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Abstract—The current system used by the FAA to schedule
arrivals is the Traffic Based Flow Manager (TBFM). It is a
centralized system that gives an operator (airline) no influence
over scheduled times of arrival assigned to its flights. Future
systems for managing arrival scheduling are proposed as dis-
tributed systems. Such a system is called upon to give operators
influence to schedule and negotiate resources for their flights, and
to resolve other technical challenges, such as eliminating a single
point of failure. A distributed system for managing diverse air
traffic will need the capability of computing a schedule for the
given arriving flights in a way that complies with the operational
constraints. This paper contributes an algorithm that computes
such a schedule. Although developed as part of an effort toward
a distributed system, the algorithm itself is neither inherently
distributed nor inherently centralized and can be used in either
type of system.

Index Terms—arrival scheduling, distributed system, negotia-
tion

I. INTRODUCTION

Airport arrival scheduling assists air traffic controllers with
keeping flights properly sequenced and spaced as they ap-
proach their destination and land. The current system used
by the Federal Aviation Administration (FAA) for arrival
scheduling is called Time Based Flow Management (TBFM)
[2]. It works by assigning each inbound flight a scheduled
time of arrival at its arrival meter fix, which is located in the
vicinity of the airport and on the boundary of the Center and
TRACON (Ref. [5]) airspaces. Each flight’s scheduled time of
arrival, along with a speed advisory, is displayed to the air
traffic controllers responsible for the airspaces upstream of
the arrival meter fix (Ref. [5], the Appendix). The controllers
regulate the flights so that they cross their arrival fixes at times
as close as possible to their scheduled times of arrival.

TBFM is a centralized closed system operated by the FAA.
There are few, if any, ways for airline operators to influence the
scheduled times of arrival that are assigned by TBFM to their
flights. These features of the system entail the following risks
for the TBFM and the FAA. A centralized design is always a
potential single point of failure and can limit scalability if there
is a need to add more users. Furthermore, the stakeholders

(airline operators) are left with no way to influence the
scheduled times of arrival.

To address these and other issues, future systems being
proposed for managing air vehicles are distributed systems
[8], offering operators influence to schedule and negotiate
resources for their flights. One example of such a system
is the UAS Traffic Management (UTM), being developed at
NASA for mission planning and management of Unmanned
Aerial Systems (UAS). The UTM is a distributed system
and is to include a mechanism that guards against unending
negotiations. A participant in the system, called a UAS Service
Supplier (USS) (Ref. [7]), can join the system through a
standardized process of authentication and communicates with
the other parties via well-defined Application Programming
Interfaces (APIs). USS instances schedule and negotiate re-
sources (extruded polygons in the airspace with a time window
of proposed use) for UAS missions. This gives all participants
direct influence over the negotiation process. Each USS in-
stance is developed and operated by organizations other than
the FAA, but they must be certified by the FAA to operate.

In the broader context, past literature contains also other
uses of distributed systems in the broad research field of
air traffic management. For example, Ref. [10] proposes a
distributed system where the agents are the fixes, and Ref.
[9] proposes a swarm intelligence system for trajectory-based
operations (TBO), where the agents are the pilots.

The key structural components of the arrival scheduling
problem are the same as in UTM: different participants each
operate their own mission, negotiate for resources, and get a
service (scheduling). A distributed systems approach here, too,
promises the merits outlined above: scalability, elimination of
a single point of failure, and a way for each airline operator
to develop its own agents to join the system (conforming to
the accepted standard APIs) and to influence the negotiation
directly.

Such a distributed system for airport arrival scheduling must
include a complete and precise formulation of the constraints
imposed on the schedules, as well as the ability for each
flight that needs a schedule to formulate their objective. For



each flight, some of the constraints result from the schedules
computed previously for other flights. This leads to the need to
negotiate. The distributed system, whatever architecture ends
up being chosen for it, must enable such negotiations.

This paper contributes an algorithm for solving such a
problem. For clarity, we note that this algorithm, although
developed as part of a project aimed at a distributed system, is
itself neither inherently distributed nor inherently centralized.
It can be used in either type of system.

Before outlining the contribution, we give a brief overview
of the challenges of designing such a system, so as to give the
broad context for this work.

