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Overview and Objectives

Hubble Deep 
Field

WFIRST-AFTA Deep Field
v Summary of goals

ü Deposit high performance FUV to FIR optical broadband coatings by a variety of 
techniques to produce low-absorption metal-fluoride overcoats to protect and 
enhanced reflectance of Al mirrors.

v Driver / Need
ü High-performance broadband coatings (90-10,000 nm) have been identified as an 

“Essential Goal” in the technology needs for a future Large-Aperture Ultraviolet-
Optical-Infrared Space Telescope (LUVOIR and HabEx). 

ü Low reflectivity and transmission of coatings in the Lyman Ultraviolet (LUV) range of 
90-130 nm is one of the biggest constraints on FUV telescope and spectrograph 
design.

v Benefits
ü The development of broad-band reflectors based on Al with increased performance 

in the FUV spectral range will be an enabling technology  for an instrumentation 
platform for astrophysics  and optical exoplanet sciences with a shared telescope 
providing high throughput and signal-to-noise ratio (SNR) over a broad spectral 
range.
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Optical Coating Deposition Processes

Physical Vapor Deposition (PVD)
• Material is heated until it reaches vapor form
• Material is deposited on the substrate where it condenses
• Typical deposition rates are 10-160 Å/Sec.

Sputtering
• Non-thermal evaporation process
• Atoms from a target are ejected by momentum transfer from 

energetic atom-size particles
• Particles are energized by an ion gun
• Deposition rate are much lower than PVD 1-5 Å/Sec.
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Coating Chambers 

ZeCoat’s 2.4-m diameter coating chamber with a  
1.3-m diameter 900-lb mirror after silver coating

One meter coating chamber at the 
Goddard Space Flight Center
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Solidification vs. Crystallization
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Evaporated Al+MgF2 Mirror Performance 
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•Measured reflectance  of Al+MgF2 (Al: 

50.0 nm; MgF2: 25.0nm) 

•The black (dash) and blue (solid) lines 

are predictions for bare Al and 

aluminum with 2 nm of MgF2 overcoat 

respectively

•Enhanced performance is obtained by 

heating (~220  °C) substrate during 

MgF2 deposition in comparison to 

“standard” process

•Although reflectance is > 80% even at 

115.0 nm there is still a big discrepancy 

when compared to the prediction (due 

to residual absorption in the MgF2 film)
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Optimization Al+LiF (eLiF) Hot Coatings
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•Measured reflectance  of two 
enhanced Al+LiF (eLIF) samples 

•The blue (dash) line is a predictions for  
Al with a 2 nm of LiF overcoat.

•Enhanced performance is obtained by 
heating (~220  °C) substrate during LiF 
deposition in comparison to results for 
mirror coatings in the FUSE project

•Although reflectance is > 80% even at 
105.0 nm there is still a big discrepancy 
when compared to the prediction (due 
to residual absorption in the LiF film)
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ZERODUR Heat Treatment Experiment

• Preliminary measurements are completed on a Zygo interferometer

• After preliminary measurements, the samples are heat treated

• Return to Zygo and measure again

• Analyze data using Mx (newer Zygo interferometry software, on a different 
computer)

Process:
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Process

Pre-Treat Measurement Post-Treat Measurement

MX 
Software

Zygo Interferometer

Heratherm Oven

Coatings Chamber
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ZERODUR Sample Details

Name Size Heat Cycle Total Treatment time
Small ~4 in. 60 C/hr ramp up to 250 C, 

hold at 250 C for 1 hour, 
ramp down at 3 C/hr

3.75 hours + 1 hour + 75 
hours = 

79.75 hours

Medium ~5 in. 60 C/hr ramp up to 250 C, 
hold at 250 C for 1 hour, 
ramp down at 6 C/hr

3.75 hours + 1 hour + 37.5 
hours = 

42.25 hours

Large ~6 in. 60 C/hr ramp up to 250 C, 
hold at 250 C for 1 hour, 
ramp down at 10 C/hr

