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ABSTRACT

2  We present a model intercomparison project, LongRunMIP, the first collec-
e tion of millennial-length (1000+ year) simulations of complex coupled cli-
« mate models with a representation of ocean, atmosphere, sea ice, and land
s surface, and their interactions. Standard model simulations are generally only
s a few hundred years long. However, modeling the long-term equilibration
& 1n response to radiative forcing perturbation is important for understanding
& many climate phenomena, such as the evolution of ocean circulation, time-
» and temperature-dependent feedbacks, and the differentiation of forced signal
» and internal variability. The aim of LongRunMIP is to facilitate research into
7 these questions by serving as an archive for simulations that capture as much
» of this equilibration as possible. The only requirement to participate in Lon-
»  gRunMIP is to contribute a simulation with elevated, constant CO, forcing
» that lasts at least 1000 years. LongRunMIP is a MIP of opportunity in that
7 the simulations were mostly performed prior to the conception of the archive
» without an agreed-upon set of experiments. For most models, the archive
~» contains a preindustrial control simulation and simulations with an idealized
»  (typically abrupt) CO, forcing. We collect 2D surface and top-of-atmosphere
» fields, and 3D ocean temperature and salinity fields. Here, we document the
s« collection of simulations and discuss initial results, including the evolution of
s surface and deep ocean temperature and cloud radiative effects. As of sum-
2 mer 2019, the collection includes 50 simulations of 15 models by 10 modeling
s centers. The data of LongRunMIP are publicly available. We encourage sub-

« mission of more simulations in the future.

5
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&s  (Capsule Summary) LongRunMIP is the first collection of millennial-length simulations of com-
s« plex coupled climate models and enables investigations of how these models equilibrate in re-

& sponse to radiative perturbations.

& 1. Motivation and objectives

&  Millennial-length climate simulations are necessary to understand the equilibrium states that oc-
o cur in response to external forcings, as well as the relationship between transient and equilibrated
o behavior. Unforced millennial-length simulations are useful as well, as they allow us to consider
» long-term internal variability and to analyze shorter-term variability with increased statistical cer-

s tainty. Reasons to study these long time scales include:

o e To better understand long-term climate dynamics. Outstanding issues include the time scales

% of ocean circulation response (e.g., Jansen et al. 2018; Rind et al. 2018), continental drying
% trends (e.g., Sniderman et al. 2019) or sea level rise (e.g., Bilbao et al. 2015; Rugenstein et al.
o7 2016c¢).

% e To help predict the impacts of 20th and 21st century emissions on century timescales, such as

% ice sheet stability, deep ocean warming, or polar amplification (e.g., Frolicher and Joos 2010;
100 Clark et al. 2016; Mauritsen and Pincus 2017), which are rarely explicitly simulated using a
101 fully-coupled climate model.

10 e To more accurately estimate Equilibrium Climate Sensitivity (ECS), which is the equilibrium

103 response of the surface air temperature to a doubling of CO; due to the “fast” feedbacks water

104 vapor, lapse rate, clouds, and sea ice but excluding Earth system feedbacks such as changes

105 in the carbon cycle, ice sheets, or vegetation. While ECS has long been a focus of scientific
6
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106 inquiry, substantial uncertainty remains as to its value (e.g., Charney et al. 1979; Knutti et al.

107 2017).

108 e To understand the relationship between the transient response of the climate and its equilibra-
109 tion. Since radiative feedbacks can depend on the evolution of the spatial pattern of warming
110 (e.g., Senior and Mitchell 2000; Winton et al. 2010; Armour et al. 2013; Andrews et al. 2015;

1 Andrews and Webb 2018) and on the background temperature (e.g., Colman and McAvaney

12 2009; Caballero and Huber 2013; Block and Mauritsen 2013; Meraner et al. 2013; Bloch-
13 Johnson et al. 2015), a constant effective sensitivity of the climate is an inadequate assump-
14 tion. Several methods have been proposed to predict the equilibrium response from transient
115 simulations given a changing global feedback (Held et al. 2010; Winton et al. 2010; Armour
16 et al. 2013; Geoffroy et al. 2013b,a; Frolicher et al. 2014; Proistosescu and Huybers 2017,
117 Saint-Martin et al. 2019), but only fully equilibrated climate model simulations can serve to
18 test how well these methods predict equilibrium conditions.

119 e To test theories for the relationship between feedbacks at different time-scales (Gregory et al.

120 2015, 2016; Zhou et al. 2016; Rugenstein et al. 2016a; Armour 2017; Proistosescu and Huy-
121 bers 2017; Ceppi and Gregory 2017; Andrews and Webb 2018; Andrews et al. 2018), and
122 to quantify the influence of slow, centennial-scale modes on the temperature evolution of the
123 last century (Armour 2017; Proistosescu and Huybers 2017).

124 e To understand the relevance, time scales, and magnitude of the energy imbalances and drifts
125 exhibited by climate models (e.g., Hobbs et al. 2016), with the potential application of de-

126 creasing the spin-up time needed to run these models.

127 e To understand the relationship between the forced response and internal variability. This re-

128 lationship is currently studied using the time frame of one or two centuries, which is not

7
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-19-0068.1.



129 enough to robustly quantify the internal variability under consideration (e.g., Maher et al.

