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Abstract—Unmanned aerial systems (UASs) in urban areas
can pose significant safety risks to dynamic ground objects
(DGOs) such as people, pets, and bikes; especially for off-nominal
emergency traverses and landings. This paper will examine a
framework for evaluating the UAS safety benefits which can be
achieved by classifying DGO hazards, modeling their behavior,
and assigning collision costs. DGOs are assumed to be any ground
objects which are either moving or capable of moving. Safety
benefits will be assessed by analyzing metrics computed from
UAS and DGO trajectories which take into account intent and
uncertainties. This paper will establish the theoretical relation-
ships mapping these trajectories and DGO classifications to safety
levels. Sensor capabilities will be mapped to DGO trajectory
uncertainties, so that safety can be directly estimated from the
sensor specifications for a given UAS trajectory.

I. INTRODUCTION

The overarching goal of this paper is to develop a framework
for mapping Unmanned Aerial Vehicle (UAS) sensor and
vision processing capabilities to Dynamic Ground Obstacle
(DGO) safety. DGOs are assumed to be any ground objects
which are either moving or capable of moving, and UAS are
assumed to be CAT1 recreational, commercial, or emergency
service aerial vehicles. Safety is maintained by ensuring the
expected risk to all possible hazards stays below a maximum
threshold. ∑

i

ri < δ (1)

This equation is slightly misleading as written, because it does
not explicitly show the correlation between potential incidents.
For example, if there are two DGOs in the path of the UAS,
and the UAS collides with the first DGO, then there is no
longer a risk of collision with the second DGO unless it
happens to be in close proximity to the first DGO. We will
re-examine this equation later in this study after the discussion
on likelihood probabilities.

Hazards are only considered if they can cause harm to
people or property, while harm to the UAS itself is generally
not considered in this study. The expected risk to the general
public caused by hazard i can be computed by multiplying the
consequence cost with the likelihood of that hazard occurring.

ri = ci · li (2)

Likelihoods and consequences will each be considered in
depth in the following sections, and mathematical definitions

will be formulated so that they can be combined into an overall
safety measure. Methods for minimizing the likelihoods and
consequences will be discussed, and equations will be derived
to establish the relationships between sensor specifications
and safety. The effects of uncertainty in the trajectories and
probabilities of the sensed DGO belonging to various classes
will also be considered in this example. A methodology for
analyzing the validity of the risk calculations will also be
discussed.

II. PREVIOUS WORK

The FAA Extension, Safety, and Security Act of 2016 [10]
called for the Federal Aviation Administration (FAA) to “study
the potential use of probabilistic assessments of risks by the
Administration to streamline the integration of unmanned air-
craft systems into the national airspace system.” Risk reduction
models for addressing the FAA safety requirements include
[1] and [6], and a comprehensive review of the state-of-
the art in UAS ground risk modeling has been analyzed in
[11]. These risk models consider 5X5 risk matrices such
as [4] developed by the NASA Godard Flight Center. However,
these models do not drill down to the specific UAS sensor
capability requirements, nor do they directly consider the DGO
trajectories and uncertainties. Our paper complements these
studies by showing how safety can be quantitatively measured
given a specified UAS trajectory and a specified arrangement
of DGOs. In order to form a mathematically analyzable model,
we consider continuous likelihood and consequence values
instead of the risk matrix referenced described above. For
simplicity, we will only consider consequences of property
damage and human harm, and risk will be assumed to be a
simple product of likelihood and consequence.

III. CONSEQUENCES

In the previous section we defined risk as the product of
likelihood and consequence. Thus, it follows that risk can
be reduced by either reducing the likelihood or reducing the
consequence. In this section we will examine methods for
reducing the consequences, and in the following section we
will examine methods for reducing the likelihoods.

The consequence Ci associated with a hazard i can be
estimated from insurance payouts, which are in turn based
on the probabilities of causing serious injury or death. [9]



estimates these probabilities for human risk from a falling UAS
based on kinetic energy at impact. These results can be readily
generalized to include any UAS and DGO collision, provided
the UAS weight and speed differential with the DGO can be
estimated. Note that the safety consequence of crashing a UAS
into the ground where no DGOs are present may indeed be
essentially zero. However, as we will discuss further in the
next section, the likelihood that there are no DGOs is never
zero since no sensor is 100% reliable. Thus there will always
be a predicted safety risk associated with any UAS crash.

