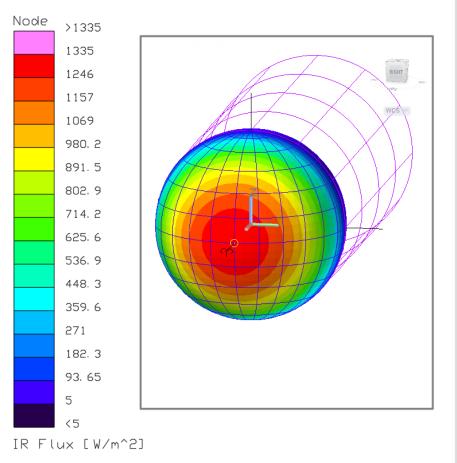

Thermal Environment Modeling Practices for the Descent Trajectory of Lunar Landers

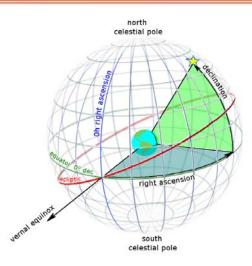
Alex Szerszen, Jacobs MSFC ES22

08-26-2019

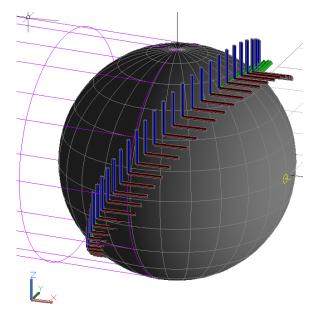


- This presentation will discuss only one method of modeling the thermal environment for descent trajectories in Thermal Desktop.
- The descent in arguably the most critical point in any lander mission
- The descent phase presents a unique thermal environment compared to the rest of the mission (launch, earth orbit, transit, moon orbit, descent, surface operation)
 - View factor to space decreases
 - Main thruster firing and plume add additional heat
 - All electrical components operating at max power level.
- Heat loads must be modeled properly to ensure that the lander doesn't fail catastrophically

- There are several parameters that control and set the spatial time and location of the moon.
 - Right Ascension of the Sun
 - Right Ascension of the Prime Meridian
 - Earth's Moon's planetary data
 - Radius, gravitational mass, inclination, sidereal period, and mean solar day
 - Ground IR (seen to right)
- Moon-centered J2000 reference frame

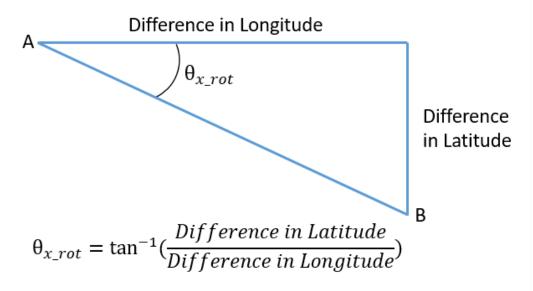


ENGINEERI

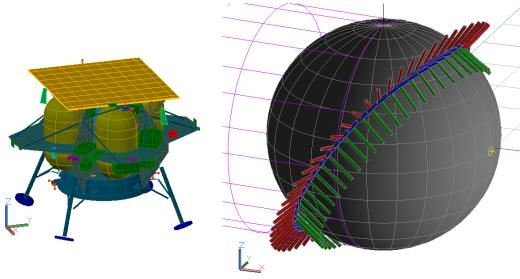

Building Thermal Desktop Model

- Terrestrial heating rate case used
- Right Ascension of sun and right ascension of prime meridian are the first inputs needed
 - Determined using moon-centered coordinates of sun in Cartesian
- Latitude, longitude and altitude versus time control the location of the lander for each time step

