

• A laser displacement sensor was used to measure position.

• All signals were recorded and monitored via LabVIEW.

• Correlations of hall sensor voltage amplitude to laser amplitude (in mm) were derived.

Signals are linear over and beyond entire operating range.
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Convertor Characterization
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Test process:

- Engine and alternator assemblies were integrated

- Convertor filled with helium

- Used and AC source to drive the piston

- Motor at piston amplitude of 2 mm at frequencies of 95-103 Hz

- Motor at piston amplitude of 4 mm at frequencies of 95-103 Hz

Observations:

- Round 1 of testing w/ non-rigid mount

- Measured case motion: 0.1 mm

- Round 2 of testing w/ rigid mount

- Displacer leads piston by 50-80 degrees

at frequencies of 95-99 Hz.

- Cooling of hot-end observed

- 3.5 W to drive the cooler (rub discovered)

Mode 1 Mode 2

Hot-end Heating Cooling

Xp-Xd Phase Angle ~170 deg ~0 deg

Non-rigid mount

Rigid mount
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Objective: High performance required (~0.001 W/m-K effective thermal conductivity)

- Peregrine Falcon Corp. designed and fabricated multi-layered metal insulation (MLMI)

- The prototype is currently under test at GRC.

Current Challenge: Low conductance of the evacuation port requires long evacuation time.

Insulation – Functional Test
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Fluid Rejector

Stirling Thermal Simulator
Insulation

Evacuation 

Port

Multiple layersHeat Source
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Controller design and functionality

• Linear AC regulator controller using a 
MOSFET H-bridge with analog circuit to 
control FETs for AC to DC rectification 
and load control

• Constant power load monitoring allows 
for load control and shunting of unused 
power
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Controller
Design Progression

• LTspice model contains a linear 
alternator, H-bridge rectifier, constant 
power circuit, and waveform smoothing 
circuit for power factor and Total 
Harmonic Distortion correction

• Model validated with breadboard testing.

• Design finalized and incorporated into a 
printed circuit board design. Assembly in 
progress

Alternator Voltage, Vp-p 25.6

Alternator Power, We 1.24

Controller Voltage, Vdc 11.1

Controller Power, We 1.16

AC-DC Conversion Efficiency 93%

Controller Breadboard Testing Results
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Summary

• Small RPS are being considered for small spacecraft missions

• Enables long-life power for use in darkness

• 1-W Stirling RPS is in development at NASA GRC

• Testing & Demonstration of Subcomponents is Underway:

• Convertor

• High-performance insulation 

• Controller

16



National Aeronautics and Space Administration

Special thanks to contributors

• Barry Penswick

• Jonathan Metscher

• Malcolm Robbie

• Cheryl Bowman

• Paul Schmitz

• Roy Tew

Thank you for attending

• 