We can examine how consequences can be reduced to
ensure safety by considering a few examples. A DGO hazard
involving a collision with a human can be described at varying
levels of specificity, as illustrated in the notional example in
figure 1. The high level hazard description shown in blue

  

Incident: Collision with Human

Likelihood: 10%
Consequence: $23.3K

Expected Payout: $2,330

Incident: Collision with Human,
Causing No Bodily Injury

Likelihood: 6%
Consequence: $500

Expected Payout: $30

Incident: Collision with Human,
Causing Minor Bodily Injury

Likelihood: 3%
Consequence: $10K

Expected Payout: $300

Incident: Collision with Human,
Causing Major Bodily Injury

Likelihood: 0.2%
Consequence: $1M

Expected Payout: $2K

High Level Incident Description

Low Level Incident Description

Fig. 1. Notional example showing high and low levels of hazard specificity.

can be broken down into three lower ones as shown in red,
without affecting the total expected payout. If we examine the
high level hazard description: “Collision with a human”, then
clearly the consequence can be decreased if the UAS can be
slowed down. However, if we look at the low level hazard
description “Collision with a human causing major bodily in-
jury”, then we can only change the likelihood (also by slowing
down), but we cannot change the consequence. In general, it is
clear that any hazard can be broken down into sub-hazard until
the lowest level sub-hazard consequence cannot be changed.
Therefore, we can state that the consequences Ci can never
be decreased directly, and we must decrease the likelihoods in
order to improve safety.

In summary, we have seen that the consequences are fixed
costs when written at a sufficiently low level, and it is thus
the likelihoods which must be lowered in order to improve
safety. These fixed costs can be difficult to estimate (what
is the cost of a human life?), however, studying insurance
company incidence payouts and the methodologies they use
to derive these payouts can help with the formulation of UAS
and DGO collision consequence cost estimates.

IV. LIKELIHOODS

Likelihoods can be defined for our purposes as the proba-
bility that a hazard will result in a safety incident. Consider an
initial UAS state of SUAS(0), and a target trajectory SUAS(t),
given by

SUAS(t) ≡ {x(t), ẋ(t),w(t), ẇ(t)}, (3)

where
x(t) ≡ {x(t), y(t), z(t)}T , (4)

is the position of the UAS and

w(t) ≡ {α(t), β(t), γ(t)}T , (5)

are the roll (α), pitch (β), and yaw (γ) of the UAS. A UAS
will generally attempt to close the loop on its localization
estimate to match a target trajectory SUAS(t). The UAS
should be able to achieve position uncertainty similar to its
localization uncertainty for low speed trajectories. However,
these uncertainties will increase as the target UAS trajectories
approach the aircraft performance model limits. Limitations
in both UAS trajectory modeling and weather modeling will
also increase the uncertainties. This is especially true for
compromised UAS, since the performance models may be
poorly understood. Compromised localization will make it
harder to close the loop, also resulting in significantly in-
creased uncertainties. Note that there is always a non-zero
probability that a UAS will suddenly become compromised
due to prop failure, sensor failure, etc. This is one of the main
reasons why a UAS flying directly over DGOs is considered
dangerous even though the planned trajectory does not bring
the UAS anywhere near the DGOs. A realistic UAS trajectory
estimator must thus also include these probabilities of failure
along the routes. UAS Trajectory modeling is beyond the
scope of this study, and we will assume that there exists
a UAS trajectory modeler which can generate the possible
trajectories with uncertainties, given an initial UAS aircraft
state. Estimated UAS trajectories with uncertainties will be
denoted by ŜUAS(t), and estimated DGO trajectories can be
similarly denoted by ŜDGO(t).

Figure 2 shows notional UAS (red) and DGO (green)
trajectories with 1σ uncertainty errors. The specific shape of
the DGO uncertainty will be described in detail later in this
paper. We can write the position uncertainty of the UAS and

Fig. 2. Notional example showing predicted trajectories with 1σ uncertainties.
UAS trajectories are red, while DGO trajectories are green. Uncertainties at
4 and 6 second look-ahead are shown in yellow (UAS) and blue (DGO).

DGO at time t as three dimensional density function fUAS(t, ~x)
and fDGO(t, ~x), respectively. Note that the uncertainties and
probability densities should be based on a local map, not on
a global map, since the DGO predicted poses are based on



UAS sensor readings relative to the UAS. The term “local
map” is used loosely here, as it might consist of a single
reading from the mapping related sensors, or it could consist
of multiple aligned readings to create a larger local map. These
local maps might be registered against base maps to improve
GPS localization, or perhaps these local maps are only used
for local obstacle avoidance. For our analysis, we are primarily
concerned with the DGO trajectories relative to the UAS.

Black lines are overlaid on the trajectories to show 1 second
interval look-ahead times in figure 2. Note that UAS1 has
higher speeds than UAS2, and it is thus shown as having larger
uncertainties since the implication is that it is flying closer to
the edge of its modeled performance envelope. Note also that
the cyclist is shown with a more predictable trajectory than
the dog. We can calculate the likelihood of a collision between
a UAS trajectory ŜUAS(t) and a DGO trajectory ŜDGO(t) by
first considering the collision probability at a specific time.
Consider the 1σ uncertainties for the UAS (yellow) and DGO
(blue) trajectories at 4 and 6 second look-ahead times in
our notional example in figure 2. Note that the likelihood of
collisions will be low at 4 seconds, however at 6 seconds the
likelihood increases significantly for UAS1 and the cyclist,
with the 1σ uncertainties butting up against each other.