This system would possibly replace or drive upgrades to
the current TBFM system for a futuristic traffic management
system for the year 2045 or later. The UTM solution cannot
be copied as is because of the following differences between
UAS and conventional jet traffic. UAS traffic density is sparser
and less directed than conventional jet traffic in the airspace
close to large airports. Jet traffic in the vicinity of a large
airport follows predefined arrival routes and procedures. The
flow of traffic along the routes can be packed to the point
where there is no longer space to safely fit flights. The
traffic density and the need to land on a common runway
will require more negotiation with fewer alternatives than
those needed in UTM. Furthermore, jets cannot be stopped in
mid-air, meaning that arriving at an agreed solution is time-
critical. An arbiter is needed to step in and drive a solution
in time critical situations. Finally, the constraints that must be
satisfied in arrival scheduling are more complex than checking
for airspace box intersections in time and space. In arrival
scheduling, there are spacing constraints at the runway and
merge points after the arrival meter fix, and there are arrival
rate constraints that must be followed. These constraints occur
at different points in both time and space and require network
flow analysis to work out.

The complete set of arrival scheduling constraints is given in
section III. The interdependence of the constraints is explained
in section IV, with a high-level description of the algorithmic
procedure (appendix A) . The algorithm is formulated in detail
in section V. The design of the algorithm is independent of
whether it will be run on a centralized or distributed system.
Computed solutions to some sample, artificially generated
problems are presented in section VI. A discussion on how the
algorithm would fit into a distributed system and aid operators
in influencing their flight schedules is given in section VII.

II. PROBLEM INPUT AND OUTPUT

A. Input data

Flight routes and the graph they make up: Assume we
are given a set of flights, indexed by f : f = 1, 2, . . . , F,
and each flight is assigned a route, which is a sequence
of waypoints. Generally, a flight is not scheduled at every
waypoint on its route, but, rather, on some of those waypoints.
These waypoints will be referred to as nodes, for consistency

with the terminology generally used in scheduling and graph
theory, and written in the following notation:

n1f , n
2
f , . . . , n

Nf

f . (1)

We now form the smallest possible undirected graph G that
includes all the nodes and all the links involved in the routes
(1). More precisely, the set of nodes of G will be

{ n : at least one of the routes (1) has n as a waypoint }

and the set of its links will be:

{ {n1, n2} the waypoints n1, n2 occur consecutively,
in any order, in at least one of the routes (1) }.

Note: Although each route has its waypoints in a specific
order, the graph G is constructed as undirected, for conve-
nience of analysis and exposition. (In particular, in this paper
G will be restricted to being a tree, and undirected trees allow
simpler verbiage than do directed ones.)

Estimated Times of Arrival: Each node nif in the route (1)
of each flight f is supplied with an Estimated Time of Arrival
(ETA): ETA

ni
f

f , which is the nominal time.
A flight’s minimal and maximal times for traversing a link:

For each flight f and each link nifn
i+1
f , we are given the

minimal and maximal traversal times

tt
ni
fn

i+1
f

f , TT
ni
fn

i+1
f

f . (2)

B. Output data: the format of a “schedule”

A schedule will be defined here as a mapping that, for each
flight f , provides every node on its route with a Scheduled
Time of Arrival (STA) for that flight. In other words, a schedule
is an assignment, to each flight f , of a table, denoted by S(f),
of the format (refer to (1) for some of the notation):

S(f) :
node n1f n2f . . . n

Nf

f

STA STA
n1
f

f STA
n2
f

f . . . STA
n
Nf
f

f

. (3)

III. SCHEDULING CONSTRAINTS

A. ETAs, schedule-frozen nodes, no-passing edges

For each flight f routed through a node n, the structure of
air traffic operations suggests using two types of time stamps:
(i) the estimated time of arrival ETAnf , which is the estimated
time when flight f can reach n or, if n is a departure airport,
to leave n, and (ii) the scheduled time of arrival1 STAnf , which
is the time, computed on the basis of the ETAs, at which flight
f will be expected at n in actuality.

At some of the schedule-furnished nodes, some flights
routed through that node may have pre-assigned and fixed
STAs. In real operations, this can happen at a node that is
within a flight’s freeze horizon [5]. Such nodes will be called
schedule-frozen.

