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Abstract— An extension of model reference adaptive con-
trol is presented that accommodates use of a time-varying
reference model. Specifically, the reference model is taken to
be a time-varying convex combination of two linear, time-
invariant models. The design is intended to act as a way to
smoothly transition between two different reference models
without resorting to a scheduled switch. It also provides the
ability to use an interpolated reference model when the plant
is operating between design points. The time variation of the
combination must satisfy some requirements to ensure stability
but is otherwise user choice. Subject to these requirements,
bounded tracking error behavior is demonstrated via Lyapunov
stability analysis for the single-input, single-output, output
feedback case. Tracking error convergence is asymptotic when
time variation ceases. The proposed design is demonstrated in
simulation of a numerical model.

I. INTRODUCTION

The design of the reference model is one of the primary
degrees of freedom available to the user who is implementing
any of the many schemes described as model reference
adaptive control (MRAC). Few of these algorithms, however,
attempt to exploit reference model design for additional gain,
especially after the reference model is initially specified.
Here we attempt to make use of this underutilized design
choice by introducing a way to change the reference model
online. The intent of the present work is to establish a frame-
work accommodating time variation of the reference model
within which more complex variations could be incorporated.

The framework considered in this paper replaces a tra-
ditional reference model with one that is a time-varying
convex combination of two time-invariant reference models.
The time variation is therefore isolated to a single parameter
whose evolution is user choice but subject to some restric-
tions to ensure stability. Although simple, even this type of
reference model manipulation has immediate applications.
The most apparent use for such a design is as a smooth
alternative to scheduling. Instead of requiring a discrete
switch each time a reference model change is desired, a time-
varying reference model can be used to continuously transi-
tion between the two with assured stability and without the
disruptive switching transient. The smooth transition would
be particular useful, for example, as the plant moves through
a design space with multiple reference models available and
selected based on operating condition.

The time-varying reference model structure also defines a
continuum of reference models between any reference model
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design points. At any given location in the design space
an “interpolated” reference model can be in use rather than
simply the reference model at the nearest design point. This
feature could help improve off-nominal operation.

A small number of other studies have investigated mechan-
ics which make the reference model time-varying. In [1], a
time-varying reference model results from inclusion of up-
dated parameter estimates in the reference model description.
The time-varying reference model is then used to determine
an optimal control solution at each time step. A class of
formulations involving a reference model with error feedback
term, often called closed-loop reference models, can also
result in a time-varying reference model. The technique has
been shown to improve management of tracking error and
transient performance [2]–[4].

The notion of using convex combinations in the context of
adaptive control is not entirely new. Specifically, in [5] pa-
rameter estimates arising from multiple models are combined
in a convex fashion and used to improve upon the parameter
estimates that would be in use otherwise. While this is not
related to direct manipulation of the reference model in the
same sense being discussed, it does result in some structures
which also appear in our design. The interested reader may
wish to compare treatment of the time-varying combination
of parameters to that presented here.

The paper is organized as follows: Section II summarizes
several established results that will be of use in developing
the proposed controller. A general description of the problem
structure is then provided in Section III. The error dynamics
capturing the difference between the closed-loop plant and
time-varying reference model are derived in Section IV and
then used in Section V to establish tracking error behavior
via Lyapunov stability analysis. Section VI presents a numer-
ical example demonstrating the proposed design, and some
comments on future work are made in Section VII.

II. MATHEMATICAL PRELIMINARIES

A collection of known results useful in deriving the
proposed control scheme is now provided. The first theorem
establishes a linear matrix inequality (LMI) condition on a
system perturbation that ensures maintained stability [6].

Theorem 1: Consider a stable system of the form ẋ = Ax
such that there exists a P = PT > 0 and Q = QT > 0
satisfying

ATP + PA = −Q. (1)

To assess whether the perturbed system ẋ = (A + ∆A)x



remains stable, replace Eq. (2) with

ATP + PA = −Q− Ω (2)

where Ω = ΩT > 0 and restate Eq. (4) with the perturbation

(A+ ∆A)TP + P (A+ ∆A) =

−Q− Ω + (∆ATP + P∆A). (3)

Thus, the perturbed system governed by A + ∆A will be
stable so long as there exists an appropriate Ω such that

∆ATP + P∆A ≤ −Ω. (4)

The next result permits eigenvalue-based stability assess-
ment for slowly time-varying systems [8].