at/Long Input	Orientation	Planetary Data	Solar	Diffuse Sky Solar	Albedo	Diffuse Sky IR	Ground IR	ASHRAE	Fast Spin	Commen
Diskt Assess	sion Definition	_		time free 1 letterde	the states	يعاد الديار وليرو		Antina Mana		
Right Ascens	sion Definition	IS		time [sec], latitude 0.1	-14.11643				. 0	
User Specified				-14.11643				ő	^	
0					-23.71695				ŏ	
R.A. of Sun 355.008		л		-28.38166				ŏ		
R.A. of Sun 335.008				-32.91411						
			-	582.1	-37.27247	7 96.22218	6 102.0	7394	0	
R.A. of Prime Meridian 11.396				-41.40299				0		
					-45.23645				0	
					-48.68477				0 0 0 0 0 0 0 0 0 0 0	
					-51.63943 -53.97510				0	
					-55.56287				0	
◯ Use Date/Time				-56.29514				ň		
			_		-56.11573				ŏ	
	2019/10/06 1	10:09:03 GMT		1629.7	-55.0389				ŏ	
				1746.1	-53.14442	8 -177.0816	3 102.14	4507	Ō	
					-50.55542				0	
					-47.43439				0	
					-43.87166				0	
				2211.7	-39.96213	3 -148.4034	1 99.95	/99	0	~



ENGINEERIN



- Rotate along Z-axis by longitude plus value of R.A. of the prime meridian
 - Result: X-axis of lander points through Z-axis of moon
- Rotate along Y-axis by value of latitude
 - Result: X-axis of lander points through center of moon
- Rotate along X-axis by the inverse tangent of change in latitude over change in longitude.
 - Result: Z-axis of lander points along velocity vector

ENGINEERI

• If more than 3 rotations are desired, then the use of rotation matrices is required.

 Rotation matrices allow the conversion of any number of rotations down to 3 base rotations.

Additional Rotations Required

• To do this you:

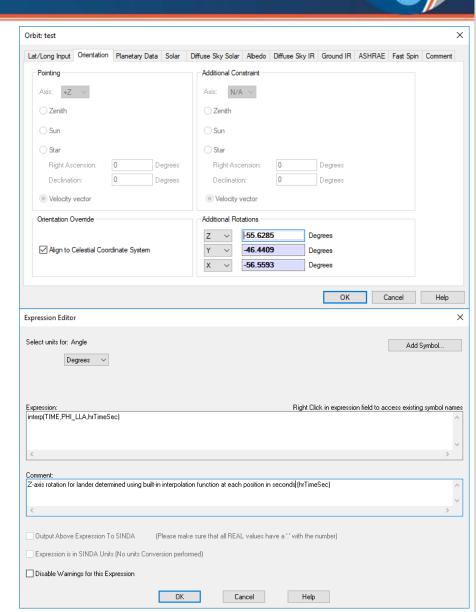
- Rotate lander by any number of rotations at each time step
- Obtain a 3X3 matrix for each time step
- Equate the 3X3 matrix at each time step to the base rotation matrix seen below

$$R(i) = I_3 * R_z (Longitude(i)) * R_y (Latitude(i)) * R_x (\theta_{x_{rot}}(i)) * R_y (135^\circ)$$

$$\begin{split} R &= R_z(\phi) * R_y(\theta) * R_x(\psi) \\ &= \begin{bmatrix} \cos\theta \cos\phi & \sin\psi \sin\theta \cos\phi - \cos\psi \sin\phi & \cos\psi \sin\theta \cos\phi + \sin\psi \sin\phi \\ \cos\theta \sin\phi & \sin\psi \sin\theta \sin\phi + \cos\psi \cos\phi & \cos\psi \sin\theta \sin\phi - \sin\psi \cos\phi \\ -\sin\theta & \sin\psi \cos\theta & \cos\psi \cos\theta \end{bmatrix} \end{split}$$

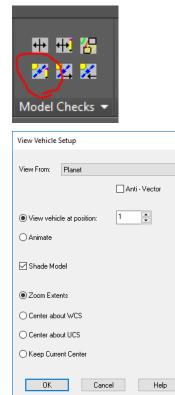
 $R_x(heta) = egin{bmatrix} 1 & 0 & 0 \ 0 & \cos heta & -\sin heta \ 0 & \sin heta & \cos heta \end{bmatrix} \ R_y(heta) = egin{bmatrix} \cos heta & 0 & -\sin heta \ 0 & 1 & 0 \ \sin heta & 0 & \cos heta \end{bmatrix} \ R_z(heta) = egin{bmatrix} \cos heta & 0 & -\sin heta \ \sin heta & 0 & \cos heta \ \sin heta & \cos heta & 0 \ \sin heta & \cos heta & 0 \ 0 & 0 & 1 \end{bmatrix}$