130 2018; Lutsko and Takahashi 2018; Bloch-Johnson et al. in revision), millennial time scales
181 with varying forcings (e.g., Kohler et al. 2017; Khon et al. 2018; Rehfeld et al. 2018) or by
162 using expensive large ensemble simulations on decadal to centennial time scales (e.g., Deser
13 et al. 2012; Maher et al. 2019; Rodgers et al. 2015). Millennial long simulations allow us to
to4 differentiate the transient response from the equilibrated forced response, even for quantities
165 with large internal variability, such as precipitation, droughts, or the El Nifo-Southern Os-
136 cillation (ENSO), and also the significance of a change in internal variability in a transient
137 simulation relative to the control simulation (e.g., Brown et al. 2017).

138 e To compare climate model responses and paleo proxies, e.g. of surface or deep ocean temper-
169 atures or hydrological conditions on land in order to provide an independent way of testing

140 climate models (Gebbie and Huybers 2019; Burls and Fedorov 2017; Scheff et al. 2017).

wr With LongRunMIP, we aim to advance knowledge in the above mentioned areas, fill a gap in the
w2  CMIP protocols (Taylor et al. 2011; Eyring et al. 2016), and collect published data in one location
s for easy public access.

ws  The goals of LongRunMIP are

ws  a) to continuously gather existing millennial-length simulations (both published and unpub-
146 lished)

w  b) to standardize the collected data (e.g., using the same units and sign conventions)

ws  C) to make the data publicly available and easily accessible

w  d) to foster an interdisciplinary community of users working on millennial-length problems,
150 with experts on oceanography, atmospheric dynamics, energy balance modeling, ice sheet

151 modeling, and paleoclimatology

8
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w2 The objectives of this paper are to

s a) motivate the data collection strategy (Section 2)

e b) specify the requirements for LongRunMIP contributors (Section 2 and b)

s C) give an overview of currently submitted simulations and models (Section 2a, b, and Table 1)
w d) give a sample of some initial analysis on these simulations (Section 3)

w7 €) show how LongRunMIP relates to the existing literature on millennial-length simulations

158 (Section 4a)

s f) discuss the limitations and opportunities of LongRunMIP (Section 4b and c).

w0 2. Experimental design and data collection strategy

v LongRunMIP is the first and largest compilation of millennial-length simulations of complex cli-
w2 mate models to date, where a “complex climate model” is understood to include an atmospheric,
s sea ice, land, and full depth ocean component, i.e. Atmosphere-Ocean General Circulation Mod-
s els (AO-GCMs) with a dynamic atmosphere and ocean, as opposed to Models of Intermediate
s Complexity (EMICs), which are often used to study millennial-length questions in climate science
s (€.g., Zickfeld et al. 2013; Levermann et al. 2013). These model simulations include the “fast”
v feedbacks, such as changes in water vapor, lapse rate, sea ice, and clouds (Charney et al. 1979),
s but no “slow” feedbacks, such as changes in the ice-sheets. Vegetation is treated differently in the
wo Models (see Section 2b). In Section 4 we discuss the implications and limitations of our approach.
o Our goal is to collect as many simulations from as many independent models as possible, while
i keeping the archive and data sharing manageable. Consequently, we keep our requirements for

72 contributions low.

9
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7 a. Simulations and variables

w7 A step-increase in atmospheric CO, concentrations (in the following called “step-forcing™) is
s one of the simplest experiments for studying a model’s response to forcing and is used as a bench-
7w mark simulation in CMIP3, CMIP5, and CMIP6 (Meehl et al. 2007; Taylor et al. 2011; Eyring
w7 et al. 2016). More realistic, gradual forcing scenarios have been shown to be representable by the
s step-forcing scenarios and exhibit feedbacks that correlate with those computed from step-forcing
7o simulations (Good et al. 2013, 2015; Geoffroy and Saint-Martin 2014; Colman and Hanson 2016).
w0 The CMIP3 protocol required a step-forcing of doubling atmospheric CO, (here referred to as
w1 abrupt2x) above pre-industrial levels in a slab (i.e. non-dynamical) ocean, which for decades has
w2 been used to define ECS (e.g., Charney et al. 1979; Boer and Yu 2003c; Danabasoglu and Gent
e 2009). The integration time scale of these model setups are a couple of decades. However, a
ws  quadrupling of CO, (here referred to as abrupt4x) above pre-industrial levels has a better ratio of
s forced signal to internal variability. Because the forced response was assumed to scale linearly
s With increased forcing, the CMIPS protocol requested an abrupt quadrupling of CO,, now in a
w7 fully coupled model with a dynamical ocean, requiring longer integration time scales. The CMIP6
s protocol again requests abrupt CO, quadrupling experiments, but encourages also the submission
1w Of abrupt CO, doublings, to study the relation between different forcing levels (Eyring et al. 2016;
w Good et al. 2016). CMIP5 and 6 protocols require the submission of 150 years of model output.
A representative response of surface temperature anomalies and top of the atmosphere (TOA) ra-
w2 diative imbalance to an abrupt4x scenario is shown in Fig. 1. All anomalies mentioned in this
s paper are computed as the difference of the experiment from the average of the control simulation.
ws  After the 150 years of CMIP protocol length (blue shading) and after 1000 years (the minimum

s contribution to LongRunMIP, light red shading), the surface temperature response of the exem-
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s plary model shown here has reached 75 % and 88 % of its final value respectively, while the TOA
«w radiation has equilibrated 85 % and 93 % of the forcing respectively (7.6 W m~2 for this model).
ws Thus, the final equilibration is a CPU-intensive exercise; the model shown here needs 4000 years
w to balance the final 0.5 W m~2 (dark red shading).

