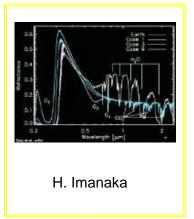


Modeling Terrestrial planetary atmospheres with ROCKE-3D

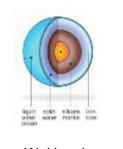
Michael Way, Tony Del Genio, Linda Sohl, Sonny Harman, Nancy Kiang, Igor Aleinov, Chris Colose, Tom Clune, Maxwell Kelley, and many others at GISS, GSFC, and elsewhere


Tokyo Area Planetary Meeting: September 7, 2018

D. Fischer A. Jensen J. Graham

The NExSS Teams

Exoplanet Detection



Exoplanet Characterization

E. Ford

D. Deming

J. Wright

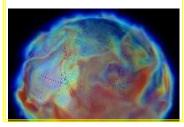
W. Henning J. Fortney N. Turner H. Jang-Condell D. Apai

Disks & Planet Formation

Laboratory Astrophysics Structure and Evolution Weather and Escape

<u>HQ reps:</u>

Mary Voytek (PSD) Doug Hudgins (ASD) Jared Leisner (HSD) Shawn Domagal-Goldman

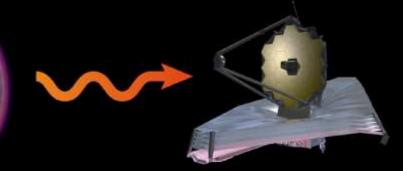

Planetary

Space

<u>Co-leads:</u> Natalie Batalha Dawn Gelino Tony Del Genio

Management

S. Desch V. Meadows T. Del Genio


Planetary Habitability and Detectability

B. Moore D. Brain

Sellers Exoplanet Environments Collaboration

Developing multiscale data-driven integrated science+instrumentation modeling for the study of exoplanet environments

Heliophysics

Stellar Spectra Models CME Models Star-Planet Interactions Stellar Evolution Models

Earth/Planetary

1D Atmosphere Models

3D Global Circ. Models

Planet Evolution Models

Atm. Radiative Transfer

Astrophysics

Science Mission Planning

Observatory/Instrument Models

Model Fitting & Parameter Retrieval

Data Interpretation and Discovery

Parent Earth 3-D GCM Model: Model_E2 (IPCC/CMIP)

- 2x2.5 deg Latitude x Longitude grid (1 degree cubed sphere)
- 40 Layer atmosphere (109 layer)
- 13 Layer fully coupled ocean (1x1.25)
- Radiation: In-house developed (fast) present day Earth-specific scheme

ROCKE

-3D

- 4x5 deg Latitude Longitude grid (2x2.5)
- 40 Layer atmosphere
- 13 Layer fully coupled ocean
- SOCRATES (Met Office) flexible radiation scheme
 - Thin Atmospheres: Present & Ancient Mars, Ancient Moon (3mb and up)
 - Thicker Atmospheres: Ancient Earth (CO2/N2 dominated up to 10bars with N2O, CH4)
 - Reducing Atmospheres: Titan
- Interactive Chemistry: Modern Earth specific & Reducing chemistry (Fall 2019)
- Details in Way et al. 2017 ApJS, 231, 12

Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets

Chemistry Sonny Harman & Kostas Tsigaridis

ROCKE-3D inherited an oxygen-dominated atmospheric chemical regime from ModelE2, but it's not particularly flexible.

The Kinetic PreProcessor (KPP) acts as a box model that builds sparse matrices from the mass balance ODEs; these can be time-marched forward (given a set of reactions and their rates).

KPP is currently working as part of:

NCAR's WRF and BOXMOX : GEOS-Chem : RACM

Why is ROCKE-3D getting KPP?

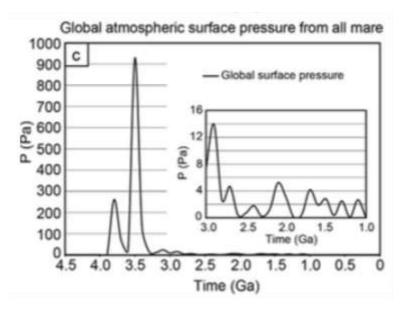
ROCKE-3D needs to be able to handle low -O₂ atmospheres if we want to model the Earth through most of its history, or exoplanets that don't have life.

We could even model Titan, Venus, and exoplanets like them.

This type of flexibility will profoundly expand ROCKE-3D's

capabilities.

Modeling an Ancient Lunar Atmosphere

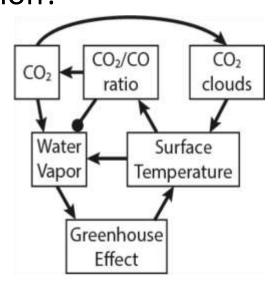

Implications for the migration and preservation of volatiles at high latitudes and applications to thin exoplanetary atmospheres

I. Aleinov (Columbia), C. Harman (Columbia), M. Way (GISS) K. Tsigaridis (Columbia); E. T. Wolf (U. of Colorado)

Escape rates and photochemistry \rightarrow climate!

