

Design of P-3 Nadir Port

Early Career Forum: Structures, Loads, and Mechanical Systems
September 2019

Author: Monica Chance, Aerospace Engineer

Civil Servant, Code 548 Wallops Flight Facility (WFF)

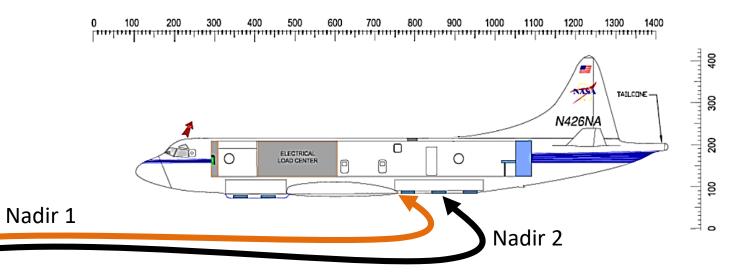
Introduction

- Started at NASA WFF through the Pathways Program 2012-2014
- Converted to full-time Dec. 2014
- Design of science installations for flight on the WFF aircraft P-3B, C-130H, & Sherpa
- Support WFF Sounding Rockets, Internal Research and Development (IRAD), and SmallSat

Water Content Multi-element System (WCM) & Axial Cyclone Cloud-Water Collector (AC3) Pylon for Cloud, Aerosol and Monsoon Processes Philippines Experiment (CAMP²Ex)

Table of Contents

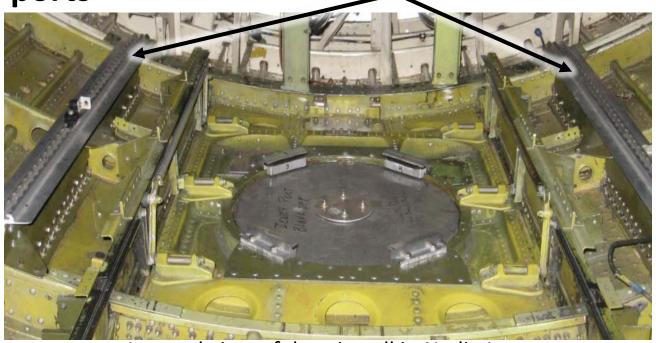
P-3B Introduction	pg 4
Project Goals & Objectives	pg 5
Project Introduction	pg 7
Design	pg 10
Analysis	pg 18
Results	pg 21
Conclusion	pg 23
Lesson Learned & Challenges	pg 24



P-3B Introduction

NASA GSFC WFF P-3B ORION LAYOUT

Project Goals and Objectives



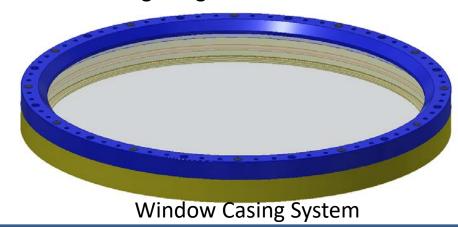
- WFF Aircraft Project Office (Code 830) requirements:
 - Use existing aircraft interface
 - Interchangeable instrument/port/window structures for mission-specific instruments

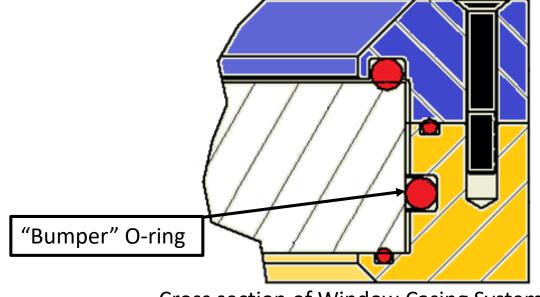
Must fit both Nadir 1 and Nadir 2 ports

- Nadir 2 does not have the seat tracks
- Must maintain removability of port

Nadir 1 Seat Tracks

Project Goals and Objectives

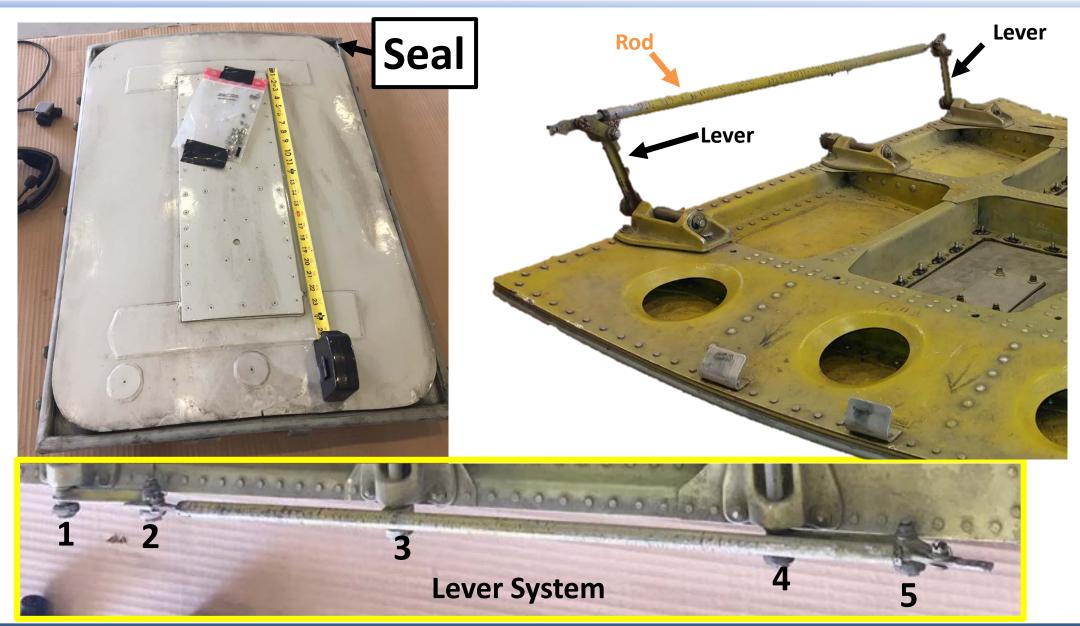

Science requirements, Operation Ice Bridge (OIB):