Theorem 2: Consider the equation ẋ(t) = A(t)x(t) with
A(t) continuously differentiable, ‖A(t)‖ ≤ α ∀t for a
selected p-norm, and each pointwise eigenvalue of A(t)
satisfying Re[λ(t)] ≤ −ν where α and ν are positive
constants. If there exists a sufficiently small positive constant
β such that the condition

‖Ȧ(t)‖ ≤ β ∀t (5)

is satisfied then the system is uniformly exponentially stable.
Further discussion on the permissible size of β can be found
in texts such as Chapter 9.6 of [11], though in the context of
this paper the parameter will be free for the user to assign
such that Theorem 2 can always be satisfied.

Finally, a restricted version of the Meyer-Kalman-
Yakubovich (MKY) lemma which provides time domain re-
lationships for nonminimal representations of strictly positive
real (SPR) systems is stated. The reader is referred to [9] or
many other such texts for a formal characterization of SPR
systems.

Theorem 3: Consider the stable system defined by the
transfer function G(s) = CT (sI − A)−1B. If G(s) is SPR
then there exist matrices Q = QT > 0 and P = PT > 0
such that

ATP + PA = −Q (6)

PB = C. (7)

III. PROBLEM DESCRIPTION

Adhering to the notation of [9], consider the single-input
single-output (SISO) plant given by transfer function y =
G(s)u with

G(s) = ρ∗
Zp(s)

Rp(s)
. (8)

Here u, y ∈ R, Zp(s) and Rp(s) are monic polynomials,
Rp(s) is of degree n, and ρ∗ is a constant gain. The plant
can be equivalently represented by the state space description
(Ap, Bp, C

T
p ) with state xp ∈ Rn. Two SISO linear time-

invariant (LTI) reference submodels are selected as ym1 =
Wm1

(s)r and ym2
= Wm2

(s)r with

Wm1
(s) =

Zm1(s)

Rm1
(s)

(9)

where Zm1
(s) and Rm1

(s) are monic polynomials. Wm2
(s)

is specified similarly. A single linear time-varying (LTV)
reference model ym = Wm(s, t)r is constructed from the
two LTI submodels by forming the convex combination

Wm(s, t) = c(t)Wm1(s) + (1− c(t))Wm2(s) (10)

where c(t) ∈ [0, 1] and r, ym ∈ R. The reference input r
is taken to be uniformly bounded and piecewise continuous.
Note that transitioning c(t) from 0 to 1 changes the reference
model from Wm2

to Wm1
.

For the purposes of this paper, the following requirements
are placed on the plant and reference model:
• Rm(s), Zm(s), and Zp(s) are monic Hurwitz polyno-

mials. Rm(s) is of degree pm ≤ n.
• Relative degree=1 for both G(s) and Wm(s, t).
• The sign of ρ∗ is known.
• Wm1(s) and Wm2(s) are SPR.

While some of these assumptions can be relaxed, such fea-
tures are not discussed here to facilitate a simple discussion.
Function arguments are also dropped were possible, but may
be retained to emphasize time dependency caused by c(t).

The goal is to design a model reference adaptive control
law u and smooth transition function c(t) such that the output
of the plant matches the output of the time-varying reference
model as close as possible for any appropriate r.

IV. ERROR DYNAMICS

This section builds the elements necessary to state a useful
form of the error dynamics relating the reference model and
closed-loop plant for the chosen controller structure. First
a feasible matching condition is found showing that there
are ideal time-varying parameters that will force the plant
and reference model to match. It is also shown that the
time-varying parameters are a convex combination of the
submodels’ fixed ideal parameters. Next, a composite system
representation is built for the plant using this parameter
relationship and is shown to be stable. Finally, the reference
model dynamics are similarly stated and error dynamics are
formed.

A. Control Structure

The controller is taken to be of an established form utilized
by relative degree=1 output feedback MRAC designs [9] and
is given by

u = θTω (11)

where θ = [θT1 θT2
1
ρ ]T ∈ R2n+1 contains the parameters to

be updated online and ω = [ωT1 ωT2 r]T ∈ R2n+1 is known
as the regressor. The regressor quantities are calculated
according to

ω̇1 = Fω1 + gu, ω1(0) = 0

ω̇2 = Fω2 + gy, ω2(0) = 0 (12)

where the matrices are defined according to the multi-output
transfer function

(sI − F )−1g =
α(s)

Λ(s)
(13)



with α(s) = [sn−1 sn−2...s 1]T and Λ(s) a monic, stable
polynomial of degree n specified subsequently. The closed-
loop plant formed using this controller is denoted by Gcl(s).