On some of the edges, passing of one flight by another will
be forbidden. One operational reason for such a constraint is

1If the node is a departure node, this time is actually the schedule time of
departure, STD, but for cleanliness of exposition we retain the notation STA
even in this case.



that an airspace may be too narrow to allow safe passing.
Such an edge will be called a no-passing edge. Also, in
real operations, flights are not allowed to pass each other on
Standard Arrival Routes and Departure Procedures.

The STAs are subject to constraints that can be separated
into two categories, node constraints and edge constraints. We
now list the constraints in each category. Every occurrence
of the letter c with superscripts and subscripts is a constant
parameter, specified as part of the problem statement.

B. Node constraints

The constraints on the STAs of given flights at a given
node considered here are of three types. We list these types,
labeling each by the letter that matches the corresponding part
of formula (4):

(a) The flight cannot leave its first node, n1f , earlier than at
the corresponding ETA.

(b) Two flights traversing a given node must traverse it at STAs
that are no closer together than a required minimal time
duration. In other words, the difference between the two
STAs must be ≥ the pre-specified minimal time separation.

(c) For some nodes along the routes of some flights, the flight
(a schedule-frozen flight) must traverse the node at exactly
the ETA, which effectively requires the STA to equal the
ETA.

The formulas for these constraints are given in the corre-
sponding parts of (4).

STA
n1
f

f ≥ ETA
n1
f

f

at the first node
n1
f of flight f

}
(a)

STAnf2 − STAnf1 ≥ c
n
f1,f2

if flights f1, f2
reach n
consecutively,
in that order

 (b)

STAnf = ETAnf

for all f routed
through node n
if n has been
schedule-frozen

 (c)



(4)

C. Edge constraints

The constraints on the STAs of given flights at a given
node considered here are of two types. We list these types,
labeling each by the letter that matches the corresponding part
of formula (5):

(a) A flight’s travel time between two consecutive nodes–
which equals the difference between the corresponding
two STAs–must lie between the corresponding minimal
and maximal travel times (2).

(b) If one flight passes another on an edge
(
ni, ni+1

)
, then

these two flights traverse node ni+1 in the order opposite
to that of traversing node ni. Therefore, a no-passing

constraint would imply that the two flights must traverse
each of the nodes in the same order.2
Bounds on travel time

along
(
nif , n

i+1
f

)
:

tt
ni
fn

i+1
f

f ≤ STA
ni+1
f

f − STA
ni
f

f ≤ TT
ni
fn

i+1
f

f

 (a)

No passing on
(
ni, ni+1

)
: STAn

i

f2
≥ STAn

i

f1

implies
STAn

i+1

f2
≥ STAn

i+1

f1

 if edge
(
ni, ni+1

)
is shared by the
routes of f1, f2


(b)


(5)

IV. THE INTERDEPENDENCE OF THE CONSTRAINTS

The given flights are scheduled one at a time. In the
computation of a schedule, the first step (assumed to have
been carried out before the execution of the algorithm in
section V) is to impose the order in which the flights are to be
scheduled. The STAs computed for the flights scheduled so far
will constrain the scheduling options for the next flight to be
scheduled through constraints (4.b), (5.b). This section is an
explanation of how constraints arise at a node and propagate
to other nodes.

Each node used by one or more of the flights is assigned
its own “copy” of the time axis. Following the presentation
in Ref. [4], this will be illustrated here (figures 1 and 2,
below) as a plot where the horizontal axis has only discrete
points, corresponding to the nodes of the given flight, and
each node’s copy of the time axis is drawn as a vertical axis,
with upward being the direction of increasing time. The time
variable is denoted by t, and its specific values sometimes by
T with suitable superscripts. These copies are aligned so that
a horizontal line crossing two or more copies crosses them at
the same time instant.

For example, suppose the route of flight f includes three
consecutive nodes

k − 1, k, k + 1,

and suppose these three nodes are to be used by a previously
scheduled flight m, and the two nodes k, k + 1 are to be
used by a previously scheduled flight n. Furthermore, suppose
node k − 1 is the first node on the route of flight f . This
situation is illustrated notionally in figure 1(A). In general,
there can be other previously scheduled flights, using any or
all of the three nodes. Following Ref. [4], the color red is
used to depict the time windows unavailable to f because of