Support the following window specs

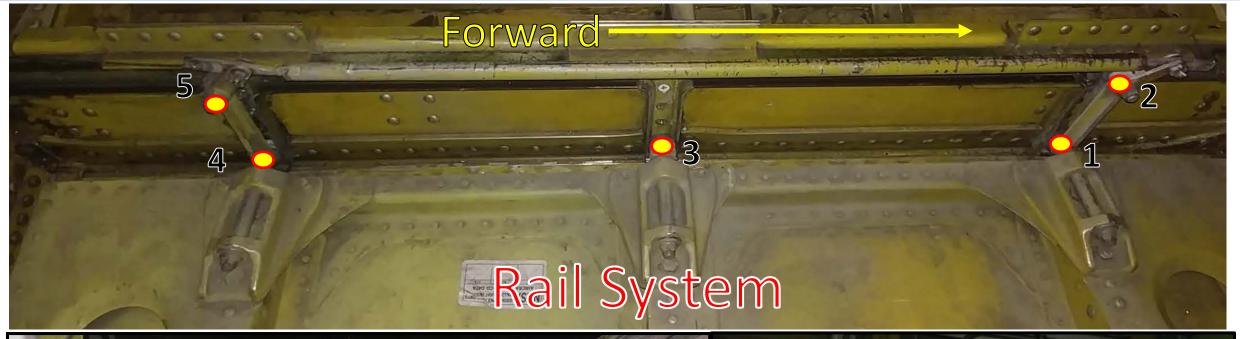
Glass Diameter	Viewport Diameter	Thickness	Material
16.875"	16.0"	1.125"	BK-7
5.90"	*5.0"	0.256"	BK-7
5.90"	*5.0"	0.256"	BK-7

*Later determined to be 4.6"

- Modify previously flown window casing system
 - "Bumper" O-ring hard to install
 - Previous flight this O-ring was not installed
 - Cause the edge of glass to crack

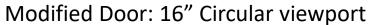


Introduction-Door



Introduction-Aircraft Interface

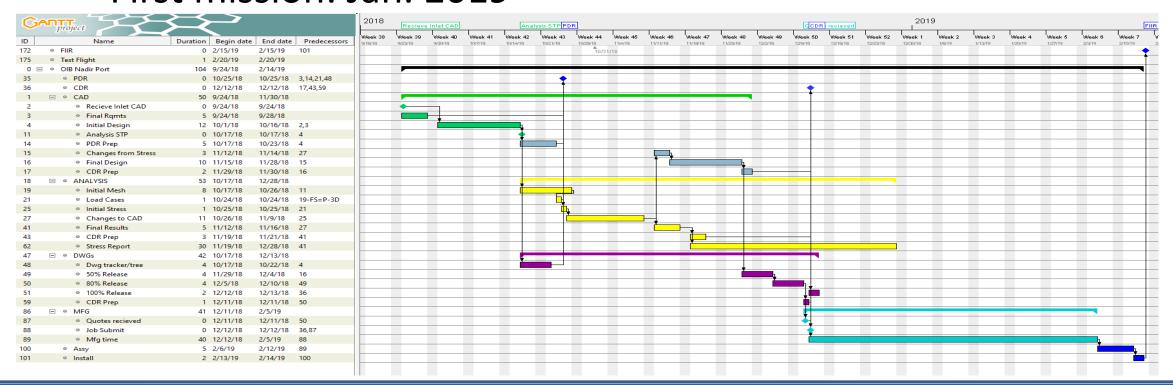
Introduction-Historical Installs



Previous science installs use one of the modified original equipment doors shown.

- Limited the science potential
 - Size and number of the viewports

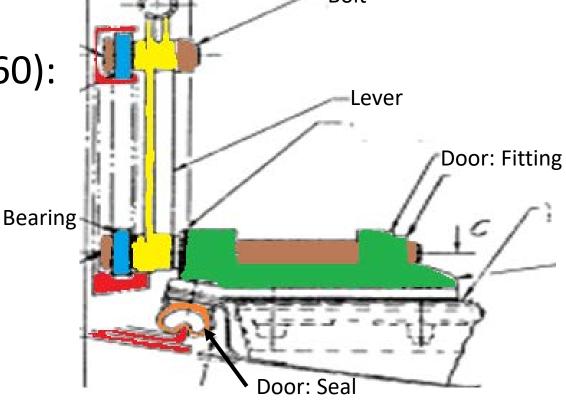
Modified Door: Rectangular viewports



Design-Project Schedule

- Total time for design, analysis, drafting: ~4 Months
- Task assigned: ~ August 2018
- Parts to manufacturing: Dec. 10, 2018
- First mission: Jan. 2019