=0 The set of variables we collect is motivated by the interest of the LongRunMIP contributors and
21 organizers in ECS, temperature and time dependent feedbacks, and deep ocean warming. Table
« 1 lists the variable names, units, and temporal and spatial resolution of the requested variables.
= The naming and sign conventions follow the CMIP5 protocol!'. Given the large amount of data
2« involved, we have kept our requested variable list low to allow as many groups as possible to
s participate. For the same reason, we do not request the data to be “CMORized?, i.e. written in
2 conformance with the CMIP standards. However, we do homogenize signs, variable long names,

27 and units, and also provide a regridded version of the fields, as well as global means.

28  b. Minimal, optimal, and current contributions

20 The minimal requirement to contribute to LongRunMIP are annual fields of a single simulation
20 Of any CO, forcing scenario that has at least 1000 years of constant forcing, along with a control
2n simulation of any length. The complexity of the model should be CMIP5-class and include dy-
2= namic atmosphere, ocean, and sea ice components. An optimal contribution comprises monthly
2 flelds of fully equilibrated abrupt2x, 4x, and 8x simulations and a control simulation of several
2+ millennia.

= Table 2 lists the model characteristics of the current contributions. Because the archive is assem-
2 bled from experiments initiated independently for research purposes by multiple modeling groups,

o7 there is no pre-defined protocol like for the CMIP simulations. The models are diverse in origin

"http://cmip-pcmdi.1llnl.gov/cmip5/data_description.html
’https://pemdi.1lnl.gov/CMIP6/Guide/dataUsers . html
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2 and sample the CMIPS range of models well (see discussion on model genealogy in Knutti 2010).
s Table 2 lists references for each model and publications using (parts of) the model output. Most
=0 Of the current contributions to LongRunMIP are extensions of CMIPS simulations, sometimes
= with updated model versions, while one model is an extension of a CMIP3 and another model an
= extension of a CMIP6 contributions (CCSM3 and CNRM-CM6-1 respectively).

»s  Many of our current contributions fall short of the optimal expectation for equilibrium, because
»« even several millennia are insufficient for the deep ocean to equilibrate (see discussion around
»s Fig.4). However, a few millennia appear to be enough for the surface temperature and TOA
»s radiative imbalance to reach a new steady state in most models (see Section 3), and many questions
»7 can be adequately addressed with the current contributions. Our approach is to be inclusive, and
»s to leave it to the user to determine the degree of equilibration needed for their research and to
2 develop criteria for model selection.

=0 Most contributions are step-forcing simulations, generally to 2x or 4x pre-industrial CO, con-
21 centrations (in Fig.2 abrupt2x colored in yellow, abrupt4x in orange, abrupt8x in dark red;
2 abrupt2.4x and abrupt4.8x in dark and light pink). There are currently three exceptions: 1) some
= model simulations have gradual increases in CO, at 1% per year until doubled or quadrupled con-
=4 centrations are reached, after which the concentration is kept constant (Ipct2x and Ipct4x, light
»s and medium red in Fig.2). 2) One model simulates the 1850-2010 period, after which CO; in-
s creases either piecewise linearly for 90 years until reaching 2.4x pre-industrial values (CCSM3II).
7 3) Finally, one model simulates the historical period and then the CMIP5 extended representative
xs  concentration pathway 8.5 (including CHy4, N,O, CFC11, and CFC12 in addition to CO;) until
20 year 2300 after which all forcing agents are kept constant (RCP8.5+, violet in Fig. 2)

20 For the models that did not contribute a a millennial-long step-forcing simulation, we collect

2 short (typically 150 year) step-forcing simulations, generally from the CMIP5 archive. These

12
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22 Simulations can be used to estimate the effective climate sensitivity and to relate transient and
2 equilibrium responses. They are not mentioned in Table 2 and Fig. 2.

2« Most contributors were able to submit all requested variables. Some models only stored annual
»s output, while for a few models the entire model output (including many more variables than listed
= 1n Table 1) is available. In principle, but with considerable effort, additional variables not listed in
2z Table 1 could be requested from some or all contributors.

248 Some models are outliers in some sense. For example, the simulation abrupt4x of FAMOUS
2s  Warms anomalously strong (Fig. 2 and 7) due to a shortwave cloud effect which is positive through-
=0 out the simulation and longwave clear-sky effect, which increases anomalously strongly (not
= shown, see Rugenstein et al. (2019)). In principle though, such extreme behavior could represent
= possible characteristics of the real world (e.g., Bloch-Johnson et al. 2015; Schneider et al. 2019).
s Another atypical model is EC-Earth-PISM, which is the only model with an interactive Greenland
s« 1ce sheet. This additional component and its historical and RCP8.5+ forcing scenario makes it
s harder to compare the simulation to other models and attribute changes to one forcing component.
=6 1his model also does not equilibrate but finally produces a negative TOA imbalance, which prob-
7 ably would increase if the simulation was integrated further. We encourage similar “problematic”
=s submissions, since our focus is on understanding model behavior and the large range of model
s responses (discussed in Section 3).

2  In nine models, the vegetation is fixed to pre-industrial conditions (ECHAMS, CCSM3,
2 CCSM3II, HadCM3L, FAMOUS, MIROC32, ECEARTH, GISSE2R, CNRMCM61), while the
« oOther seven models have dynamic vegetation schemes (MPIESM11, MPIESM12, CESM104,

xs  HadGEM2, GFDLESM2M, GFDLCM3, IPSLCM5A).