Proportion of volatiles degassed during m	nare emplacement.
---	-------------------

Mare volatiles	Reported mass		% Liberated
	(ppm)	(ppm)	(%)
CO ^a	80	750	100
H ₂ O ^b	2	10	90
H ₂ ^c	0.007	45	100
OH	0	0	99
Sd	200	600	90

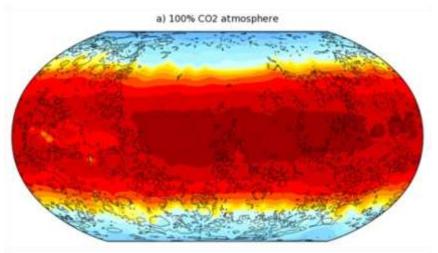


Needham & Kring, 2017

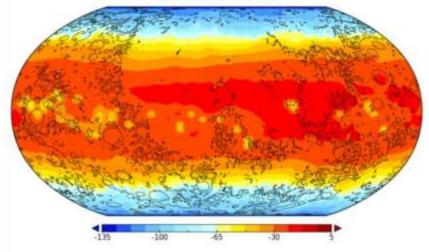
- Needham & Kring assume only escape due to solar wind (~<10 kg/s)
 Nature of escape sets composition? Other mechanisms at work?
- Main outgassed species: $CO \rightarrow CO_2$? Photochemical conversion?

(T-dependent)

- Potential for CO₂
 clouds, condensation,
 dust storms.
- Other feedbacks?

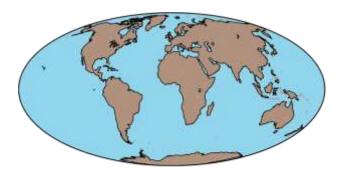

Initial estimates (limiting cases)

Radiatively active (CO₂) and inactive (N₂, ~CO), 3.5 Gya insolation and orbital parameters.


CO₂ atm ~14 K warmer globally than N₂/CO. Min at poles: CO₂: -118 C, N₂: -134 C Note: CO₂ condensation @ 10 mb ~ -122 C

Permanently shadowed areas (PSR) are likely to be much colder and may trap H₂O, CO₂ and other volatiles

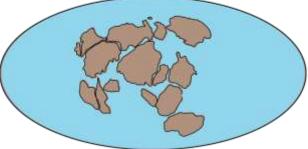
Direct application to thin atm. exoplanets and exomoons. We can provide observables via reflection and transmission spectra (GISS & PSG)

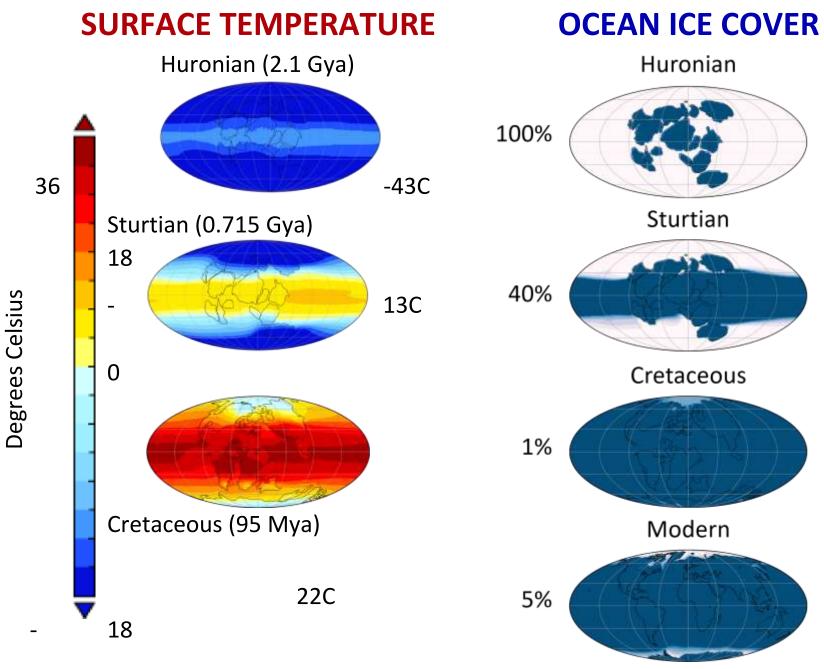

b) 100% N2 atmosphere

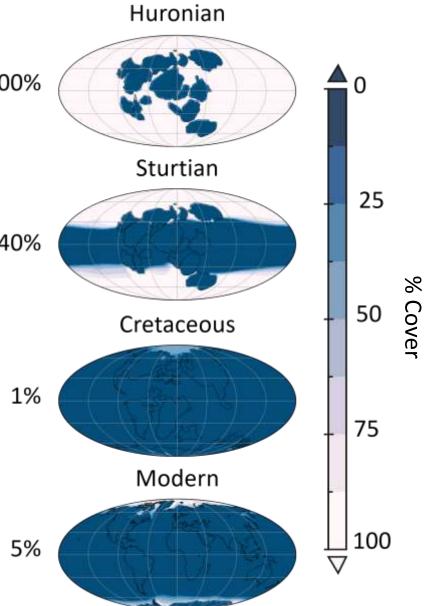
Surface Air Temperature

Paleo Earth Studies

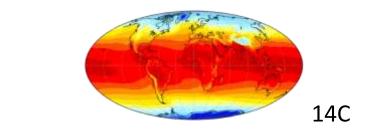
Linda Sohl Mark Chandler Michael Way Tony Del Genio