Design-Historical Records



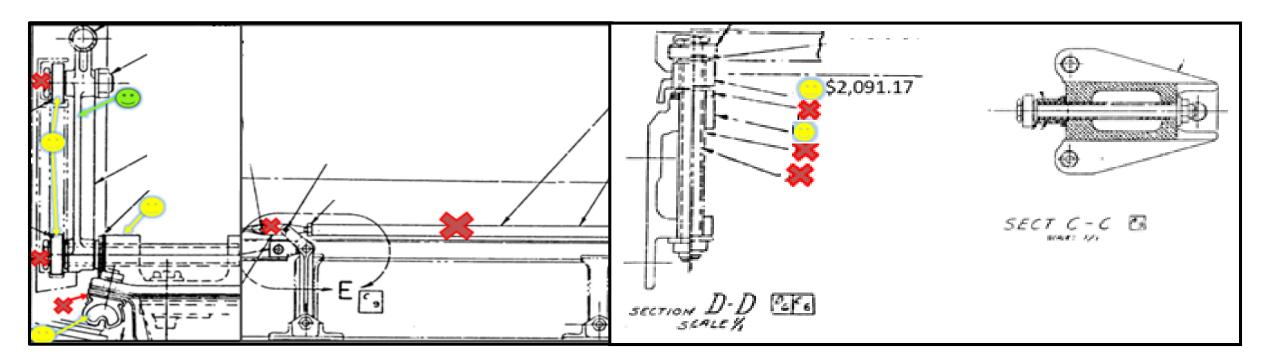
Initial approach: Find records of the existing aircraft components

and interface.

• LOCKHEED AIRCRAFT CORP (1959-1960):

- ASSY OF SONOBUOY DOOR
- INSTALL OF SONOBUOY DOOR
- Lever Drawing (make-from drawing)

Cross Section view of Door/Aircraft Interface



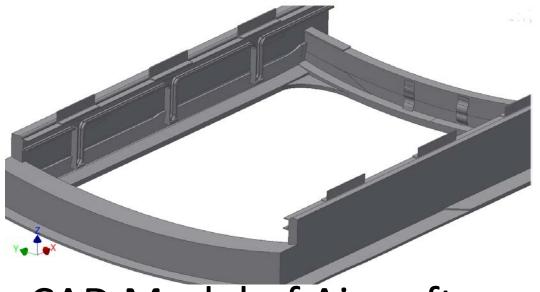
Design-Historical Records

- In stock (ready to order)
- In DLA (lead time unknown)
- Not in DLA/discontinued

DLA: Defense Logistics Agency, government source to procure hardware

Design – Laser Scan: 3D Model

LASERDESIGN scanned the Nadir 1 and modified rectangular

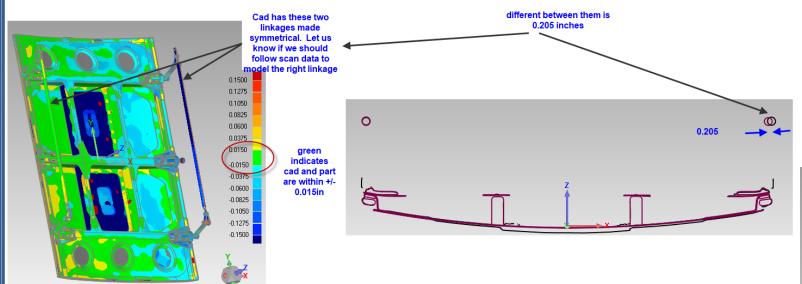

sonobuoy door.

Generated a CAD from point cloud scan.

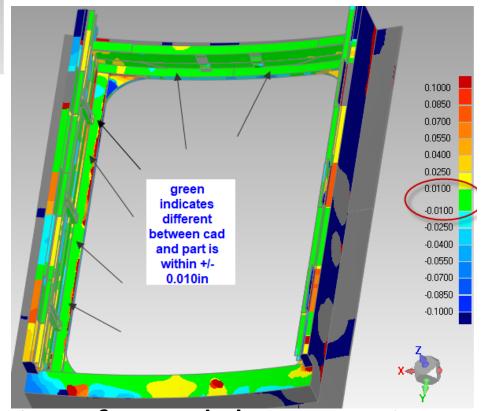
Pictorial comparison of point cloud to generated model

Received CAD Sept. 24, 2018

10 weeks remaining for reverse engineering



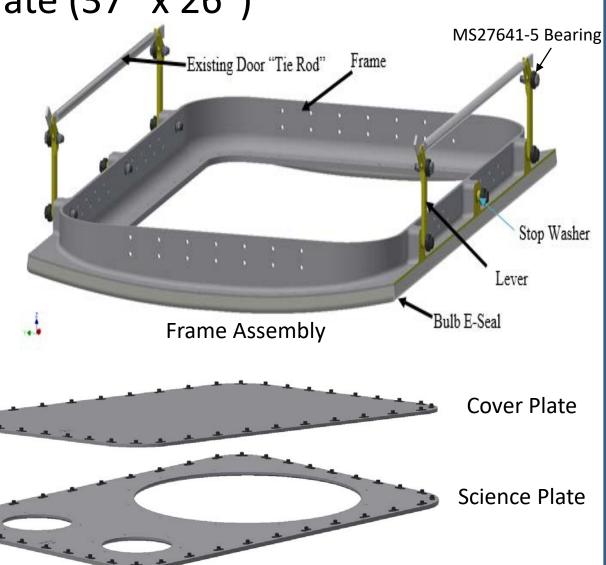
CAD Model of Door


Design – Laser Scan: 3D Model

Comparison shows the door model within .015" and aircraft model within .010"