13
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x 3. Sample of model output

«s  a. Imbalances in the control simulation and drift

=6 In principle, the TOA radiative imbalance should be zero in a control simulation. Most models
27 contributing to LongRunMIP do not loose or gain energy (Fig. 3). However, some models that are
»s equilibrated in the sense that they show no substantial drift, still have a constant energy leakage.
s For CMIPS5 models, imbalances of the same order of magnitude (and larger) have been shown to be
2 uncorrelated with the forced response (Hobbs et al. 2016). If computing atmospheric anomalies,
on - we suggest users to take the difference of each time step to the time-averaged control simulation
2z 1mbalance, except for CCSM3II and GFDL-CM3 for which the difference to a polynomial fit to
e the control simulation time series seems appropriate (see Fig. 3).

=+ The deep ocean (defined here as depth level around 2 km) has an astonishingly small drift in
s the global average in most models (Fig. 4, lowest panel). While the surface ocean time scales
= closely follows the global mean surface air temperature anomaly, the deep ocean takes centuries
277 to equilibrate. Panel a and b of Fig. 4 display the surface and deep ocean temperature anomalies,
= computed as the difference of the forced and control simulations, while the lowest panel shows the
s absolute temperatures of the deep ocean in the control simulations to indicate the model spread in
=0 the base state. Previous work on long-term trends in deep ocean temperature and salinity shows
= that these trends may reflect ongoing changes in stratification and the strength and depth of the
= Atlantic Meridional Overturning Circulation (AMOC; e.g., Stouffer and Manabe 2003; Rugenstein
2 et al. 2016a; Marzocchi and Jansen 2017; Jansen et al. 2018). Even if the energy flux imbalance
=+ at the TOA or the ocean surface are close to a new steady state this does not necessarily indicate
=s that the deep ocean is equilibrated as well (Zhang et al. 2013; Hobbs et al. 2016; Marzocchi and

=s Jansen 2017). Reaching deep ocean equilibration may not be necessary for studies concerned with
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2 surface properties only. However, for interpretation of paleo proxies and comparison with model
s Simulations, distinguishing between the transient and equilibrium response in the intermediate or
=0 deep ocean is necessary (Zhang et al. 2013; Marzocchi and Jansen 2017; Rind et al. 2018; Jansen

20 et al. 2018)

21 b. Evolution of surface temperature and cloud radiative effect

22 The evolution of large scale surface air temperature patterns on decadal to millennial time scales
2 (Fig.5) are robust among models and different forcing levels. The simulations show a strong
2« land-sea warming contrast on short time scales and little warming over the Southern Ocean on
=s decadal to centennial time scales (e.g., Manabe et al. 1991; Gregory 2000; Joshi and Gregory
2 2008; Geoffroy and Saint-Martin 2014; Armour et al. 2016). A warming pattern reminiscent of
e the positive phase of ENSO and the Interdecadal Pacific Oscillation occurs throughout the Pacific
s basin (panel b; Held et al. 2010; Song and Zhang 2014; Andrews et al. 2015; Luo et al. 2017)
=0 but decays on centennial to millennial time scales (panel ¢ and d), with a large model spread in
w0 time scales (not shown). As it approaches equilibrium, the temperature pattern becomes more
w1 homogeneous, the land-sea warming contrast reduces (e.g., Held et al. 2010; Geoffroy and Saint-
s« Martin 2014), and the Southern Hemisphere high latitudes keep warming beyond year 1000. As
ws 1n previous studies, the AMOC first declines (Gregory et al. 2005; Zhu et al. 2014; Kostov et al.
«s  2014; Trossman et al. 2016) and then recovers (Stouffer and Manabe 2003; Li et al. 2013; Zickfeld
«s etal. 2013; Rugenstein et al. 2016a; Rind et al. 2018), resulting in a delayed warming in the North
ws Atlantic. Panel a, b, and e correspond to the blue shading in Fig. 1, and are known from CMIP5
w7 Simulations (e.g., Andrews et al. 2015), while panel c, d, f, and g highlight that the simulations still
ws warm substantially on centennial to millennial time scales, mainly in areas with more sensitive —
wo 1.6. positive or small negative — feedbacks (Rugenstein et al. 2019).
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s Normalizing the zonal-mean temperature anomaly by the global mean warming reveals the rel-
s ative zonal-mean warming (Fig. 6). Arctic amplification begins very early in the simulations and
sz warming throughout the Southern Hemisphere is lower than the global average in almost all mod-
sz els for the first centuries. Between year 100 and 1000 the Southern Hemisphere warms more than
s the Northern Hemisphere in all latitudes poleward from 30°, in some regions by more than 4 K.
s Antarctic warming slowly increases, but is still substantially less than Arctic amplification (e.g.,
s Salzmann 2017). In a couple of models, the amplitude of Antarctic and Arctic amplification is
s the same after 4000 years of model integration time (GISSE2R and ECHAMS; Li et al. 2013),
s while in other models the Antarctic amplification stays substantially smaller and still increasing
s after a couple of thousand years. LongRunMIP shows that there is no reduction in model spread
=0 in the polar regions through time and that although all models follow a similar large scale pattern
»1 evolution (Fig. 5), the local response time scales, e.g. in the North Atlantic, Southern Ocean, or
2 equatorial Pacific differ by hundreds to thousands years.