Modern


- Land area: 29.21%
- Land albedo: 20.2%
- Planetary albedo: 29.7%


Mid-Cretaceous (100Mya)

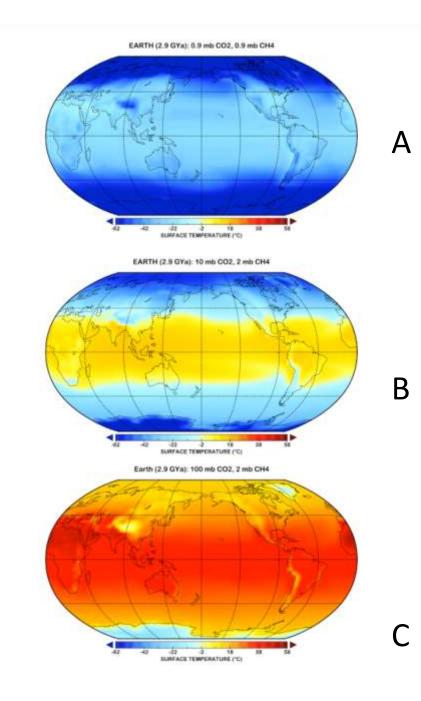
- Land area: 25.4%
- Land albedo: 11.2%
- Planetary albedo: 28.3%


		Sturtian	Huronian
	 Land area: 	19.1%	19.1%
)	 Land albedo: 	39.6%	48.5%
	 Planetary albedo: 	37.2%	49.5%

Modern

-36

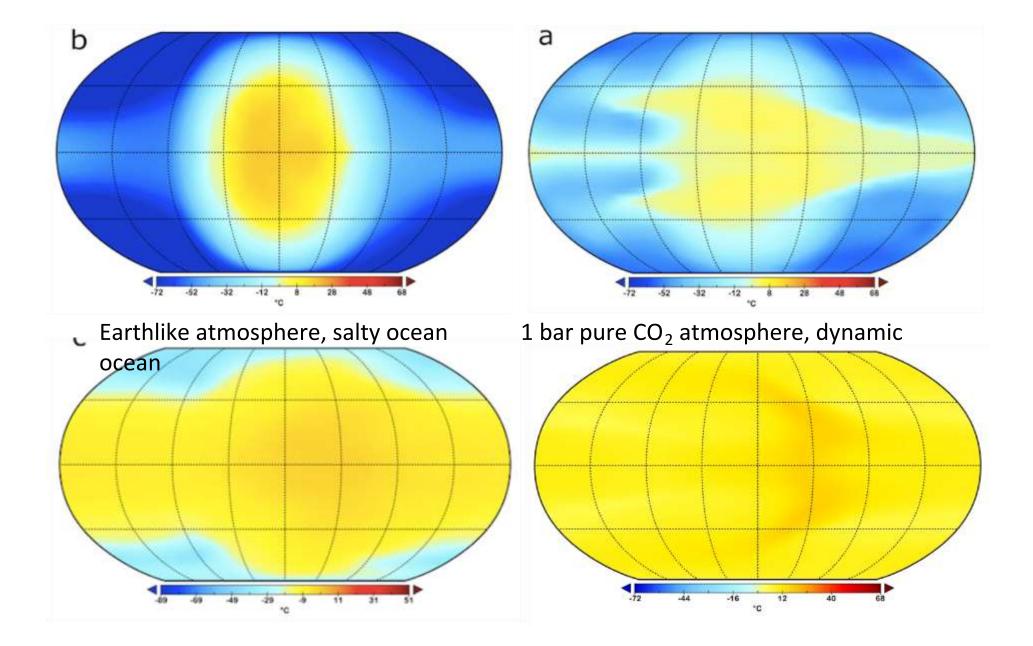
(Sohl, Chandler, Jonas)