2This restriction on the order of the node traversal does not guarantee the
absence of passing. For example, if multiple passings along the edge are
possible, then an even number of passings would end up meeting constraint
(5.b). But this is the strongest constraint we can impose toward preventing
passing without involving the positions of the flights between the nodes and
the speeds of the flights.
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Fig. 1: (A) The STAs of previously scheduled flights m,n and
the ETA of flight f at node k − 1 (here, for the purpose of
illustrating semi-infinite unavailable intervals, assumed to be
the first node on the route of flight f ), each shown on the
corresponding node’s copy of the (vertical) time axis. (B) The
resulting time windows unavailable to flight f because of the
separation constraint (4.b) and the ETA constraint (4.a), which
results in a semi-infinite unavailable interval (bottommost at
k − 1).

the separation requirements with the STAs of those previously
scheduled flights that use any or all of these nodes.

On having computed all the time windows unavailable
because of the previously scheduled flights’ STAs at node k
(figure 1(B)),–i.e., for reasons of time separation at k–and
because of flight f ’s own ETA constraint at its first node,
it is generally incorrect to conclude that all the other time
instants at k are available to flight f . This is because the
availability of node k to flight f is affected not only by the
other flights’ STAs at k, but also by flight f ’s speed range.
A generic time instant T k at node k, although separation-
compliant, may yet be effectively unavailable for f ’s use at k

(A)

Tk

tra
ve

lin
g a

t 

low
est

 sp
ee

d

trav
elin

g a
t 

hig
hes

t sp
eed

The only time window 

reachable at node k+1 by 

leaving node k at time Tk .

(B)

Tk

(C)

Tk

tra
vel

ing
 at

 

hig
hes

t sp
eed

trav
elin

g at 

low
est 

speed

Fig. 2: (A) The only times (shown in blue) reachable at node
k+1 by leaving node k at time instant T k. (B) With a different
choice of T k, on leaving node k at time T k, flight f can reach
node k + 1 only at times that are already unavailable to f at
k+1. This makes node k effectively unavailable to flight f at
T k. (C) The only times of leaving node k − 1 that allow the
flight to reach node k at time T k are the times unavailable to
f at k − 1.



for two other possible reasons:

• Controllability: By leaving node k at time T k, flight f
cannot reach node k + 1 at any available time.

• Reachability: There is no time instant T k−1 available to
flight f at k − 1 from which the flight can reach node k
at an available time instant at k.

We illustrate each of these reasons in the following two
paragraphs, using also figure 2. For this figure, the assumption
that k − 1 is the first node for flight f no longer holds.

Controllability: In figure 2(A), we see that by leaving node
k at T k, flight f will be able to reach node k+1 only within a
certain time window, shown in blue. Now consider a different
T k; see figure 2(B). The resulting new reachable time window
at k + 1 is contained entirely in an unavailable time window.
This makes node k effectively unavailable to flight f at the
latter choice of T k.

Reachability: Figure 2(C) shows such a choice of T k that
flight f cannot reach node k at T k except by passing through
node k − 1 at an unavailable time. This makes node k
unreachable for (hence, effectively unavailable to) flight f at
time T k.

Controllability and reachability characterize the internodal
influence of the time windows for f . The algorithm formulated
in Ref. [4] is designed, and used here, to update a given list
of unavailable time windows for one flight at each node on
that flight’s route.

V. ALGORITHM FORMULATION

In a departure operation, one of the parameters that is
generally specified by the operational needs is the relative
priority of scheduling the departing flights. A flight’s priority
in the given operation may change, and a new flight may
even be added, with a set priority, to an already tentatively
scheduled operation. Such changes can require recomputing
the schedule, in part or even in entirety. To reflect the presence
of priority, our scheduling algorithm will be based on the
assumption that the flights are numbered in the order of
priority and, therefore, need to be scheduled in that order. A
high-level description of the following algorithm is given in
appendix A.

The following interval notation will be used: (i) [a, b]
denotes the interval with the endpoints included: a ≤ x ≤ b;
(ii) ]a, b[ will denote the interval: a < x < b. The round
parentheses, ( ), are reserved in this paper for ordered pairs.

A. The algorithm invariants

Assume the first (f − 1) flights have been scheduled; i.e.,
the schedules of the form (3)

S(1), S(2), . . . , S(f − 1) (6)

have been computed to comply with all of (4), (5).