3.75 hours + 1 hour + 22.5 
hours =

27.25 hours

Large (Run 2) ~6 in. Coating Run ~6 hours
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Heating Rates Graphically
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Interferometry: Points of Uncertainty

• In order to improve accuracy, we took into account different points of uncertainty 
and developed processes to compensate
• Location relative to transmission flat
• Orientation of the optic
• Zoom of the camera
• Imperfections in the transmission flats
• “Straying” of the optical mount
• Vibrations and air current

• To minimize instrument error and measurement                             uncertainty:
• Aligned the sample in nearly the same orientation
• Take the measurement with nulled fringes
• Use same zoom and lateral scale
• Tighten fittings of mount
• Averaging
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Center Radial Average (CRA)

• Performed in the MX 
software, a Center Radial 
Average (CRA) performs an 
averaging sweep from the 
middle of the measurement 
to the edge
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CRA: Small ZERODUR

• Treatment is ramp down at 3 C/hr

• Minimal difference observed in the CRA 
Pre-Treatment vs. CRA Post. 

• The difference observed is only about 1 
nm, within the measurement error
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CRA: Medium ZERODUR

• Treatment is ramp down at 6 C/hr

• Similar to the Small ZERODUR, minimal 
difference observed in Pre-Treatment 
and Post-Treatment CRA.
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CRA: Large ZERODUR

• Initial treatment is ramp down at 10 C/hr, 
then the second treatment is according 
to the coating chamber heating cycle

• Similar to the Small and Medium 
ZERODUR, minimal difference observed 
in Pre-Treatment, Post-Treatment, and 
the coating chamber treatment (Post2) 
CRA.
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Zernike Fit Aberrations

• The MX software can 

perform twelfth order 

Zernike Aberration fits. 

We are analyzing the 

first ten aberrations.
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Small ZERODUR: Zernike Fit Aberrations

• Largest aberration 
change is Oblique 
Astigmatism (2.42 nm)
• Small ZERODUR -> 3 C/hr

ramp down

= Pre Treatment
= Post Treatment
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Medium ZERODUR : Zernike Fit Aberrations

= Pre Treatment
= Post Treatment

• Largest aberration 
change is Oblique 
Astigmatism (1.34 nm), 
Defocus (.67 nm), and 
Vertical Astigmatism (.88 
nm)
• Medium ZERODUR -> 6 

C/hr ramp down
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Large ZERODUR : Zernike Fit Aberrations

= Pre Treatment
= Post Treatment

• Largest aberration 
change is Oblique 
Astigmatism (2 nm)

• Large ZERODUR -> 10 
C/hr ramp down
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Large ZERODUR 2 : Zernike Fit Aberrations

= Pre Treatment
= Post Treatment

• Largest aberration 
change is Oblique 
Astigmatism (1.54 nm)
• Large ZERODUR 2 -> 

Coating chamber heat 
treatment
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Visual Subtraction Maps
Small ZERODUR Medium ZERODUR

Large ZERODUR Large ZERODUR: chamber cycle

• Subtraction maps for all three 
ZERODUR substrates pre- and 
post-heat treatment

• The residual difference was 
estimated to be around 1.8-2.5 
nm RMS for all samples
• These values are small enough 

that they are considered within 
uncertainty errors
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Conclusions

• ZERODUR substrates did not show significant changes in center radial 
average figure error or flatness for heating and cooling at various 
thermal rates 

• Analysis of interferometric data showed the largest measurable 
changes in Zernike aberrations was Oblique Astigmatism 

• The RMS flatness value for the subtractions maps (before and after 
heat-treatment) was less than or equal to 2 nm

• Any change observed is small enough to be considered within the 
measurement error
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High-Temperature Deposition Al+MgF2

3-step coating process:

ü Al coat the substrate at room temperature to the 

planned layer thickness

üAs soon as possible after the Al deposition, overcoat 

the Al layer and substrate at room temperature with 

a thin 4-5 nm layer of MgF
2

in order to protect the Al 

from oxidation and contamination.

üHeat the substrate to maximum temperature and 

overcoat the thin MgF2 , Al, and substrate with the 

planned thickness of MgF2.