B. Matching Condition

First consider the individual matching conditions implied
by forcing the plant to match each submodel in turn. Let the
closed-loop plant match the first LTI submodel model given
in an expanded form as

Wm1 =
Zm1Rm2

Rm1
Rm2

(14)

when using ideal parameters denoted by the vector

θ∗m1
=
[
θ∗T1
m1

θ∗T2
m1

1
ρ∗

]T
. (15)

such that ym1
= Wm1

(s)r = G(s)θ∗Tm1
ω. Note that in this

paper ρ∗ is taken to have the same value for both submodels.
Select the polynomial

Λ1 = Λ0Zm1
Rm2

(16)

where Λ0 is a monic, stable polynomial of appropriate
dimension. It can be shown that for Gcl(s) = Wm1

(s) to
hold, the matching condition(

Λ1 − θ∗T1
m1

α

)
Rp − ρ∗Zpθ∗T2

m1

α = ZpΛ0Rm1Rm2 . (17)

must be satisfied in the case of ideal parameter knowledge
(see [9] Chapter 6.3). Satisfaction of this condition is feasible
so long as Λ1 and Zp(s) are Hurwitz so that pole/zero
cancellations occurring because of matching happening in
the left half plane (LHP). Repeating the same analysis for
the second LTI reference model with

Wm2
=
Zm2

Rm1

Rm2Rm1

(18)

and
Λ2 = Λ0Zm2Rm1 (19)

leads to the matching condition(
Λ2 − θ∗T1

m2

α

)
Rp − ρ∗Zpθ∗T2

m2

α = ZpΛ0Rm1
Rm2

(20)

that ensures Gcl(s) = Wm2(s) is satisfied.
Next, if Gcl(s) = Wm(s, t) is to hold, select Λ to be a

varying convex combination of Λ1 and Λ2

Λ(s, t) = Λ0 [c(t)Zm1
Rm2

+ (1− c(t))Zm2
Rm1

] (21)

with Λ0 reselected as necessary. The same kind of analysis
can be used to show that the matching condition(

Λ(s, t)− θ∗T1 (t)α
)
Rp − ρ∗Zpθ∗T2 (t)α =

ZpΛ0Rm1
Rm2

(22)

is required where the ideal parameters are now time-varying
to account for inclusion of c(t). Note that the relationship
in Eq. (16) indicates that F will also vary, which will be
discussed in more detail later. Further, it can be shown that

θ∗(t) is formed using the ideal parameters associated with
the individual submodels as shown in the following theorem.

Theorem 4: Consider the plant and reference model de-
scribed in Section III with controller given in Eq. (14).
When Λ(s, t) given by Eq. (24) remains Hurwitz for all
c(t) ∈ [0, 1], a varying convex combination of the ideal
parameter vectors θ∗m1

and θ∗m2
implied by Eqs. (20) and

(23) can be used to form θ∗(t) according to

θ∗(t) = c(t)θ∗m1
+ (1− c(t))θ∗m2

(23)

which satisfies the matching condition in Eq. (25).
Proof: First note that the matching condition in Eq.

(25) will only be feasible if Λ remains Hurwitz as c(t)
varies. Since this value is restricted to be between 0 and
1, closed-form tests exist that can be used to check that
each possible polynomial that results is stable [7], and
the reference submodels can be redesigned to meet this
requirement if not.

To demonstrate that a convex combination structure for
θ∗(t) is sufficient for matching, start from the left side of
the matching condition in Eq. (25), denoted by L for brevity,
and substitute the choice for Λ given in Eq. (24) to obtain
the polynomial

L =
(

Λ0 [c(t)Zm1
Rm2

+ (1− c(t))Zm2
Rm1

]

− θ∗T1 α
)
Rp − ρ∗Zpθ∗T2 α. (24)

Next utilize the proposed convex combination expression for
θ∗(t) given in Eq. (26) and regroup to reach

L = c(t)

[(
Λ0Zm1

Rm2
− θ∗T1

m1

α

)
Rp − ρ∗Zpθ∗T2

m1

α

]
+ (1− c(t))

[(
Λ0Zm2

Rm1
− θ∗T1

m2

α

)
Rp − ρ∗Zpθ∗T2

m2

α

]
.