B. The generic step: scheduling the next flight

To compute S(f), proceed as follows:

Step 1. For the first node n1f (i.e., the departure node) on the
route of f , compute the time window]

−∞, ETAn
1
f

f

[
, (7)

which is unavailable to flight f at that node because
of constraint (4.a).

Step 2. For each STA
ni
h

h occurring in the computed schedules
(6), i.e. for every flight h such that h < f and every
node nih on the route of flight h, if this node also
occurs on the route of f , compute the time window[

STA
ni
h

h − c
ni
h

h,f , STA
ni
h

h + c
ni
h

f,h

]
, (8)

which is unavailable to flight f at node nih because
of constraints (4.b).

Step 3. For each node nif on the route of f at which the
flight’s STA is frozen, compute the time window]

ETA
ni
f

f ,+∞
[
, (9)

which is unavailable to flight f at node nih because
of constraints (4.c).
How condition (9) effects a freezing of the STA: the
unavailability of both the time windows (7) and (9)
leaves the only possible STA for flight f at node nih:
the one given by (4.c).)

Step 4. Use the algorithm in Ref. [4] to compute the available
time windows for f at the nodes on its route (the
region shown green in Ref. [4, Fig. 2(c)]), using:
• the totality of the intervals (7), (8), (9) as the

unavailable time windows (shown red in Ref. [4,
Fig. 2]),

• the travel time bounds specified in (5.a) as the
travel times (e.g., Ref. [4, Equations (5), (6), (7)]).

Step 5. The output of Step 4 is a collection of time windows
of availability of nodes in rf for flight f . Since a node
on the route of f can have multiple such time windows
(we can assume they are pairwise nonoverlapping),
denote the j-th such window at node nif by A

ni
f ,j

f .
Satisfaction of constraints (4): The computed time
windows A

ni
f ,j

f satisfy all the constraints (4.a, c) and
satisfy all the pairwise constraints (4.b) as long as
the other aircraft has index < f (i.e., already has its
schedule computed).

Step 6. To represent the feasible scheduling options for f ,
form a graph with the time windows A

ni
f ,j

f as the
nodes, and a window pair(

A
ni
f ,j1

f , A
ni+1
f ,j2

f

)
(10)

constituting an edge if and only if, (i), the two
windows correspond to two consecutive nodes on the
route of f , and, (ii), flight f can leave node nif

some time within window A
ni
f ,j1

f and reach ni+1
f



3some time within window A
ni+1
f ,j2

f in compliance
with constraints (5) applied to all pairs of flights from
among 1, 2, . . . , f − 1, f .
An effect of this compliance: This compliance, to-
gether with the satisfaction of constraints (4) designed
into the computation of the A

ni
f ,j

f ’s, maintains the
invariant formulated in section V-A.
Connection to the passing constraint (5.b): Two
edges (10) corresponding to different flights and the
same pair of nodes can be directly examined for
satisfaction of this constraint.

Step 7. In the graph computed in step 6, find all paths from a
time window A

n1
f ,j

f corresponding to a departure of f

to a time window A
n
Nf
f ,k

f corresponding to an arrival
of f .
Different objectives that allow being encoded as
weights on this graph can be pursued by computing
the path shortest in the sense of the chosen objective.

Step 8. Choose a path from those computed in step 7. It will
be a sequence of time windows, indexed by the nodes
on the route of f :

A
n1
f ,j1

f , A
n2
f ,j2

f , . . . , A
n
Nf
f ,jNf

f (11)

Step 9. From each time window A
ni
f ,ji

f in (11) select a desired

STA
ni
f

f . We do it in two steps. The outcome of the first
step determines whether the second step is necessary:

• At the first node on the route, assign STA
n1
f

f =

ETA
r(1)
f . For all subsequent nodes, assign the STAs

according to the preferred nominal times (the
quantities in []’s):

STA
rf (k+1)
f = STA

rf (k)
f +

[
ETA

r(k+1)
f − ETA

r(k)
f

]
.

• If every computed STA
rf (k)
f lies in the corre-

sponding time window A
rf (k),jk
f , report the com-

puted S(f) and exit the algorithm. Otherwise, go
to step 10.

Step 10. If one or more STA
rf (k)
f fails to be in the correspond-

ing time window A
rf (k),jk
f , then solve the Quadratic

Program formulated in appendix B, which tries to
find such STAs as make the flights travel at speeds
as close to the nominal (highly preferred) as possible.
The found solution gives the suitable STA

rf (k)
f ’s.