= While the large scale temperature response is rather robust between models and simulations,
= the cloud radiative effect (CRE) differs strongly in magnitude and time evolution, both between
»s models and between forcing levels for the same model (Fig7). We show the shortwave CRE —
» computed as the difference between “all sky” and “clear sky” shortwave radiative fluxes (e.g.,
» Ramanathan et al. 1989; Ceppi et al. 2017) — as a function of surface air temperature anomaly.
»s The models disagree in the overall sign, as expected from CMIP5 models on shorter time scales
» (e.g., Vial et al. 2013; Caldwell et al. 2015), but can even change sign within a single simulation
w0 (e.g., ECEARTH or CESM abrupt8x). The strength of variation in time within one simulation
s« can depend strongly on the forcing level (e.g. MIROC32 Ipct2x vs. Ipct4x) and the time scales

« Of change differ between the models (e.g. IPSLCMS5R vs. MPIESM12 abrupt4x). For some

16
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s simulations, cloud response barely changes with temperature, contributing negligibly to the overall

w feedback (e.g. MPIESM12 abrupt16x, CESM104 abrupt4x, and MIROC32 Ipct2x).

ws 4. Discussion and Outlook

s . Published millennial-length simulations

s«  Models of intermediate complexity are the most common tools used to study century to millen-
ws  nium time scales in the climate system (e.g., Zickfeld et al. 2013; Eby et al. 2013; Levermann et al.
w0 2013; Rugenstein et al. 2016c¢; Jansen et al. 2018). However, they usually have a poorly resolved
w0 atmosphere and little or no representation of cloud processes. In contrast, the publications in Table
s« 3 feature millennium-length AO-GCM simulations. Asterisks mark contributions to LongRunMIP.
w2 These papers provide a solid body of work on millennial-length climate simulations, but rarely use
«s the same forcing levels and simulation length and focus on different aspects of the climate sys-
ws tem. Three papers compare model formulation and processes of two AO-GCMs each (Frolicher
«s et al. 2014; Paynter et al. 2018; Krasting et al. 2018), but otherwise models have not been sys-
«s tematically compared against each other. Fig. 4 and 7 show that AO-GCMs can strongly differ in
7 their behavior. Spatial patterns of e.g., precipitation and surface heat fluxes also vary strongly be-
«s tween models and between different forcing scenarios for the same model (not shown), suggesting
«s that some mechanisms and processes discussed in the published literature are not generalizable
s across models. For example, there is disagreement about which regions are thought to dominate
= the changing feedback parameter (Senior and Mitchell 2000; Andrews et al. 2015; Meraner et al.
sz 2013; Caballero and Huber 2013) or whether or not, and on which time scales, the AMOC recovers
s from its initial reduction (Voss and Mikolajewicz 2001; Stouffer and Manabe 2003; Li et al. 2013;
s« Rind et al. 2018; Thomas and Fedorov 2019). Paleo climate simulations are often several thou-
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= sand years long, however, they usually include boundary conditions such as ice sheets or changing
s continental configurations, which differ from the ones used here. However, paleo climate studies
s« often discuss equilibration time scales and deep ocean temperature trends relevant to the types
se  Of models included in LongRunMIP (e.g., Brandefelt and Otto-Bliesner 2009; Zhang et al. 2013;

sss  Klockmann et al. 2016; Marzocchi and Jansen 2017; Gottschalk et al. 2019).

w0 b. Limitations

1 LongRunMIP analyses are currently limited mainly by the collected variables (Table 1). In-
w2 cluding cloud fields and 3D atmospheric temperature and humidity fields, for example, would
« allow users to study atmospheric dynamics and radiative feedbacks in more detail. The differ-
w ent forcing scenarios of model contributions to LongRunMIP are both a strength and weakness.
«s Minimal requirements have encouraged a large number of contributions so far. However, study-
ws 1ng a single forcing scenario requires model selection or scaling between different forcing levels.
s« Slab ocean simulations, which replace a model’s dynamical ocean with a much shallower non-
«s dynamical mixed-layer, are a computationally cheap tool to compare fast and slow time scales and
wo the relevance of surface warming patterns (Boer and Yu 2003c; Danabasoglu and Gent 2009; Li
a0 etal. 2013). We hope to receive submissions of these simulations in the future, to allow analysis of
o their utility. Century to millennial-time scales in the real world include more processes and Earth
o2 System Feedbacks than are included in LongRunMIP simulations, such as the carbon cycle, vege-
s tation feedbacks, forcing agents other than CO; (such as other greenhouse gases or aerosols), ice
o+ sheets, glacial rebound effects, changes to continental configuration, and orbital variation. Further,
o5  the real climate system is never in equilibrium or steady state, because the forcing continuously
s changes (e.g., Kohler et al. 2017). These Earth system feedbacks and additional forcings must be
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o7 taken into account when comparing the LongRunMIP models with paleo proxies or when project-

s 1ng or predicting changes in future centuries or millennia.