(25)

Substituting the equalities provided by the submodel match-
ing conditions in Eqs. (20) and (23) reduces the previous
expression to

L = c(t)(ZpΛ0Rm1
Rm2

)+(1−c(t))(ZpΛ0Rm1
Rm2

) (26)

or ZpΛ0Rm1
Rm2

which is equivalent to the right side of the
proposed matching condition stated in Eq. (25).

C. Composite System Construction

To facilitate formulation of the error dynamics, create a
closed-loop state space representation of the plant described
in Eq. (11)

Ẏc = A0(t)Yc +Bcu

y = CTc Yc (27)

where the state vector is Yc = [xTp ωT1 ωT2 ]T and

A0(t) =

[ Ap 0 0
0 F (t) 0

gCT
p 0 F (t)

]
(28)

BTc =
[
BTp gT 0

]
(29)



CTc =
[
CTp 0 0

]
. (30)

Adding and subtracting Bcθ∗T (t)ω gives

Ẏc = Ac(t)Yc +Bc
1
ρ∗ r +Bc(u− θ∗Tω). (31)

Note that Ac(t) can be decomposed as

Ac(t) = A0(t) +B0(t)

=

[ Ap 0 0
0 F (t) 0

gCT
p 0 F (t)

]
+

[
0 Bpθ

∗T
1 (t) Bpθ

∗T
2 (t)

0 gθ∗T1 (t) gθ∗T2 (t)
0 0 0

]
(32)

Additionally, the following theorem establishes that Ac(t)
can be expressed in terms of the constant Ac matrices
associated with each of the submodels—denoted as A c

m1

and
A c
m2

—and will remain stable for some c(t).
Theorem 5: Consider the matrix Ac(t) and its decompo-

sition given in Eq. (35) along with the definitions for F (t)
in Eq. (16), Λ(s, t) in Eq. (24), and θ∗(t) in Eq. (26). Ac(t)
is equivalent to the convex combination

Ac(t) = c(t)A c
m1

+ (1− c(t))A c
m2

(33)

where A c
m1

and A c
m2

are the constant matrices obtained from
the Ac(t) expression when c = 1 and c = 0, respectively.

Further, Ac(t) is uniformly exponentially stable when c(t)
is bounded and continuously differentiable, ċ(t) is bounded
by a sufficiently small number, and the matching conditions
discussed in Section IV-B are feasible.

Proof: From Eq. (16), note that the elements of F (t)
are defined by the coefficients of Λ(s, t). Since Λ(s, t) is
a convex combination of the Λ1(s) and Λ2(s) polynomials
associated with each submodel, it is permissible to express
F (t) as a convex combination of the F matrices for each
submodel as well according to

F (t) = c(t)Fm1 + (1− c(t))Fm2 . (34)

Here Fm1 is defined by Λ1(s) in Eq. (19) and Fm2 by Eq.
(22). Then, take A 0

m1

to be the matrix in Eq. (31) containing

Fm1
instead of F (t) and similar for A 0

m2

such that

A0(t) = c(t)A 0
m1

+ (1− c(t))A 0
m2

. (35)

The convex combination expression in Eq. (26) permits

B0(t) = c(t)B 0
m1

+ (1− c(t))B 0
m2

. (36)

Therefore,

Ac(t) = c(t)

(
A 0
m1

+B 0
m1

)
+ (1− c(t))

(
A 0
m2

+B 0
m2

)
= c(t)A c

m1

+ (1− c(t))A c
m2

. (37)

To establish stability of Ac(t), note that

Gcl(s, t) = CTc (sI −Ac(t))−1Bc 1
ρ∗ = Wm(s, t) (38)

when the matching condition in Eq. (25) is satisfied. Recall
that all necessary pole/zero cancellation will occur in the
LHP. Combining this with the design of Wm(s, t) means
that all (time-varying) eigenvalues of Ac(t) are also in the
LHP. Then, so long as c(t) is such that the remaining
requirements of Theorem 2 are satisfied, Ac(t) provides
uniform exponential stability.

D. Composite System Error

The proof of Theorem 5 highlights the fact that
Wm(s, t) = CTc (sI − Ac(t))

−1Bc
1
ρ∗ under the matching

condition. Correspondingly, a nonminimal representation for
reference model dynamics is given by

Ẏm = Ac(t)Ym +Bc
1
ρ∗ r

ym = CTc Ym. (39)

Defining e = Yc − Ym, e1 = y− ym, and B̄c = Bc
1
ρ∗ while

selecting u = θT (t)ω yields the error dynamics

ė = Ac(t)e+ B̄cρ
∗θ̃T (t)ω

e1 = CTc e (40)

where θ̃(t) = θ(t)− θ∗(t).