VI. SAMPLE PROBLEMS AND SOLUTIONS

This section shows (tables I and II) two problem instances
and the solutions computed by the algorithm of section V. The
following properties are shared by all the instances:
• Units of measurement:

– Distance is measured in nautical miles (NMI).
– Time is measured in seconds. Note: Despite the

operational use of whole seconds, as opposed to

fractions of seconds, the computed ETAs and STAs
shown in the sample solutions are given to the 2nd
place after the decimal point. This operationally
infeasible accuracy is retained here so as to avoid
letting the rounding cause loss of information about
the computations. For operational use, rounding is
desired and will require care to avoid violation of
the separation constraint.

• Parameters affecting air traffic:
– Only four types of aircraft can appear in the problem

instance: [s]mall, [m]edium, [L]arge, [H]eavy. The
minimal required distance separations between two
aircraft at a node depend on the types of the leading
aircraft (the one who traverses the node first) and
the trailing one. These separations are specified, in
nautical miles, in the form of a matrix, where the
rows index the trailing aircraft, and columns the
leading one:

s m L H
s 3.0 3.0 3.0 3.0
m 4.0 4.0 4.0 4.0
L 4.0 4.0 5.0 5.0
H 5.0 5.0 5.0 5.0

– Constraints of the types (4.c) and (5.a) are not
imposed. That is, passing is always allowed, and no
flight has pre-existing STAs.

– For each flight, the ETA at the first node of the route
is provided as part of the problem and a required
parameter for constraint (4.a). The ETAs for the
flight’s subsequent nodes are estimated by assuming
the flight leaves the first node at the provided ETA

and travels at the nominal speed of 450.0 KTS:

ETAnext node

= ETAcurrent node + 3600.0distance betw. the nodes
150.0 KTS .

– The flight scheduled ends up with all of its STAs
equal to the corresponding ETAs.

• The source and structure of the problem instances:
– The route network for each problem is a tree

weighted by the internodal distances and generated
using random_tree function [3].

– Each route network shows only the connectivity of
the nodes and the weights. The nodes (shown as
circles) are not assigned any specific positions.

– In each problem instance, all flights are routed to
the same node,–the arrival node,–and this node has
maximal degree. This is node 13 in the problem
instance of table I and node 9 in the problem instance
of table II.

– Each flight’s ETA at first node is chosen to make the
flights contend for the arrival node.

There are some distinctions between the problem instances
in tables I and II. In the 6-flight example of table I, the
maximal degree of a node in the route network is 3, and
multiple nodes have that degree. In the 9-flight example of



TABLE I: A 6-flight example.
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table II, only node (node 9) has degree 5, and all the other
nodes have degree 3 or lower.

VII. COMPATIBILITY WITH A DISTRIBUTED SYSTEM FOR
MANAGING ARRIVAL AIR TRAFFIC

Arrival traffic in a given TRACON [5] can reach high
congestion. This, in turn, can lead to the necessity to re-
compute a given arrival schedule quickly and reliably. If such
computations and conformance monitoring are performed by
a single software thread, this thread becomes a single point of
failure. Therefore, a distributed system may be desirable for
carrying out the scheduling described above.

Whereas each step of the algorithm formulated in section V,
including the ordering by priority, can be executed by either a
centralized system or a participant in a distributed system, an
implementation of a distributed system would require further
supporting functionality and offer new capabilities, which we
now describe in more detail.

A. Required supporting functionality

The participants of a distributed system, analogous in some
ways to instances of a USS (see, e.g., Ref. [7] and Refs
therein), would each carry out some of the algorithm described

in section IV, maintaining and sharing the required data with
the other participants.

Each such participant, called here an Arrival Fix Schedule
Assistant (AFSA), is likely to be handling the schedule S(f)
for one or more flights f , and is unlikely to share the task
of computing the schedule for a given individual flight with
other AFSAs. With this stipulation, an AFSA handling the
schedule for flight f is likely to be subject to the following
requirements:

1) The ability to determine, for all other flights f ′ currently
in the total schedule (i.e., flights handled by this or other
AFSAs), whether f ′ has a higher or lower scheduling
priority than f does.