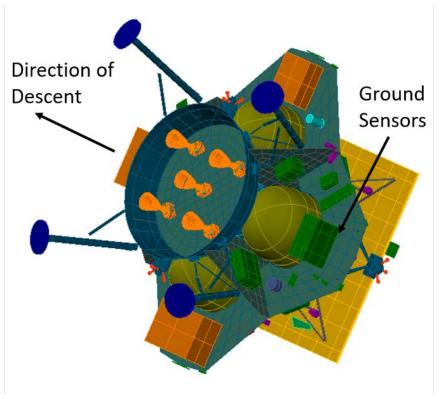
- Equate the final matrix at each time step to the base rotation matrix below and solve for theta (θ), phi (ϕ), and psi (ψ)
- 2 solutions for both phi and psi
 - Must use 2-argument arctangent

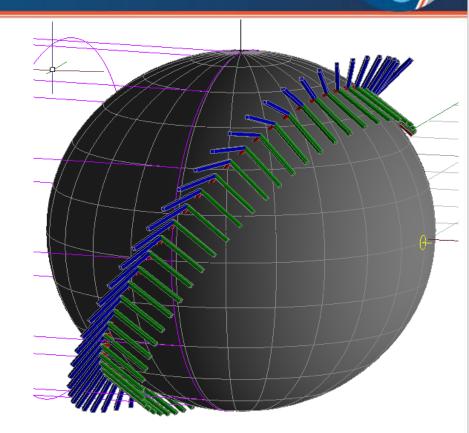

 $\theta = asin(-r_{31})$ $\phi = atan2(r_{21}, r_{11})$ $\psi = atan2(r_{32}, r_{33})$

$${
m atan2}(y,x) = egin{cases} rctan(rac{y}{x}) & {
m if } x > 0, \ rctan(rac{y}{x}) + \pi & {
m if } x < 0 \ {
m and } y \ge 0, \ rctan(rac{y}{x}) - \pi & {
m if } x < 0 \ {
m and } y < 0, \ +rac{\pi}{2} & {
m if } x = 0 \ {
m ard } y > 0, \ -rac{\pi}{2} & {
m if } x = 0 \ {
m and } y < 0, \ {
m undefined} & {
m if } x = 0 \ {
m and } y < 0, \ {
m undefined} & {
m if } x = 0 \ {
m and } y = 0. \end{cases}$$

 $R = R_{z}(\phi) * R_{y}(\theta) * R_{x}(\psi)$ $= \begin{bmatrix} \cos\theta \cos\phi & \sin\psi \sin\theta \cos\phi - \cos\psi \sin\phi & \cos\psi \sin\theta \cos\phi + \sin\psi \sin\phi \\ \cos\theta \sin\phi & \sin\psi \sin\theta \sin\phi + \cos\psi \cos\phi & \cos\psi \sin\theta \sin\phi - \sin\psi \cos\phi \\ -\sin\theta & \sin\psi \cos\theta & \cos\psi \cos\theta \end{bmatrix}$


- Add in the additional rotations on the orientation tab for terrestrial heating rate cases
- Select "align to celestial coordinate system"
- Create array symbols for theta, phi, and psi in the symbol manager
- Interpolate between time steps of heating rate case




ENGINEERIN

- Two methods to check that the lander is properly oriented at each time step
 - Display the orbit in the heating rate case manager
 - View the lander from the planet

ENGINEERING

- Modeling the thermal environment for a lander descent correctly is essential for a successful mission. This can be difficult due to the transient nature of a descent and the addition of new thermal conditions such as component heat loads, changing view factors/radiative sink temperatures, and thruster/plume heat loads.
- The method shown above is one way to obtain the desired results but is very versatile and easy to use if more detailed rotations are required.

- Questions?
- Comments?
- Other ways of achieving desired effects?

MSFC

ENGINEERING