V. STABILITY ANALYSIS

The control system design and requirements necessary to
demonstrate tracking error convergence are presented in the
following theorem.

Theorem 6: For the plant and time-varying reference
model described in Section III, the controller in Eq. (14),
and the parameter update law

θ̇ = −sign(ρ∗)Γe1ω (41)

ensure that the tracking error e1(t) = y(t)−ym(t) converges
to and subsequently remains in a residual set so long as

1) c(t) ∈ [0, 1], is continuously differentiable if ċ(t) 6= 0,
and satisfies |ċ(t)| < β for all t ≥ 0 and some
sufficiently small, positive constant β.

2) ∆A = A c
m1

− A c
m2

must satisfy the bounded relation-
ship of Theorem 1 with the MKY matrix arising from
(A c

m2

, Bc, C
T
c ).

3) θ̃ remains bounded.
4) Λ(s, t) remains Hurwitz for all c(t) ∈ [0, 1].

Further, should time variation cease and ċ(t) = 0, tracking
error will converge asymptotically.

Proof: First note that Requirement 4 and the c(t)
bounded and continuously differentiable portion of Require-
ment 1 are necessary only to ensure Theorems 4 and 5 are
satisfied. Then select the Lyapunov function

V (e, θ̃) =
1

2
eTPe+

|ρ∗|
2
θ̃TΓ−1θ̃ (42)

with Γ = ΓT > 0 and P = PT > 0 a constant matrix
defined subsequently.

Taking the derivative leads to

V̇ =
1

2
eT (Ac(t)

TP + PAc(t))e

+ eTPB̄cρ
∗θ̃Tω + |ρ∗|θ̃TΓ−1

˙̃
θ. (43)

Since Ac(t) can be expressed as

Ac(t) = A c
m2

+ c(t)
(
A c
m1

−A c
m2

)
= A c

m2

+ c(t)∆A, (44)



take P to be a symmetric, positive definite matrix satisfying
the MKY lemma for the nonminimal representation of the
SPR submodel (A c

m2

, B̄c, C
T
c )

ATc
m2

P + PA c
m2

= −Q (45)

PB̄c = Cc (46)

as well as the additional relationship

∆ATP + P∆A ≤ −Ω. (47)

Then by using Theorem 1 it is possible to express the bound

ATc (t)P + PAc(t)

=
(
A c
m2

+ c(t)∆A
)T

P + P
(
A c
m2

+ c(t)∆A
)

= −Q+ c(t)
(
∆ATP + P∆A

)
≤ −Q− c(t)Ω (48)

The derivative can then be bounded by

V̇ ≤ −1

2
eTQe+ e1ρ

∗θ̃Tω + |ρ∗|θ̃TΓ−1
˙̃
θ. (49)

where the scalar e1 = eTPB̄c due to Eq. (49).
It is important to note that ˙̃

θ = θ̇ − θ̇∗ here due to the
dependence of θ∗ on c(t), which is a departure from typical
MRAC stability analysis. Recalling Eq. (26) yields

˙̃
θ = θ̇ − θ̇∗ = θ̇ − ċ

(
θ∗m1
− θ∗m2

)
(50)

and as a result an additional term is generated in V̇ such that

V̇ ≤ −1

2
eTQe+ e1ρ

∗θ̃Tω + |ρ∗|θ̃TΓ−1θ̇

− |ρ∗|θ̃TΓ−1ċ
(
θ∗m1
− θ∗m2

)
. (51)

Selecting the update law θ̇ = −sign(ρ∗)Γe1ω leaves the
expression

V̇ ≤ −1

2
eTQe− ċ|ρ∗|θ̃TΓ−1

(
θ∗m1
− θ∗m2

)
. (52)

From here it is clear that if ċ = 0 then V̇ ≤ − 1
2e
TQe ≤

0 and asymptotic convergence of the tracking error can be
demonstrated with a signal chasing argument and Barbalat’s
Lemma [11].