ARCHEAN EARTH SIMULATIONS 2.9 Gya

Del Genio, Brain, Noack, Schaefer 2018,

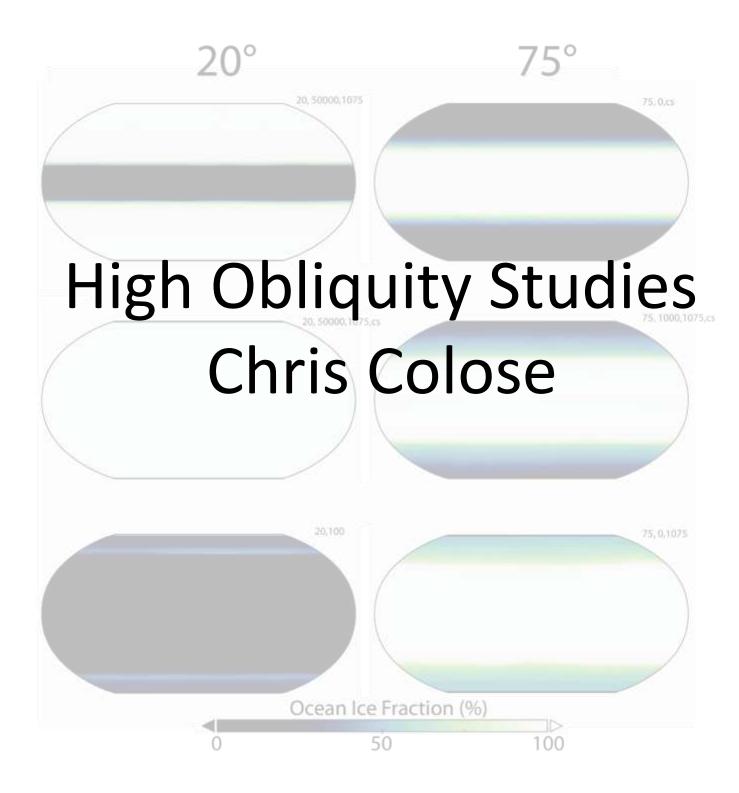
Planet. Astrobio. Book)

Compositions taken from Charnay et al. (2013) cases A, B, C


Hot Archean Earth scenario(Case C) consistent with results of coupled carbon-climate models (Charnay et al., 2017; Krissansen-Totten et al., 2018) but difficult to reconcile with

CH₄ destruction in GOE as initiator of Huronian snowball POSSIBLE PROXIMA CENTAURI B CLIMATES

(Del Genio, Way, Amundsen, Aleinov, Kiang... 2018, Astrobio., in press)


Earthlike atmosphere, static ocean Earthlike atmosphere, dynamic ocean

Proxima Centauri b – List of Simulations

#	Name	Description
1	Control	0.984 bar, N_2 + 376 ppmv CO ₂ atmosphere, dynamic ocean, aquaplanet, synchronous rotation, $S_0 = 881.7 \text{ Wm}^{-2}$, $S = 35.4 \text{ psu}$
2	Thermo	Like Control but with a thermodynamic ocean
3	Control-High	Like Control but with $S_0 = 956 \text{ Wm}^{-2}$
4	Control-Thin [®]	Like Control but with 0.1 bar N ₂ + 376 ppmv CO ₂
5	Control-Thick #	Like Control but with 10 bar N ₂ + 376 ppmv CO ₂
6	Archean Low*	Like Control but 638 ppmv CO ₂ , 450 ppmv CH ₄
7	Archean Med*	Like Control but 900 ppmv CO ₂ , 900 ppmv CH ₄
8	Archean Med NoCH4 ^{*@}	Like Archean Med but 0 ppmv CH4

9	Archean High*	Like Control but 10000 ppmv CO ₂ , 2000 ppmv CH ₄	
10	Pure CO2 ^{+@}	Like Control but 0.984 bar pure CO2 atmosphere	
11	Control-Shallow [@]	Like Control but with a 158 m depth ocean	
12	Control-Deep ^(a)	Like Control but with a 2052 m depth ocean	
13	Zero Salinity	Like Control but S = 0 psu	
14	High Salinity	Like Control but S = 230 psu	
15	3:2e0	Like Control but in 3:2 resonance with e=0	
16	3:2e30	Like Control but in 3:2 resonance with e=0.30	
17	Day-Ocean	Like Control but with Earth land-ocean distribution and substellar point over Pacific	
18	Day-Land	Like Day-Ocean but substellar point over Africa	