Point Cloud and Aircraft Model Comparison 14

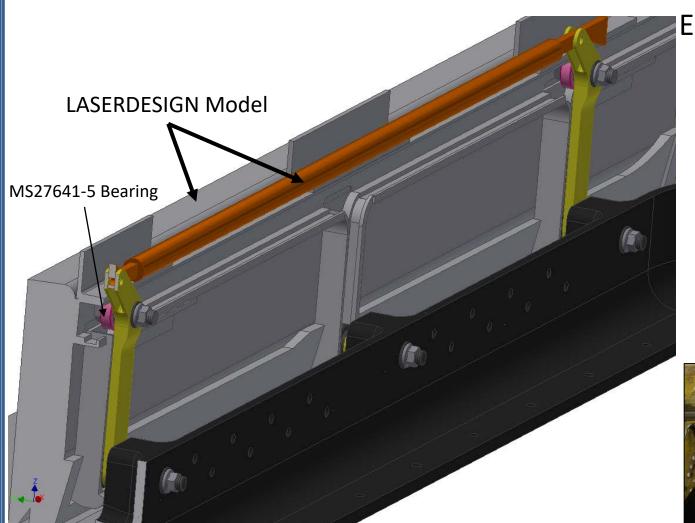
Final Design: Frame


• Milled 3.00" thick, Al 2024-T351 Plate (37" x 26")

• Science Opening: 20.24" x 31.05"

Design allows for flat plate install

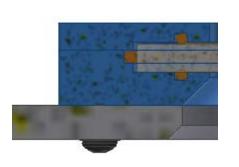
Frame Weight: 14.0 lb (original 21 lb)



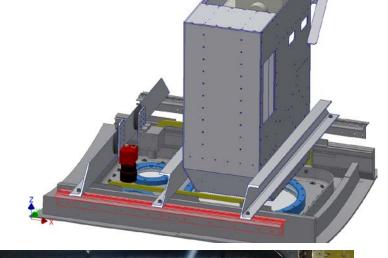
Final Design: Frame

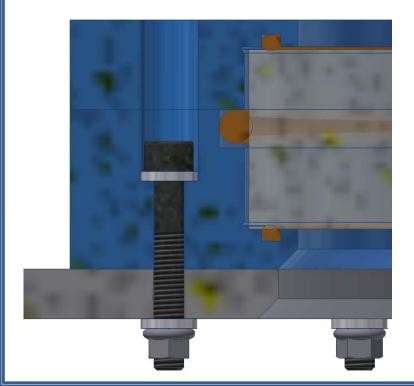
CAD of Final Design with the LASERDESIGN Model

External view Final Design installed in aircraft



Design: Science





4.6" (5") Window

• 2x 5" Windows

16" Window

Load Cases

- Based on P-3B Requirements Document
 - 548-RQMT-001A
- Ultimate Pressure Loads (FS=2):
 - 11.98 psi
- Ultimate Inertial Loads (FS=2):
 - 3.0G Fwd
 - 10.2G Down
 - 6.4G Up
 - 3.2G Side
 - 1.5G Aft

Table 8. Ultimate flight load factors FS280 to FS1130.2

Load Direction	Ultimate Load Factor (g)
Down	10.2
Up	6.4
Side	3.2

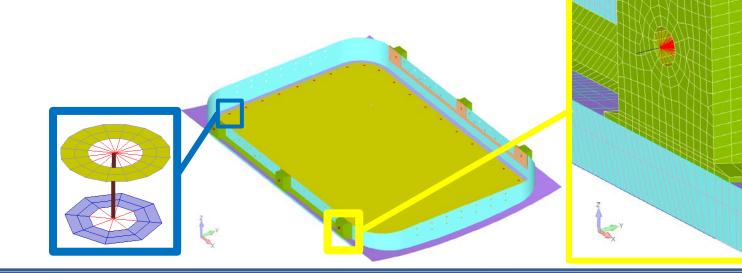
Table 1. Minimum aircraft pressure vessel design criteria.*

Design Parameter	Pressure Limit (psi)
Maximum Cabin Differential Pressure	5.66
Maximum Emergency Relief Pressure (P)	5.99
Design Limit Pressure (1.33P)	7.97
Design Ultimate Pressure (2P)**	11.98

Table 4. Minimum emergency landing load criteria for the below cabin floor area.*

Load Direction	Ultimate Load Factor (g)
Forward	3.0
Down	4.5**
Up	2.0**
Lateral	1.5**
Aft	1.5

Frame Analysis Details

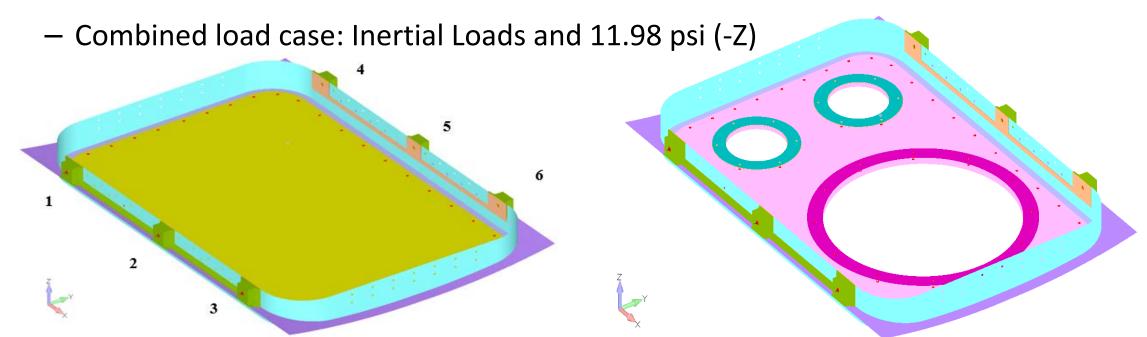


- Finite element model created in FEMAP version 11.2.2 and run through NX Nastran solver version 10.2
- Simplified the model to Plate (shell) elements & Solid at 6x Bolts that interact with the aircraft.
- Fasteners: bar elements with spidered rigid elements (RBE2) at the ends. RBE2's connect to the components on the nodes of the hole boundary.