s C. Summary and expected impact

s  LongRunMIP is the first archive of millennial-length simulations of complex climate models,
w featuring 50 simulations of 15 models by 10 modeling centers under various forcing scenarios (Ta-
« ble 2). The archive provides an unprecedented opportunity to study the equilibrium response of a
w large number of models to forcing. The variables included allow study of a range of phenomena
« associated with the atmosphere, ocean, land, and sea ice (Table 1), and we expect LongRunMIP to
s contribute to current discussions laid out in Section 1. This includes ocean heat uptake, sea level
ws Tise, ocean circulation response to warming, large scale modes of variability, sea ice reduction,
w polar amplification, precipitation variability, atmospheric dynamics, long-term memory in time
ws  Series, spatial warming patterns, ocean - atmosphere interactions, model spin-up techniques, the
wo relation of internal variability and forced response under different forcing levels, committed cli-
w0 mate response, and the relation of time and state dependence of fast feedbacks and Earth System
w1 Feedbacks and processes.

w2 LongRunMIP is a MIP of opportunity, without an argeed upon protocol, and is a result of the
s« Willingness of individual research groups to provide model output from simulations often con-
s« ducted over years of real-world time. As a result, the experiments are not standardized, but most
ws models provided a millennial-length simulation that begins with an abrupt quadrupling of CO;
w6 concentration. In addition to collecting simulations, we provide output with standardized formats
7 and variable names, and include versions regridded to a common grid, as well as global averages.
ws  LongRunMIP builds upon a body of pioneering studies that looked at the behavior of models be-
»o yond the centennial scale (Table 3), LongRunMIP allows this sort of analysis to be applied across
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w0 a diverse group of models that exhibit strikingly different behavior (Fig. 7), and hopefully encour-
«1 age others to look beyond the limitations and assumptions normally imposed by computational

«2 constraints, to directly study the equilibration of the fully coupled atmosphere-ocean system.

«s Data access and sharing

«« LongRunMIP currently consists of 15TB of data and available for download at
ws https://data.iac.ethz.ch/longrunmip/. Fields shown in this paper can be accessed on
«s https://data.iac.ethz.ch/longrunmip/BAMS/.

«  See www.longrunmip.org for more details on available variables, contact information, sample
ws figures and videos, and links to join a discussion community. We will be collecting more

«s simulations over the next couple of years.
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825 TABLE 1. Description of collected variables. 2D means spatial resolution of latitude and longitude, except for
s msftmyz where it means latitude and depth. 3D means latitude, longitude, and depth. msffmyz is the sum of the
sz eularian, eddybolus, and submeso component. For so and thetao there are also February and September values

s2s  available for most models.

Shortname Longname Unit Resolution
hfls Surface Upward Latent Heat Flux Wm? monthly, 2D
hfss Surface Upward Sensible Heat Flux Wm~2 monthly, 2D

pr Precipitation on atmospheric grid kgm~2s~!  monthly, 2D
psl Sea Level Pressure Pa monthly, 2D
rlds Surface Downwelling Longwave Radiation Wm2 monthly, 2D
rlus Surface Upwelling Longwave Radiation Wm~2 monthly, 2D
rlut TOA Outgoing Longwave Radiation Wm~? monthly, 2D
rlutcs TOA Outgoing Clear-Sky Longwave Radiation Wm? monthly, 2D
rsds Surface Downwelling Shortwave Radiation Wm~2 monthly, 2D
rsdt TOA Incident Shortwave Radiation Wm2 monthly, 2D
rsus Surface Upwelling Shortwave Radiation Wm—2 monthly, 2D
rsut TOA Outgoing Shortwave Radiation Wm? monthly, 2D
rsutcs TOA Outgoing Clear-Sky Shortwave Radiation Wm 2 monthly, 2D
tas Near-Surface Air Temperature K monthly, 2D
ts Atmospheric surface temperature K monthly, 2D
sic Sea Ice Area Fraction % monthly, 2D
msftmyz Meridional Overturning Circulation m3s~! annual, 2D
tos Sea surface temperature K annual, 2D
SOS Sea surface salinity psu annual, 2D
wfo Net water flux into sea water kgm2s~! annual, 2D
evs Water evaporation kgm 25! annual, 2D
pr-ocn Precipitation (rain and snow) on ocean grid kgm 25! annual, 2D
tauuo Surface downward wind stress in x direction Nm—2 annual, 2D
tauvo Surface downward wind stress in y direction Nm2 annual, 2D
S0 Sea Water Salinity psu annual, 3D
thetao Sea Water Potential Temperature K annual, 3D
40

Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-19-0068.1.



829

830

831

832

833

834

TABLE 2. Overview of models and contributed simulations. The resolution of atmosphere and ocean is given

in # of grid points per latitude x longitude, and latitude x longitude x depth, respectively. Models are referred

to by their shortnames throughout the manuscript. Section 2b describes the forcing levels. References in the

last column describe the models and simulations. Some simulations are published in their full length, some

simulations contributed to LongRunMIP are the extensions of simulations discussed in the references, and some

simulations are unpublished.

Model Forcing level Length Atmosphere Ocean Control sim Model and
(shortname) shortname (yrs) resolution resolution (yrs) simulation documentation
CCSM3 abrupt2x 3000 Yeager et al. (2006)
CCSM3 abruptdx 2120 48 x 96 100x 116 x25 1530 Danabasoglu and Gent (2009)

abrupt8x 1450
CCSM3 abrupt2.4 3701 Yeager et al. (2006)
CCSMBII abrupt4.8 3132 48 x 96 100x 116 x25 3805 Castruccio et al. (2014)

lin2.4 3990
CESM 1.0.4 abrupt2x 2500 Gent et al. (2011)
CESMI(') 4 abruptdx 5900 96 x 144 384 x 20 x 60 1320 Danabasoglu et al. (2012)

abrupt8x 5100 Rugenstein et al. (2016¢)
CNRM-CM6-1 abrupt2x 750 Voldoire et al. (2019)
CNRMCM61 abruptdx 1850 128 x256 180x360x75 2000 Saint-Martin et al. (2019)
E%fg‘g;gSM gé‘ggcsﬂ 1270 160 x 320 202x362x42 508 I;\?ezsjiiiire?;l.(g(;)lls))
ECHAMS5/MPIOM  abruptdx 1000 Jungclaus et al. (2006)
ECHAMS Ipetdx 6080 48 x96 101x120x40 100 Lietal. (2013)
T
GFDL-CM3 Donner et al. (2011)