Now consider the ċ > 0 and ċ < 0 cases. To proceed,
define V0 = 1

2e
TPe and V1 = |ρ∗|

2 θ̃Γ−1θ̃ such that V =
V0 + V1 and note that the following relationships hold:

−1

2
eTQe ≤ −λmin(Q)

λmax(P )
V0 (53)

−ċ|ρ∗|θ̃TΓ−1θ̃ = −2ċV1. (54)

Adding and subtracting the quantity ċ|ρ∗|θ̃TΓ−1θ̃ from Eq.
(55) and utilizing the previous two expressions allow the
derivative to be bounded as

V̇ ≤ −
[
λmin(Q)

λmax(P )
V0 + 2|ċ|V1

]
+ |ċ||ρ∗|θ̃TΓ−1

[
θ̃ − sign(ċ)

(
θ∗m1
− θ∗m2

)]
. (55)

Here ċ = sign(ċ)|ċ| has been used to facilitate addressing
both directions of growth in a single expression. If the
boundedness requirement |ċ| ≤ β holds then

V̇ ≤ −
[
λmin(Q)

λmax(P )
V0 + 2|ċ|V1

]
+ β|ρ∗|

[
θ̃TΓ−1θ̃ + |θ̃TΓ−1

(
θ∗m1
− θ∗m2

)
|
]
. (56)

Define
µ = min

[
λmin(Q)

λmax(P )
, 2|ċ|

]
(57)

as well as

δ ≥ β|ρ∗|
[
θ̃TΓ−1θ̃ + |θ̃TΓ−1

(
θ∗m1
− θ∗m2

)
|
]

(58)

where the quantity 0 ≤ δ <∞ so long as θ̃ remains bounded,
such as with projection. Finally, the derivative can be written
as

V̇ ≤ −µ (V0 + V1) + δ = −µV + δ. (59)

V̇ < 0 whenever V > δ
µ thus defining a residual set where

V remains once it has entered. Similarly, e and therefore e1
can be shown to remain in a residual set due to their constant
relationship.

Remark 1: Requirement 2 of Theorem 6 is conservative.
Significant relaxation of this point has been seen to still yield
tracking error convergence in simulation and is a source of
ongoing investigation.

VI. EXAMPLE

While the proposed convex combination MRAC scheme
can of course stabilize systems meeting the outlined re-
quirements, instead consider the more complex example of
stabilizing a system with time varying linear perturbations.
Such a situation might arise when designing a controller for
an aircraft as it changes flight conditions. In this example
the plant dynamics begin at

y =
−2(s+ 5)

(s− 1)2
u. (60)

The plant dynamics gradually transition to

y =
−2(s+ 5)

(s− 4)2
u (61)

over the course of the simulation. Both sets of plant dynam-
ics meet the stated structural requirements. Two reference
models are given by

ym1
=

1

(s+ 3)
r ym2

=
1

(s+ 1)
r (62)

such that their convex combination is given by

ym = c(t)ym1 + (1− c(t))ym2

=
s+ (3− 2c(t))

(s+ 3)(s+ 1)
r. (63)

Note that sign(ρ∗) = −1. In this case select

Λ(s, t) = Λ0(s) [s+ (3− 2c(t))] (64)



with Λ0(s) = (s+0.4) to maintain the degree n requirement.
Also select r = 15 and Γ = I .

The control design is implemented assuming that the time-
varying plant is unknown and only the output is available
for feedback. Three reference models are considered: 1) The
first reference model remains fixed. 2) The reference model
discretely switches from the first to the second at t = 1.5
s. 3) The proposed convex combination reference model is
used with transition governed by c(t) = e−0.4t. The output
tracking performance in each of the three cases is shown
in Fig. 1, and the corresponding norm of the output tracking
error is given in Fig. 2. From the simulation results it is clear
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Fig. 1. Comparison of tracking performance with no reference model
switch (top), discrete switch (middle), switch governed by c(t) (bottom)

that for the example presented maintaining a fixed reference
model did not provide a stabilizing control design. Use of
both the switched and the convex combination reference
models did result in stabilizing controllers, however the
transient performance of the convex combination is clearly
an improvement over the discrete switch.

VII. CONCLUSIONS

A version of model reference adaptive control utilizing
a time-varying reference model constructed from a variable
convex combination of time-invariant models was proposed.
Requirements on the time variation of the convex com-
bination were developed in the course of demonstrating
bounded tracking error behavior. A numerical simulation
was presented to demonstrate the proposed design. In the
future, less restrictive design requirements on both the in-
variant reference model components as well as their varying
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Fig. 2. Tracking error with no reference model switch (top), discrete switch
(middle), switch governed by c(t) (bottom)

combination are sought. Immediate application to existing
systems that rely on gain-scheduled behavior is also under
development. Additionally, extension to convex combinations
of more than two reference model components will be used
to span a multi-dimensional design space.
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