Non-structural mass is added to the flat plate property to simulate an additional equally

distributed mass

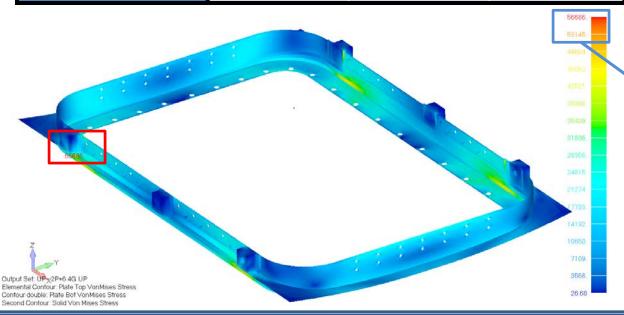
Frame Analysis Details

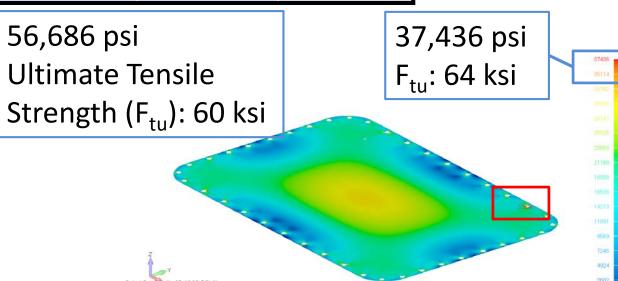


Constraints:

Load Case	Bolt Constraint	Seal Constraint
10.2 G Down	1,2,3,4,5,6: Tx	Surface allows sliding (symmetry)
6.4 G Up	1,3,4,6: Tx, Ty, Tz; 2,5: Tx	NONE
3.0 G Forward	1,2,3,4,5,6: Tx	Surface allows sliding (symmetry)
3.2 G Side	4,5,6: Tx, Ty	Surface allows sliding (symmetry)
1.5 G Aft	1,2,3,4,5,6: Tx	Surface allows sliding (symmetry)

• Loads:

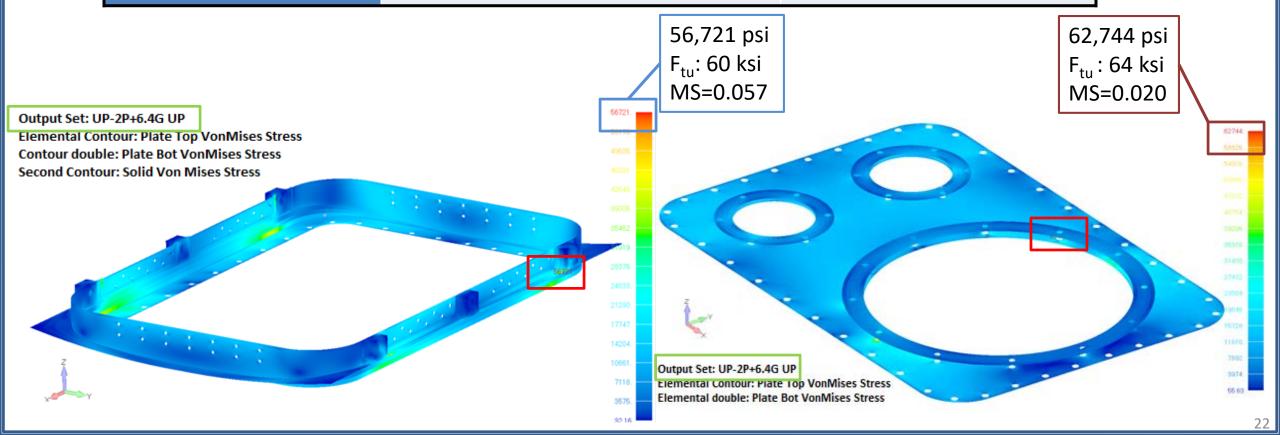



Analysis- Flat Plate Model

	S	Summary of Results for Flat Plate Analysis Model										
	Frame '	Von Mises Stre	ss (psi)	Plate Von Mises Stress(psi)								
	17.5 lb Plate	59.2 lb Plate	115 lb Plate	17.5 lb Plate 59.2 lb Plate 115 lb P								
10.2G Down + 2P	53,856	53,856 56,496 59,9		37,436 39,275		41,706						
6.4G Up + 2P	56,686	54,871	52,471	35,903	34,759	33,247						
Min MS	0.058	0.062	0.000	0.709	0.629	0.534						
	Fram	e Shear Stress	(psi)	Plate Shear Stress(psi)								
10.2G Down + 2P	21,823	22,893	24,307	20,238	21,232	22,546						
6.4G Up + 2P	27,600	26,717	25,549	19,065	18,457	17,654						
Min MS	0.268	0.310	0.369	0.877	2.014	1.838						

Elemental Contour: Plate Top VonMises Stress

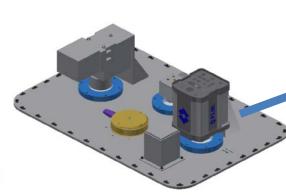
Contour double: Plate Bot VonMises Stress



Stress Results-Science Model

	Summary of Results for 59.2 lb Flat Plate Analysis Model					
	Frame Von Mises Stress Plate Von Mises Stress					
10.2G Down + 2P	56,496	39,275				
6.4G Up + 2P	54,871	34,759				
Min MS	.062	.629				

Conclusion



- Designed a fixture that increased the capability of the WFF P-3B Aircraft
- Science can be outfitted on a **flat** plate with a 20.24" x 31.05" opening

The scanning technology open the potential to further improve aircraft science capabilities

OIB Plate Install

CAMP²Ex Plate Install

Lessons Learned & Challenges

Challenges:

- Constrained schedule
 - Plan for shutdown
- Lack of historical references & reverse engineer from these references
 - Request 3D scans in August, and use of scan was critical to design
- Communicating the use of 3D scan technology with senior members
- Lessons learned
 - Don't depend on only one source (Historical References)
 - Don't let schedule impact engineering

Thank you

Questions?