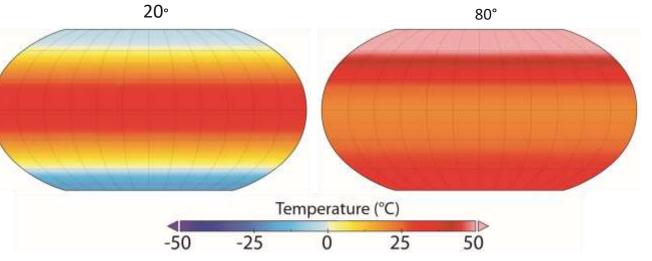
0° 60°

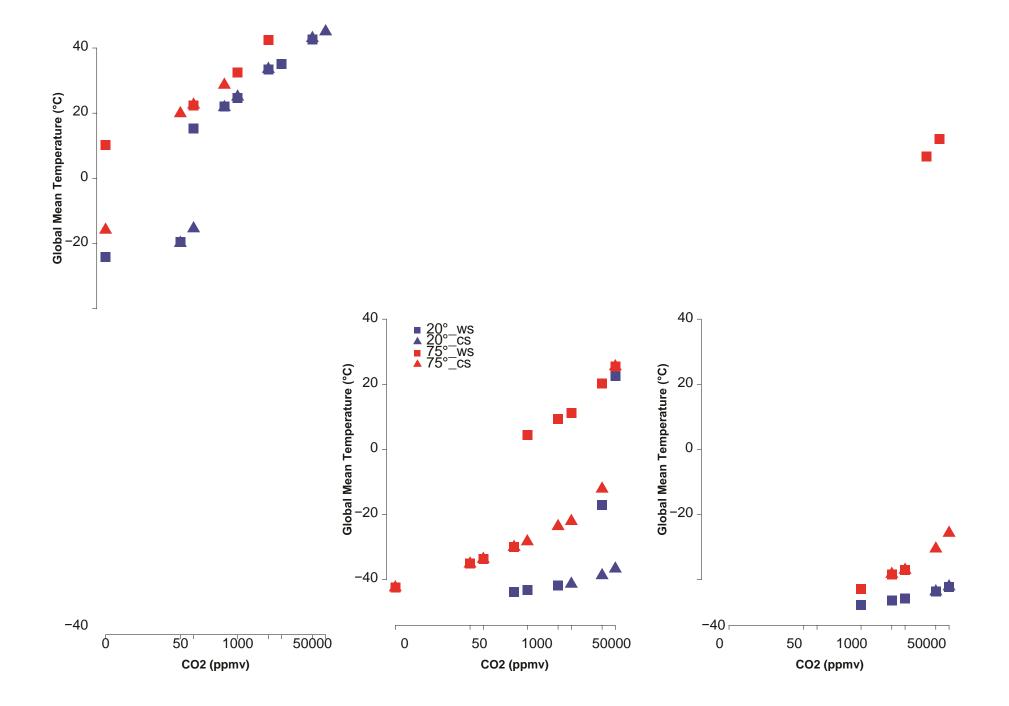
≻High obliquity increases global temperature despite a globally conservative redistribution of sunlight. This is related to low cloud reduction at high latitudes & reduced planetary albedo

JJA Aquaplanet Temperature

➢ High latitude winters remain very warm at high obliquity due to ocean heat storage (see also Ferreria et al., 2014)

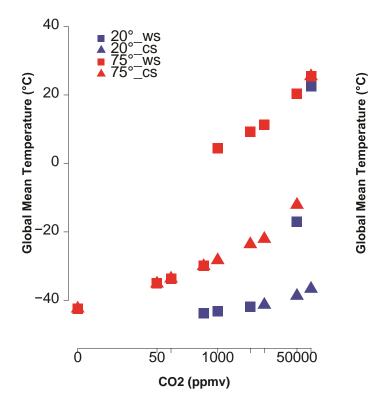
Hysteresis at Low &


High Obliquity


Solar: 1360 W m⁻²

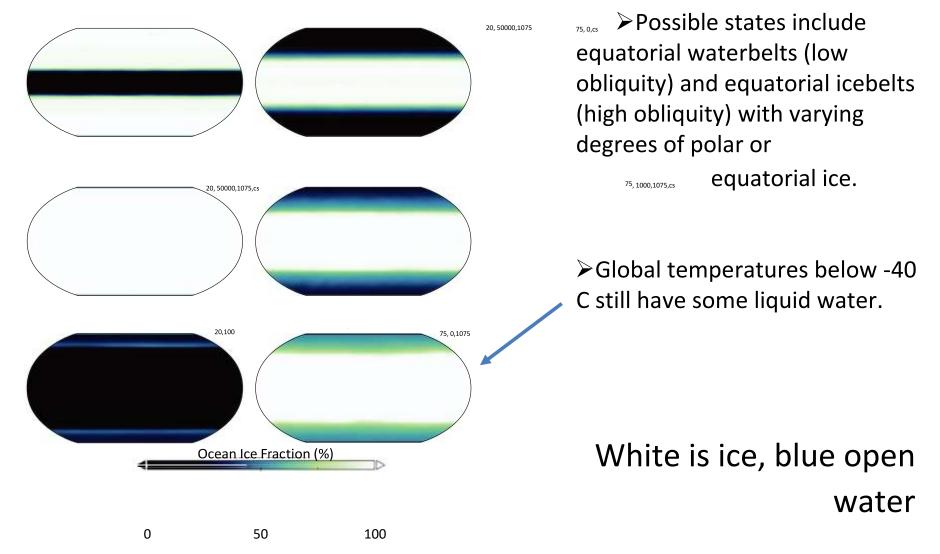
Solar: 1075 W m⁻²

Solar: 950 W m⁻²


50 25 0

Hysteresis at Low & High Obliquity

Solar: 1075 W m-2

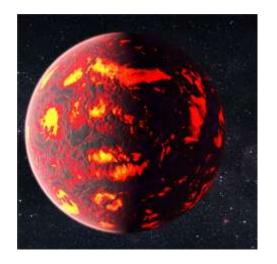


➢ High obliquity planets are systematically warmer than their low obliquity counterparts.

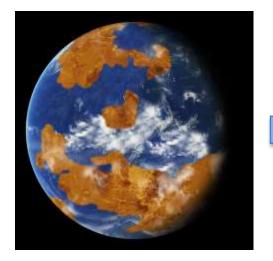
➢ High obliquity bistability between 1000 to 50,000 ppm CO2

➤ "Warm" global temperatures and local or global ice-free conditions are achieved at much lower CO2 concentrations at high obliquity.