2) The ability to query the other AFSAs for the presence of
flights that (i) have already been scheduled and (ii) share
one or more route nodes with the route of f .

3) The ability to determine whether all flights with higher
scheduling priority than f have already been scheduled.

4) The ability to share its most recently (re)computed sched-
ule S(f) with the enquiring AFSAs.

B. New capabilities

Steps 9 and, if executed, step 10 of the algorithm in section
V both involve selecting an STA (for a given flight at a given



TABLE II: A 9-flight example.

SCHEDULE:

Flight 0
Aircraf type: B777
NODE: 0 11 9
ETA: 24.47 95.99 175.67
STA: 24.47 95.99 175.67

Flight 1
Aircraf type: B737
NODE: 1 11 9
ETA: 64.86 97.1 176.78
STA: 68.75 100.99 180.67

Flight 2
Aircraf type: B777
NODE: 2 9
ETA: 106.97 176.41
STA: 116.23 185.67

Flight 3
Aircraf type: B737
NODE: 3 14 10 4 9
ETA: 1.34 50.94 87.66 119.5 175.9
STA: 16.11 65.71 102.43 134.27 190.67

Flight 4
Aircraf type: B737
NODE: 5 9
ETA: 135.86 174.66
STA: 156.87 195.67

Flight 5
Aircraf type: B777
NODE: 6 4 9
ETA: 60.21 120.69 177.09
STA: 83.79 144.27 200.67

Flight 6
Aircraf type: B737
NODE: 7 10 4 9
ETA: 61.81 89.25 121.09 177.49
STA: 89.99 117.43 149.27 205.67

Flight 7
Aircraf type: B737
NODE: 8 13 9
ETA: 86.25 114.97 176.89
STA: 120.03 148.75 210.67

Flight 8
Aircraf type: B777
NODE: 12 4 9
ETA: 91.71 118.43 174.83
STA: 132.55 159.27 215.67

node) from a permissible time window. The preferences in
making this selection may vary from one flight operator to
another. Therefore, if the system is so distributed that each
AFSA is running its own implementation of the algorithm
for each of its flights, this enables each AFSA to set their
own preferences as to how they execute step 10 or select the
objective function in problem (12) when executing step V 3.

3A non-quadratic objective function will result in a problem that is not a
Quadratic Program.

This ability to set individual preferences is one way for an
operator to influence how their flight is scheduled.

Another such capability is that of negotiating with those
flights already scheduled for a contested time window. De-
velopment of a process for moderating and arbitrating such a
negotiation is an open problem. It is likely to begin with an
extensive discussion with the stakeholders (flight operators),
aimed at learning their preferences, and to involve modeling
of a market-like interaction, akin to game-theoretic models
used in economics.



VIII. SUMMARY

A distributed system for managing diverse air traffic will
need the capability of scheduling the given arriving flights in
compliance with the operational constraints. The scheduling
algorithm proposed in this paper, while itself agnostic to
whether it is run by a centralized system or a distributed one,
was developed in the service of such an envisioned distributed
system for managing air arrival traffic. Given a collection
of flights, ordered by priority, and each with a route and
an estimated time of departure, the algorithm schedules one
flight at a time, satisfying not only the constraints on the
individual flight’s individual parameters, but also the separa-
tion constraints imposed by the already scheduled flights. The
algorithm has a two-layer safety net: it first schedules the flight
using a fast heuristic procedure, and then, if the schedule is
infeasible, recomputes it using an optimization method. This
algorithm design pinpoints the steps where a flight operator
can exercise their individual scheduling preferences, which
will generally differ from those of other operators’.

APPENDIX A
A HIGH-LEVEL DESCRIPTION OF THE SCHEDULING

ALGORITHM

Table III gives a high-level outline of the algorithm. In each
part of the outline, we indicate the corresponding numbers of
the steps in section V.

APPENDIX B
QUADRATIC PROGRAM

For n being the k-th node along the route of a given flight
f (n is the node label, while k is the index of the node along
the route of flight f ), introduce the abbreviation

sk = STAnf .

Furthermore, let Tnom
k be the nominal travel time for f from

node n to the next node on route, and (ak, ak) the time window
available to flight f at node n; these are the time windows (11),
with

(ak, ak) = A
nk
f ,jk

f .