AC3

 F_{tu}

GSFC

IRAD

Acronym List

Axial Cyclone Cloud-Water Collector

CAD Computer Aided Design

CAMP²Ex Cloud, Aerosol and Monsoon Processes Philippines Experiment

FEMAP Finite Element Modeling and Postprocessing

Ultimate Tensile Strength

Goddard Space Flight Center

Internal Research and Development

OIB Operation Ice Bridge

WCM Water Content Multi-element System

WFF Wallops Flight Facility

Model Verification

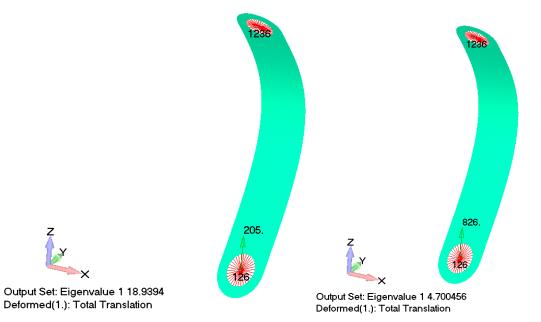
The inertial loads are applied as body loads. The pressure load is applied as elemental pressure to the plate, whose surface area is 712 in². As a modeling check, resultant loads are extracted from the .F06 file and show that they are equal but opposite to the applied loads.

	1 G Weight (lbs)
Frame	14.0
Plate	17.5
Total 1G Weight	31.5

	1		G Dwn bs)			G Up bs)	3.	.0G (lb	Fwd s)			Side (S)		1.5G (lbs	
	х	у	Z	х	у	Z	х	у	Z	х	у	Z	х	у	Z
Pressure	0	0	-8546	0	0	-8546	0	0	-8546	0	0	-8546	0	0	-8546
Inertial	0	0	-322	0	0	202	-95	0	0	0	101	0	47	0	0
Total	0	0	-8869	0	0	-8344	-95	0	-8546	0	101	-8546	47	0	-8546

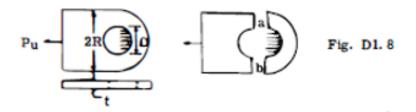
	SPCFORCE RESULANT					
LOAD CASE	FX	FY	FZ			
10.2 G Down	0	0	8,869			
6.4G Up	0	0	8,344			
3.0G Fwd	95	0	8,546			
3.2G Side	0	-101	8,546			
1.5G AFT	-47	0	8,546			

Analysis Results



Additional analysis included:

Buckling analysis of the Lever


The buckling load is calculated for the 6.4G UP load without the 2P pressure.

$$F_{17.5(buckling)} = 6.4 * (17.5 + 14) = 205 lbs$$

 $F_{115(buckling)} = 6.4 * (115 + 14) = 826 lbs$

Lever strength analysis

$$P_{u(tension)} = F_{tu} * (2R - D) * t$$

= 63 * 10³ (.687 - .328) * .2 = 4,523 lbs

Bolt and Lug Strength Analysis, Bruhn's Fig. D1.8

Analysis Results-Continued

Bolt analysis using load extracted from the bar elements in the finite element model

7.2.5 #10-32 Bolt Analysis

The #10-32 bolts are used to attach the plate to the frame. Bar forces are extracted from the FEM model and used to conduct the analysis. Table 10 shows the critical loads for the bolts for the 10.2G Down and 6.4G Up load cases for the 17.5 and 115 lb plates. The worst case adjusted loads (Load*FF) occur for the 17.5 lb plate and are 686 lb. in shear and 509 lb. in tension. These values are used in the MS_{shear}, MS_{tension}, and interaction equation.

$$MS_{shear} = \frac{2,690}{686} - 1 = 2.92$$

$$MS_{tension} = \frac{2,890}{509} - 1 = 4.68$$

$$\left(\frac{(MS+1)*686}{2,690}\right)^2 + \left(\frac{(MS+1)*509}{2,890}\right)^2 = 1 \xrightarrow{\text{yields}} MS = 2.23$$

The max shear load (686 lb.) is used to conduct a shear tear-out and bearing stress calculation where D = 0.19, and t = 0.25 (thickness of plate). The frame thickness is 0.30" but has lower shear and bearing strength, 35 ksi and 91 ksi respectively. The MS shear and bearing are 7.72 and 6.56 respectively.

$$\begin{split} \sigma_{shear} &= \frac{686\ lb}{0.1425\ in^2} = \ 4,812\ psi \\ MS_{shear} &= \frac{\sigma_{allowable}}{Max\ \sigma} - 1 = \frac{38\ ksi}{4,812\ psi} - 1 = 6.90 \\ \sigma_{bearing} &= \frac{686\ lb}{0.0475\ in^2} = 14,436\ psi \\ MS_{bearing} &= \frac{\sigma_{allowable}}{Max\ \sigma} - 1 = \frac{97\ ksi}{14,436\ psi} - 1 = 5.72 \end{split}$$