1
GFDLCM3 pet2x 5000 90 x 144 200 x 360 x 50 5200 Paynter et al. (2018)
GFDL-ESM2M Dunne et al. (2012)
GFDLESM2M 1pct2x 4500 90 x 144 200 x 360 x 50 1340 Paynter et al. (2018)
GISS-E2-R abruptdx 5000 Schmidt et al. (2014); Miller et al.
GISSE2R 90 x 144 180x288x 32 5225 (2014); Nazarenko et al. (2015)

1pctdx 5000 Rind et al. (2018)

abrupt2x 1000 Cox et al. (2000)
HadCM3L abrupt4x 1000 Cao et al. (2016)
Had CM3L abrupt6x 1000 73 x 96 73 x 96 x 20 1000

abrupt8x 1000
HadGEM2-ES Collins et al. (2011)

abrupt4 1328 145x 192 216 x 360 x40 239
HadGEM2 ADTPIX * *OUX Andrews et al. (2015)
e AR abrupdx 1000 96 x 96 149x 182x 31 1000 Dufresne et al. (2013)
MIROC 3.2 1pct2x 2000 Hasumi and Emori (2004)

petédx Yamamoto et al. ( ; Yoshimori
MIROC32 Ipctd 2000 64 x 128 192x256x44 681 1. (2015) himori
et al. (2016)

abrupt2x 1000 Mauritsen et al. (2018)
MPIESM- 1.2 abruptdx 1000 Rohrschneider et al. (2019)
MPIESM12 abruptSx 1000 96 x 192 220x 256 x40 1237

abrupt16x 1000
LA abruptdx 4459 96 x 192 220x256x40 2000 Mauritsen et al. (2018)
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s Fig. 1.  Global and annual mean surface air temperature (fas in Table 1) anomaly and top of the

837 atmosphere (TOA) radiative imbalance (computed as rsdt - rlut - rsut, see Table 1) to a step-
838 forcing of quadrupling CO, as simulated by the CESM 104 model. For the Coupled Model
839 Intercomparison Project Phase 5 and 6, this simulation is part of the standard protocol, but
840 only 150 simulated years are requested (blue shading). We collect simulations that extended
841 this experiment for at least 850 years (light red shading), ideally until they are equilibrated
a4z (end of dark red shading). . . . . . . . . . . . . . . . . . . . 43
ss  Fig. 2.  Global annual mean surface air temperature for all control (black) and forced (color, listed
844 in the top right of each panel) simulations. abrupt2x, 4x, 6x, 8x means that the CO, concen-
845 tration is doubled, quadrupled, sextupled, octupcliated, as a step-forcing branched off the
846 control simulation. /pct2x and Ipct4x means the CO, concentration is linearly increased
847 1% per year until the concentration is doubled or quadrupled, respectively. The simula-
848 tions of ECEARTH and CCSM3II are described in Section b. Note the different axis ranges
849 for each model. GFDLCM3 and CCSM3II are not branched off directly from the control
850 simulation. . . . . . . . . . . . . . . . . . . . . . . . 44

sst Fig. 3.  Top of the atmosphere (TOA) annual and global mean radiative imbalance of all control

852 simulations. Note the different lengths of the horizontal axes. The gray line indicates the
853 average, the red line the linear trend, except for CCSM3II and GFDLCM3 for which both
854 colors depict a fourth-order-polynomial fit. . . . . . . . . . . . . . . .45

sss  Fig. 4. Global and annual mean temperature anomalies (experiment minus average of the control

856 simulation) of the surface ocean (a, first layer) and deep ocean (b), as well as absolute values
857 of deep ocean temperature in the control simulations (c), for abrup4x (solid) and Ipct4x
858 (dashed) simulations. “Deep ocean” means around 2000 m depth (closest level). Note that
859 the time scale in ¢) is shorter thanina)andb). . . . . . . . . . . . . . . 46

so  Fig. 5. Time evolution of the surface air temperature anomaly in the abrupt4x simulations. The

861 model mean of CCSM3, CESM104, CNRMCM61, ECHAMS, GISSE2R, HadCM3L,
862 HadGEM?2, IPSLCM5A, MPIESM11, and MPIESM12 is shown in panel a, b, c, e, and
863 f, while the model mean of only CESM 104, GISSE2R, and MPIESM11 is shown in panel d
864 and g, due to the length of these contributions. See Table 2 for details of the length of each
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ss Fig. 6. Time evolution of the zonal mean surface air temperature response normalized by the global

867 mean temperature anomaly. Above (below) 1 means that warming is amplified (reduced)
868 relative to the globally mean warming (a-d). Panel e-g show the differences (note the differ-
869 ence scale). Panel a, b, e, and f contain only abrupt4x simulations, while panel c, d, and g
870 also contain the /pct2x and RCP8.5+ simulations with integration lengths above 4000 years.
871 Table 2 lists all simulations and model long names. . . . . . . . . . . . . 48

ez Fig.7. Simulated shortwave cloud radiative effects SW CRE for different levels of global surface