Example Cryospheres


How Studies of Ancient Earth may inform Studies of Ancient Venus:

Venus' evolutionary history & how it might inform Venus-like worlds & vice versa


From Magma Ocean -> first stable climate -> Today

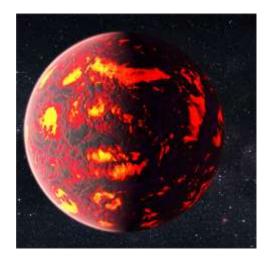
3-4 Gya ~1 bar ~**15 C** N₂/CO₂ (CH₄)

Earth & Venus

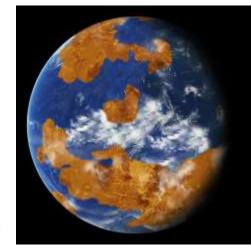
4.5Gya

3-4 Gya ~1 bar? ~**15 C** N₂/CO₂

Today 92 bar 450 C CO_2/N_2



Today 1 bar ~**15 C** $N_2/O_2/CO_2/CH_4$


3-4 Gya ~1 bar ~**15 C** N₂/CO₂ (CH₄)

From Magma Ocean World -> the first stable climate?

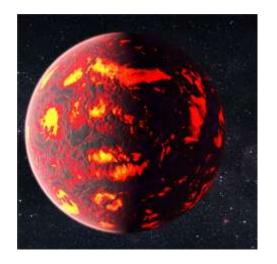
Earth & Venus

4.5Gya

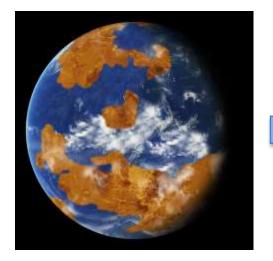
3-4 Gya ~1 bar? ~**15 C** N₂/CO₂

3-4 Gya ~1 bar ~**15 C** N₂/CO₂ (CH₄) Lack of Primordial water? ~100Mya Magma Ocean Hamano et al. Chassiefiere, Gillman. Kislyakova

Replenished via LHB/Late Veneer? Greenwood et al. 2018


Primordial water remains 1My Magma Ocean

LHB/Late Veneer contributed 5-30% Greenwood et al. 2018


FYSP? From Magma Ocean -> first stable climate -> Today

3-4 Gya ~1 bar ~**15 C** N₂/CO₂ (CH₄)

Earth & Venus

4.5Gya

3-4 Gya ~1 bar? ~**15 C** N₂/CO₂

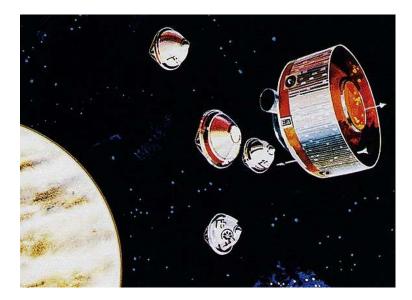
Today 92 bar 450 C CO_2/N_2

Today 1 bar ~**15 C** $N_2/O_2/CO_2/CH_4$

3-4 Gya ~1 bar ~**15 C** N₂/CO₂ (CH₄)

Pioneer Venus, ALMA, SOFIA

Water abundance:


OHigh D/H ~150 x terrestrial

 \odot Received similar H₂O as Earth

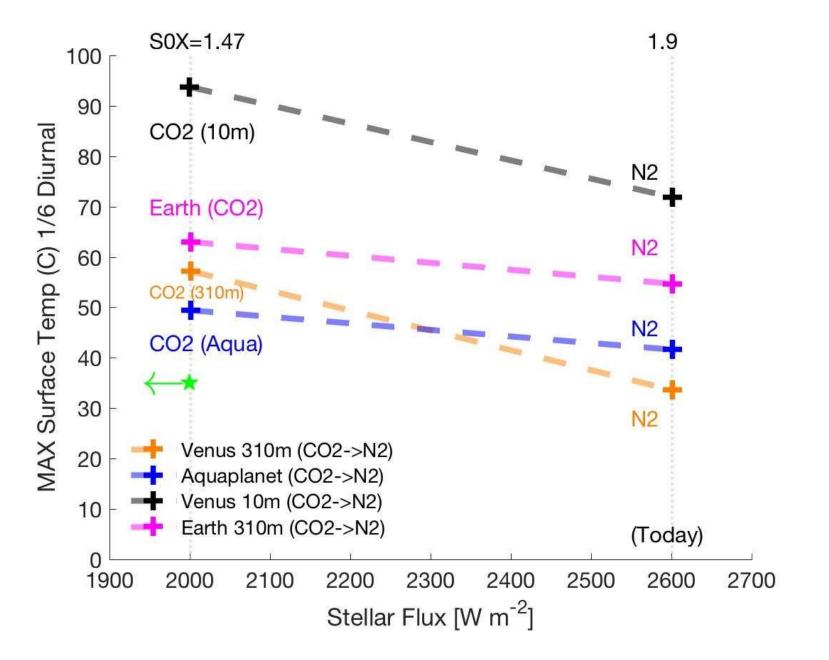
oPrimordial abundance? OAnd/or

LHB/Late Veneer

 Greenwood et al. 2018: Earth received 5-30% of its water in late Veneer

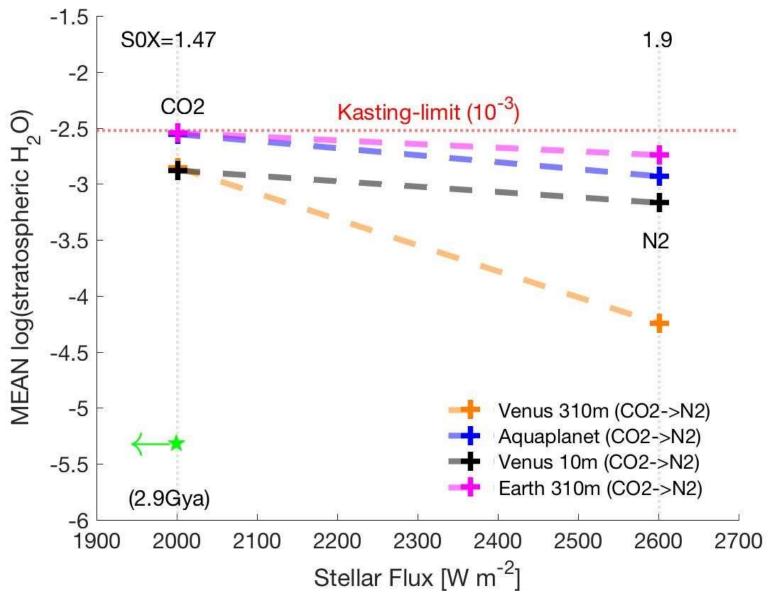
○Timescale of H₂O loss unknown ○ Cannot constrain Early Dry or Wet: Need DATA! ○Will ALMA, SOFIA or future Earth-based obs ever help us?
 ROCKE-3D: 3-D General Circulation

- Model
 - Resolution 4x5° lat x lon, 40L atmos, 13L ocean
 - Radius/Mass: Modern Venus Spin & Obliquity: Modern
 - Atmospheres **1bar**:
 - CO₂ (100%) @ 2.9Gya

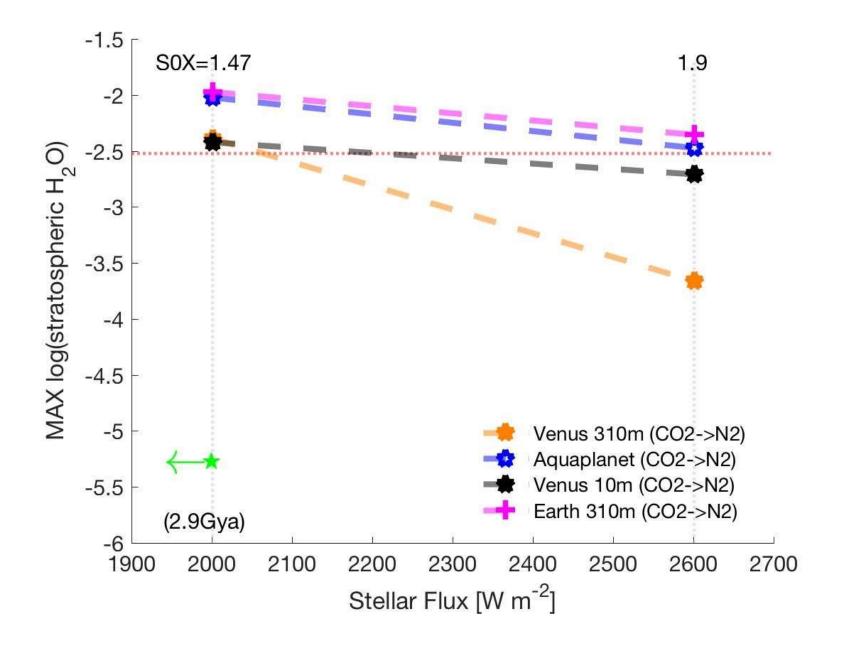

- N_2 + CO₂ (400ppmv) + CH4 (1ppmv) @ Today • Incident Flux: 2.9Gya \rightarrow Present-Day: $1.46 \rightarrow 1.9$ Earth today

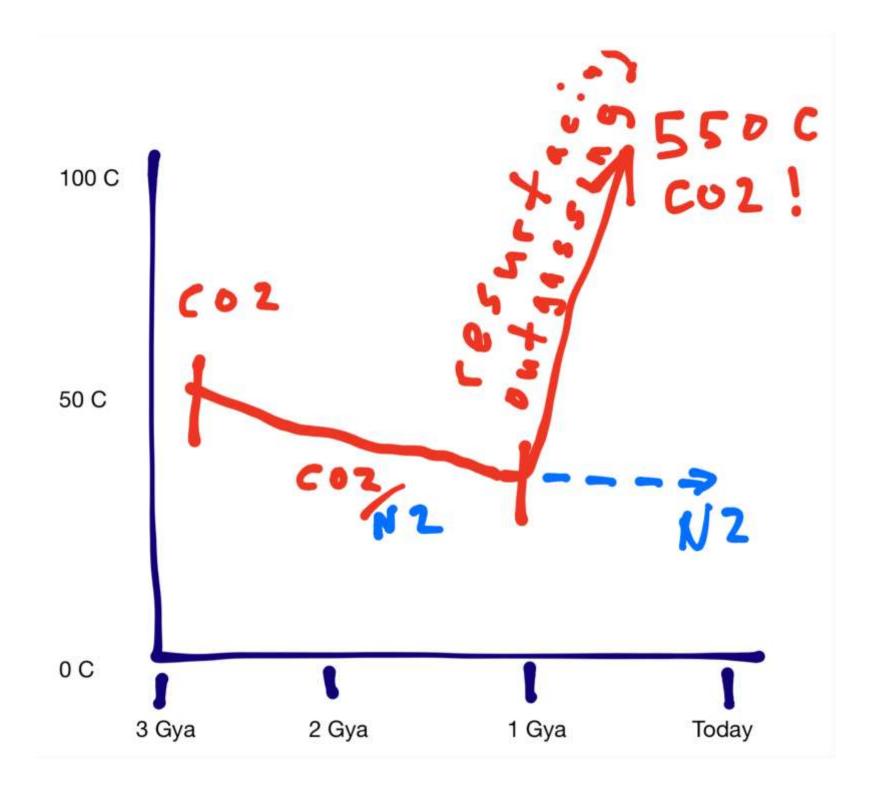
- Topography/Ocean
 - 1.Mean Radius: above land, below ocean (310m)
 - 2.10m equivalent (Dune like land planet)
 - 3.Earth: Modern Topography
 - 4.Aquaplanet