7.2.6 5/16-24 Bolt Analysis

$$F_{prying} = \frac{\sqrt{M_{plane1}^2 + M_{plane2}^2}}{0.66 * e} = \frac{\sqrt{(-523)^2 + 451^2}}{0.66 * 0.406} = 2,544$$

$$F_{tension} = 3,350 + 1.15 * (2,544) = 6,276$$

$$MS_{shear} = \frac{7,290}{3,168} - 1 = 1.30$$

$$MS_{tension} = \frac{8,590}{6,276} - 1 = 0.37$$

$$\left(\frac{(MS + 1) * 3,168}{7,290}\right)^2 + \left(\frac{(MS + 1) * 6,276}{8,590}\right)^2 = 1 \xrightarrow{\text{yields}} MS = 0.18$$

The max shear load (3,168 lb.) is used to conduct a shear tear-out and bearing stress calculation where D = 0.3125, and t = 0.2 (thickness of lever). The frame thickness is 1.03" but has lower shear and bearing strength, 35 ksi and 91 ksi respectively. The MS shear and bearing are 9.67 and 8.24 respectively.

$$\begin{split} \sigma_{shear} &= \frac{3,168\ lb}{0.1875\ in^2} = \ 16,894\ psi \\ MS_{shear} &= \frac{\sigma_{allowable}}{Max\ \sigma} - 1 = \frac{37\ ksi}{16,894\ psi} - 1 = 1.190 \\ \sigma_{bearing} &= \frac{3,168\ lb}{0.0625\ in^2} = 50,682\ psi \\ MS_{bearing} &= \frac{\sigma_{allowable}}{Max\ \sigma} - 1 = \frac{95\ ksi}{50,682\ psi} - 1 = 0.874 \end{split}$$

Analysis Results-Continued

Glass window Analysis

8.2 Results Summary

This section contains the calculation results from the window Analysis. Each window of the installation is looked at separately for peak stress values.

Table 14: Stress Summary

Component	Combined Stress (psi)	MS	Flaw Allowance Stress (psi)	MS	Min MS
16" Window	1,749	2.20	5,247	0.07	0.07
5" Window	1,838	2.05	5,513	0.01	0.01

8.2.1 16" Window Analysis

$$\Delta T = \left| -2.65 - \frac{\frac{0.64(-2.68)}{(1.125/12)} + 10 * 70}{\frac{0.64}{(1.125/12)} + 10} \right| = 43.18$$

$$S_{max} = \frac{3(5.99)(3 + 0.207)8.112^{2}}{8(1.125^{2})} = 375 \ psi * 2 = 749 \ psi$$

$$\sigma_{th} = \frac{(3.9 * 10^{-6})(1.18 * 10^{7})43.18}{4} = 497 \ psi * 1.2 = 596 \ psi$$

$$\sigma_{st} = 749 + 596 = 1,345 \ psi * 1.3 = 1,749 \ psi$$

$$MS = \frac{5,600 \ psi}{1,749 \ psi} - 1 = 2.20$$

$$\sigma_{flaw} = 3 * 1,749 = 5,247 \ psi$$

$$MS = \frac{5,600 \ psi}{5,247 \ psi} - 1 = 0.07$$

8.2.2 5" Window Analysis

$$\Delta T = \left| -2.65 - \frac{\frac{0.64(-2.68)}{(0.256/12)} + 10*70}{\frac{0.64}{(0.256/12)} + 10} \right| = 18.16$$

$$S_{max} = \frac{3(5.99)(3 + 0.207)2.3^2}{8(0.256^2)} = 581 \ psi * 2 = 1,163 \ psi$$

$$\sigma_{th} = \frac{(3.9*10^{-6})(1.18*10^7)18.16}{4} = 209 \ psi * 1.2 = 251 \ psi$$

$$\sigma_{st} = 1,163 + 251 = 1,414 \ psi * 1.3 = 1,838 \ psi$$

$$MS = \frac{5,600 \ psi}{1,838 \ psi} - 1 = 2.05$$

$$\sigma_{flaw} = 3*1,838 = 5,513 \ psi$$

$$MS = \frac{5,600 \ psi}{5,513 \ psi} - 1 = 0.0157$$

MMPDS- Data Sheet

Table 3.2.4.0(b ₂).	Design N	Nechanical (and Physical	Properties of	2024 Aluminum Al	loy Sheet and Plate

Specification													
Form													
Temper	T351												
Thickness, in	0.250	-0.499	0.500	-1.000	1.001	-1.500	1.501	-2.000	2.001	-3.000	3.001	4.000	
Basis	A	В	A	В	A	В	A	В	A	В	A	В	
Mechanical Properties:													
F _{ne} ksi:													
L	64	66	63	65	62	64	62	64	60	62	57	59	
LT	64	66	63	65	62	64	62	64	60 ^d	62 ^d	57 ^d	59 ^d	
ST									52 ^b	54 ^b	49 ^b	51 ^b	
F _g ksi:													
<u>L</u>	48	50	48	50	47	50	47	49	46	48	43	46	
LT	42	44	42	44	42	44	42	44	42	44	41	43	
ST									38 ^b	40 ^b	38 ^b	39b	
F _q , ksi:								40			2.5		
<u>L</u>	39 45	41 47	39	41 47	39	40	38 44	40	37 43	39	35	37	
LTST		4/	45	4/	44	46	44	46	43 46	45 48	41 44	43 47	
F ₁₀ , ksi (L & LT)	38	 39	37	38	37	38	37	38	35	37	34	35	
F_{ne} , KS1 (L & L1)	38	39	3/	38	3/	38	3/	38	30	3/	34	33	
L & LT (e/D = 1.5)	97	100	95	98	94	97	94	97	91	94	86	89	
L & LT (e/D = 2.0)	119	122	117	120	115	119	115	119	111	115	106	109	
F _{bry} °, ksi:	115	122	117	120	115	119	115	115	111	115	100	109	
L & LT (e/D = 1.5)	72	76	72	76	72	76	72	76	72	76	70	74	
L & LT (e/D = 2.0)	86	90	86	90	86	90	86	90	86	90	84	88	
e. percent (S-Basis):	- 00					20		1 70	- 00			- 00	
LT	12		8		7		6		4		4		
E, 10 ³ ksi						10	7						
E. 10 ksi						10							
G, 10 ³ ksi							.0						
μ							.33						
Physical Properties:						-							
ω. lb/in^3						Λ.1	100						
С. К							3.2.4.0(a	`					
a						See Figure See Figure	3 2 4 0/b	΄.					