Let N = Nf be the length of the route.
The problem of scheduling flight f can then be written as

the Quadratic Program

ε s1 +
1
2

∑
k≥2

(
sk − sk−1 − Tnom

k−1
)2 −→ min,

where ε is a small positive parameter,

sk ≤ ak
−sk ≤ −ak

}
for k ≥ 1

 (12)

We now recast problem (12) in a format that corresponds
to that of the Python package cvxopt.

The quadratic objective function is

ε s1 +
1
2

∑
k≥2

(
sk − sk−1 − Tnom

k−1
)2

= ε s1 +
1
2

∑
k≥2

[
(sk−1sk)

2
+

− 2 (sk − sk−1)Tnom
k−1 +

(
Tnom
k−1

)2]
The quadratic part of this sum has the tridiagonal matricial
form

1
2

∑
k≥2 (sk−1 − sk)

2
=

= 1
2 [s1s2 . . . sN ]


1 −1 . . .

−1 2 −1 . . .
−1 2 −1 . . .

...
...

...
...

...
...

. . . −1 2 −1

. . . −1 1



s1
s2
...
sN

 .

Letting x = [s1 s2 . . . sN ]
T , we see that problem (12) has

the form
1
2x

TPx+ qTx −→x min,
GTx ≤ h

(there are no linear equality constraints), where

P =



1 −1 . . .
−1 2 −1 . . .

−1 2 −1 . . .
...

...
...

...
...

...
. . . −1 2 −1
. . . −1 1


,

q =



Tnom
1

Tnom
2 − Tnom

1

Tnom
3 − Tnom

2

...

Tnom
N−1 − Tnom

N−2


,

G =

[
IN

−IN

]
(IN = identity matrix of dimension N ),

hT = [a1 a2 . . . aN − a1 − a2 . . . − aN ] .

For this problem class, the cvxopt Python module [1] has
a numerical quadratic programming solver that can be called
as follows:

from cvxopt import solvers
sol = solvers.qp(P, q, G, h)



TABLE III: A high-level outline of the scheduling algorithm
of section V.

What is being done In which
steps in
section V

For each node n on the route of f , compute the
time windows unavailable to flight f at n because
of the flight’s ETA and because of the separation re-
quirement with the already scheduled flights’ STAs.
These time windows are determined by constraints
(4).

1, 2

If the ETA at the first node on the route of f is
frozen, add the corresponding time window to the
list of the time windows unavailable to f at that
node.

3

Using the algorithm in Ref. [4], update the un-
available time windows to include the limitations
on controllability and reachability, as explained in
section IV.

4

Because the speed of f is bounded, if f reaches a
node in a given time window, the next node may not
be reachable in some of its available time windows.
For every two consecutive nodes nk

f , n
k+1
f on the

route of f , consider each pair(
time window at nk

f , time window at nk+1
f

)
(13)

and record the pair if the latter window is attainable
from the former. Regard these pairs as links in a
graph, which will be called the scheduling graph
for f , and with the available time windows being
the nodes of the scheduling graph.

5, 6;
window
pair
(13) is
window
pair (10)

For each link in the scheduling graph, define a
“weight” that reflects the stakeholders’ and arbiter’s
preferences. The scheduling graph for f becomes a
weighted graph [6]. Compute a shortest path in this
graph.

7, 8

The shortest path computed in the scheduling graph
for f is a sequence of available time windows,
which will be called weight-optimal time windows
for f . Each weight-optimal time window is assigned
to one of the nodes nk

f ,. Each next weight-optimal
time window is reachable from the previous one
(i.e., from the one at the previous node). Within the
weight-optimal time window at each nk

f , compute

an STA
nk
f

n using the following heuristic procedure:
• At the first node on the route of f , let STA1f =

(starting time of weight-optimal time window
at this node).

• At all subsequent nodes n, let STAn+1
f =

STAnf+ (the nominal travel time for f from
n to n+ 1).

• If possible, subtract the same positive time
length from all the STAs, to “remove the
slack”; i.e., to make sure that at least one of
them is at the first time instant of its time
window.

9

If all the STAs thus computed fit into the cor-
responding weight-optimal time windows, report
them as the computed schedule for f . Otherwise,
solve a Quadratic Program (appendix B) for such
STAs as satisfy the constraints and result in travel
speeds for f that are as close to the nominal as
possible.

10
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