873 air temperature changes. Each point is a ten-year running average. Note the different axes

874 labels, which cover a large range in TOA imbalance and surface temperature. Table 2 lists

875 all simulations and model long names. . . . . . . . . . . . . . . . .49
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876 FIG. 1. Global and annual mean surface air temperature (tas in Table 1) anomaly and top of the atmosphere

sz (TOA) radiative imbalance (computed as rsdt - rlut - rsut, see Table 1) to a step-forcing of quadrupling CO,
ezs  as simulated by the CESM104 model. For the Coupled Model Intercomparison Project Phase 5 and 6, this
s7o  simulation is part of the standard protocol, but only 150 simulated years are requested (blue shading). We
sso  collect simulations that extended this experiment for at least 850 years (light red shading), ideally until they are

ssr  equilibrated (end of dark red shading).
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a2 FIG. 2. Global annual mean surface air temperature for all control (black) and forced (color, listed in the top
g3 right of each panel) simulations. abrupt2x, 4x, 6x, 8x means that the CO; concentration is doubled, quadrupled,
ss«  sextupled, octupcliated, as a step-forcing branched off the control simulation. /pct2x and Ipct4x means the CO,
ss concentration is linearly increased 1 % per year until the concentration is doubled or quadrupled, respectively.
sss The simulations of ECEARTH and CCSM3II are described in Section b. Note the different axis ranges for each
sv model. GFDLCM3 and CCSM3II are not branched off directly from the control simulation.
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888 FIG. 3. Top of the atmosphere (TOA) annual and global mean radiative imbalance of all control simulations.

sss  Note the different lengths of the horizontal axes. The gray line indicates the average, the red line the linear trend,

s except for CCSM3II and GFDLCM3 for which both colors depict a fourth-order-polynomial fit.
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891 FIG. 4. Global and annual mean temperature anomalies (experiment minus average of the control simulation)

sz Of the surface ocean (a, first layer) and deep ocean (b), as well as absolute values of deep ocean temperature in
s the control simulations (c), for abrup4x (solid) and Ipct4x (dashed) simulations. “Deep ocean” means around

s« 2000 m depth (closest level). Note that the time scale in c) is shorter than in a) and b).
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e) Change in temperature anomalies (b)-(a)
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895 FIG. 5. Time evolution of the surface air temperature anomaly in the abrupt4x simulations. The model mean
s of CCSM3, CESM104, CNRMCM61, ECHAMS, GISSE2R, HadCM3L, HadGEM?2, IPSLCM5A, MPIESM11,
sv and MPIESM12 is shown in panel a, b, c, e, and f, while the model mean of only CESM104, GISSE2R, and
ss  MPIESMI11 is shown in panel d and g, due to the length of these contributions. See Table 2 for details of the

oo length of each simulation.

48
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-19-0068.1.



a) Warming pattern year 15-25

g
<
[}
£
£
© . .
H e) Changes in warming pattern (b)-(a)
g 3
8 2 4 .
2 o
o £
S g
N IS
H
b) Warming pattern year 80-120 E
i~ o
N =
g ©
2 § 47 F
1S N T T T T T
©
2
g <
g =3
g 2
o
N 0 T T T T T E
g
¢) Warming pattern year 900-1000 =
< 3 8
< ——— CCSM3 abruptéx )
~ 25 4 CCSMB3II 4.8x - =
= CNRMCM61 abruptdx c 4 4 [
£ ECEARTH rcp8.5+ S -
E 24 IPSLCMS5R abruptéx o N
T ——— FAMOUS abrupt4x T T T T T
2 15 4 —— HadCMB3L abrupt4x - i i
= —— MPIESM12 abruptdx_Z . g) Changes in warming pattern (d)-(c)
S 11 3
= X 4 L
g 57 ] >
o = _ L
N 0 T T T T T € 2
5 L
d) Warming pattern year 4000-4200 =0 e —
g 3 3
< —— CESM104 abruptdx O -2 A -
= 25 4 —— GFDLESM2M 1pct2x L =)
o —— GFDLCMB3L 1pct2x =
= GISSE2R abrupt4x ] c -4 -
E 24 —— HadGEM2 abruptdx o S
© —— ECHAMS 1pctdx A N T T T T T
2 1.5 4— —— MIROC32 1pctdx -
- %7&\ MPIESMT1 abrupt4x/ 60S 308 0 30N 60N
o 44 Lati
s] atitude
) >
= 54 o
s
N 0 T T T T T

Latitude

900 F1G. 6. Time evolution of the zonal mean surface air temperature response normalized by the global mean
o1 temperature anomaly. Above (below) 1 means that warming is amplified (reduced) relative to the globally mean
w2 warming (a-d). Panel e-g show the differences (note the difference scale). Panel a, b, e, and f contain only
ws abruptdx simulations, while panel c, d, and g also contain the /pct2x and RCP8.5+ simulations with integration

w4 lengths above 4000 years. Table 2 lists all simulations and model long names.
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905 FI1G. 7. Simulated shortwave cloud radiative effects SW CRE for different levels of global surface air tem-
ws perature changes. Each point is a ten-year running average. Note the different axes labels, which cover a large

o7 range in TOA imbalance and surface temperature. Table 2 lists all simulations and model long names.
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