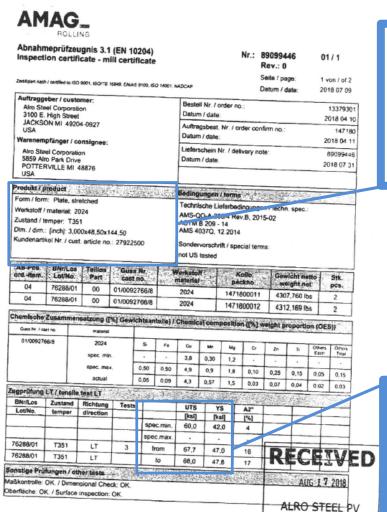
Last Revised: Apr 2015, MMPDS-10, Item 14-35. Design allowables were last confirmed in Item 07-41, MMPDS-04CN1.

3-116

a Mechanical properties were established under QQ-A-250/4.

b Caution: This specific alloy, temper, and product form exhibits poor stress corrosion cracking resistance in this grain direction. It corresponds to an SCC resistance rating of D, as indicated in Table 3.1.2.3.1(a).

c Bearing values are "dry pin" values per Section 1.4.7.1. See Table 3.1.2.1.1.


d The following rounded T₉₉ and T₉₉ and T₉₉ values represent production capacity at the time the table was last confirmed; F₈₂ LT for 2-3 inches T₉₉ = 63 ksi, T₉₉ = 64 ksi; for 3-4 inches $T_{\infty} = 60 \text{ ksi}$, $T_{\infty} = 62 \text{ ksi}$.

Material Certifications- Frame

rodukt / product	Bedingungen / terms
Form / form: Plate, stretched Werkstoff / material; 2024 Zustand / temper; T351 Dim. / dim.: [inch]: 3,000x48,50x144,50 Kundenartikel Nr. / cust. article no.: 27922500	Technische Lieferbedingungen / techn. spec.: AMS-QQ-A-250/4 Rev.B, 2015-02 ASTM B 209 - 14 AMS 4037Q, 12.2014 Sondervorschrift / special terms: not US tested

BNr/Los	Zustand	Richtung	Tests	T	UTS	YS	A2*
Lot/No.	temper	direction			[ksi]	[ksi] [
				spec.min.	60,0	42.0	4
				spec.max.			
76288/01	T351	LT	3	from	67.7	47,0	10
76288/01	T351	LT		to	68.0	47,6	16

Alro Metals/Plastics

AlfIAG rolling GmbM. Poséach 12. A-5282 Ransholen, Österneich - <u>istmit.emaq.alf</u> AlfIAG rolling GmbM, P.O. Box 32, A-5282 Ransholen, Austria - <u>innw.almaq.alf</u>

Material Certifications- Plate

SHIP TO: AFFILIATED - DIV OF BRALCO 450 N BILLY MITCHELL ROAD SALT LAKE CITY, UT 84116 SOLD TO: AFFILIATED - DIV OF BRALCO 450 N BILLY MITCHELL ROAD SALT LAKE CITY, UT 84116 SOLD TO: AFFILIATED - DIV OF BRALCO 450 N BILLY MITCHELL ROAD SALT LAKE CITY, UT 84116 SHIP TO: ALUMINUM Trentwood Works - Spokane, WA 99215 Phone: (800) 367-2586 CERTIFIED TEST REPORT Serial Number 4473869																	
1	OMER PO N	UMBER	₹:	WOR	K PACK	AGE:	custor	MER PAR	T NUMB	ER:			RUN/LOAD:	GOV'T C	ONTRACT	NUMBER:	
	R ORDER N	n.		Ь,	SHIP DA	TE:	ALL	ov.	CLAD:		EMPE	1040					
	1239605-1					JG-201			BARE	1	T351		PRODUCT DESCRIPTION: Sawed Plate				
	HT SHIPPED	:	IQUANTI	TV-	13-70		B/L #:	+	GAUGE		351	I.F	AMETER/WI		[LENGTH:		
4820			22 PC		RT.	2068			0.2500 IN 8.000 IN				144.50				
(6.3900 MM) (1473.2 MM) (3670											(3670.3 MM)						
MHU 2142043: LOT 231987B9: 22 pieces; Certified Specifications AMS 4037/RevQ AMS-QQ-A-250/4/RevB ASTM B 209/Rev14																	
Tes	st Code:	1504						Tes	t Res	eulte							
Lot	t: 231987	B9	Cast	493		Dr	ор 59	100		ot 2						Melted	in USA
(EN	STM E8/B I 2002-1) nsile:				r/#Ti		×)	Ultima 70.4 : (485 :	70.6	(MPA		48.6	I KSI (MPA : 48.6 : 335).)	Elongatio		
(AS	STM E125	51)															
	emistry:	_	SI	F		CU	MN			CR		ZN	1T	V	ZR		OTHER
Act	tual(wt%)	0	0.06	0.1	7	4.7	0.59	1.	.4	0.01	0	.09	0.02	0.01	0.01	TOT	0.06
								ALLC	Y LIM	ITS							
			SI	F	E	CU	MN	М	G	CR		ZN	TI	v	ZR	OTHER	MAX

Aluminum Remainder