Mean Global Surface Temperature CO₂ dominated to N₂ dominated



Maximum Global Surface Temperature


Water Loss: Kasting Limit


If mixing ratio of H_2O reaches ~0.1%

Maximum Water Loss: Kasting Limit

If mixing ratio of H₂O reaches ~0.1%

Conclusions

- If Venus had surface liquid water after formation/cool-down it is not clear that solar luminosity is defining factor in its climate evol.
- Venus-like exoplanet habitability estimates may require rotation rate knowledge
- More parameter space needs to be mapped
- Need new Venus in-situ observations to confirm its geologic & volatile history
- Exoplanets will inform Venus' climatic history and possibly vice-versa (if we ever get data!)

Further Propaganda found on arXiv.org

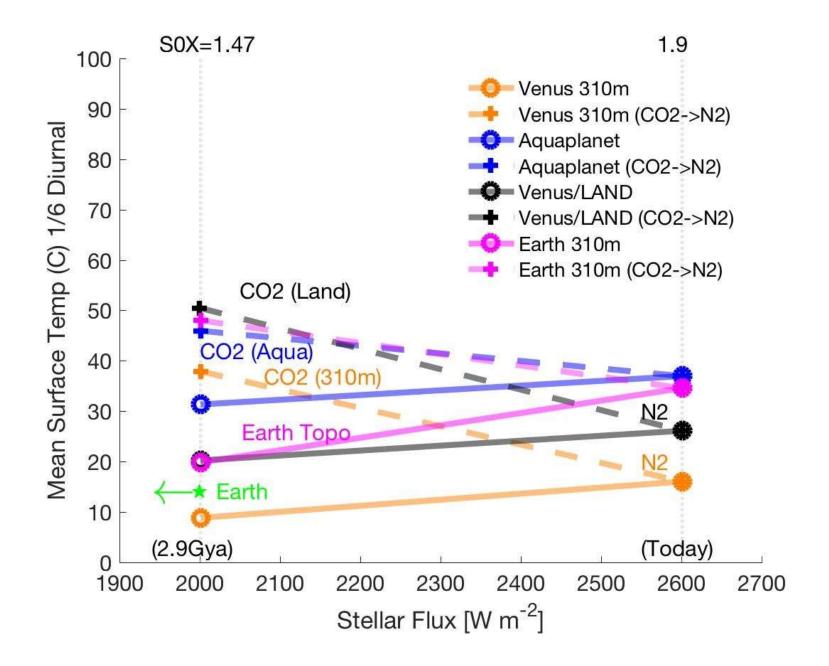
Climates of Warm Earth-like Planets I: 3-D Model Simulations

M.J. WAY,^{1,2} ANTHONY D. DEL GENIO,¹ IGOR ALEINOV,^{1,3} THOMAS L. CLUNE,⁴ MAXWELL KELLEY,¹ AND NANCY Y. KIANG¹

¹NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY, 10025, USA

²Department of Physics and Astronomy, Uppsala University, Uppsala, 75120, Sweden

³Center for Climate Systems Research, Columbia University, New York, NY 10025, USA


⁴Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, USA

Submitted to ApJS

ABSTRACT

We present a large ensemble of simulations of an Earth-like world with an increasing range of insolation and length of day. We show how important cloud parameterization can be for determining the habitable zone and the importance of ocean dynamics. The ensemble utilizes ROCKE-3D, a threedimensional general circulation model. Insolations vary from present day Earth's value of 1360.67 W m⁻² up to 3959.37 W m⁻². Day length is extended in increasing powers of two from 1 Earth sidereal day up to 256 sidereal days (2,4,8,16,32,64,128,256). The simulations focus on a world with modern Earth-like topography and orbital period, but with zero obliquity and eccentricity. The atmosphere is 1 bar N₂-dominated with $CO_2=400$ ppmv and $CH_4=1$ ppmv. The simulations include two types of

Mean Global Surface Temperature