The likelihood of a collision between a UAS trajectory and
a DGO at a specific look-ahead time can be computed by
point-wise multiplying the corresponding probability densities,
and spatially integrating over the probability extent and over
the geometric offsets where the UAS and DGO dimensions
overlap. The geometric offset integration region can be un-
derstood by considering a fictitious example where the UAS
and DGO each occupy single points in space. The trajectories
between the UAS and DGO will then never actually overlap,
and collisions will be impossible. However, as we consider
real physical sizes it becomes clear that the actual size of the
UAS and DGO must be considered in order to estimate the
probabilities of collision.

A collision between a UAS and a DGO known to be of class
i can be abbreviated as UAS ∩ DGOi. Thus the probability
of this event occurring at time t can be written as

PUAS∩DGOi
(t) =

∫∫
fUAS(t, ~x+ ~r) · fDGO|i(t, ~x) d~x d~r (6)

where fUAS is the probability density of the UAS predicted
trajectory, fDGO|i is the probability density of the DGO pre-
dicted trajectory assuming it belongs to class i, and ~r spans
the geometric offsets as defined above.

A collision between a UAS and DGO where the DGO class
is not known for certain can be abbreviated as UAS ∩ DGO,
and this probability can be calculated as:

PUAS∩DGO(t) =
∑
i

[
Pi|DGO · PUAS∩DGOi

(t)
]

(7)

where i iterates through all possible classes for the DGO,
Pi|DGO is the probability that the observed DGO belongs to the
class i. We can define tC as the time of maximum probability
of collision

tC ≡ argmax
t

PUAS∩DGO(t) (8)

Thus the probability of a collision with the DGO at any
time along the UAS trajectory can be taken as the maximum
probability of collision for any time:

PUAS∩DGO = PUAS∩DGO(tC) (9)

As mentioned briefly in the consequences section, there is
always a non-zero probability that a collision with the ground
will involve a DGO, since no sensor is 100% accurate in
detecting all DGOs. We can thus include apriori density maps
fDGO in equation 6 for DGOs that might be present but have
not necessarily been detected. These densities can either be
non-spatially specific numbers based on expected densities of
various DGO classes for the region, or the densities can be
based on apriori maps, showing for example higher density
of humans near bus stops and mall entrances, higher density
of cattle in large fields, higher density of children near
playgrounds, etc. [6] describes these scenarios in more detail.
Note that these densities are based on a global map, not on
the local maps used for the DGO densities. Thus, if a high
resolution DGO population density map is required, then the
UAS and DGO trajectories may need to be based off a global
map by registering local maps against a base map. Including
these densities in our risk calculations will result in a risk
penalty even when no DGOs have been observed, which is
what we want since we can never be 100% certain there are
no DGOs.

So far we have considered the likelihood of a collision
between a UAS and a single DGO. For multiple possible DGO
collisions we must take into account the dependency between
the collisions. For example, if a UAS collides with a DGO,
then the probability of collision with future DGOs in its path
is essentially zero, unless other UAS are nearby or if the UAS
is not immediately grounded by the impact of the collision.
We will make the simplifying assumption that any UAS crash
grounds the UAS, making future crashes impossible. Thus, for
multiple DGOs in the vicinity, the total probability of collision
with any of the DGOs can be given by the sum of the disjoint
probabilities:

P (UAS ∩ Any DGO) =

P (UAS∩DGO1)+∼P (UAS∩DGO1)·P (UAS∩DGO2)+...

=
∑
k

[
P (UAS ∩ DGOk)

k−1∏
m=1

∼P (UAS ∩ DGOm)

]
(10)

where the indexed DGOs in equation 10 refers to all the DGOs
in the vicinity, with lower indices corresponding to DGOs
earlier in the UAS path.

Note that the initial UAS trajectory point is very accurate
since it is build from a local map. However, as look-ahead
time increases, the performance modeling limitations increase
the uncertainties, especially when flying near the performance
model limits. Note also that even with perfect localization and
sensors, there is still a chance of a sudden UAS failure which
increases over time, thus the uncertainties will grow over time.
The initial DGO uncertainty is due to the sensor limitations,



which will be analyzed later in this paper. However, as the
look-ahead time increases, the DGO uncertainties are domi-
nated by the DGO intent modeling limitations.

V. RISK

Recall that the risk associated with a hazard is the product
of the likelihood and the consequence, as given in equation 2.
Consider again the consequence of a collision Ci between
a UAS and DGO. These collision consequence costs will
be greater at higher speed differentials, and can be worse
if the UAS is spinning (say due to failed props). Thus the
consequence between a UAS and a DGO can be written with
explicit state dependencies as:

Collision Consequence: C(DGOi, ŜUAS(tC), ŜDGOi
(tC))

where DGOi represents a DGO of class i, Ŝ represents the
UAS and DGO states defined in equation 3, and tC is the
collision time as defined in equation 8. We will abbreviate this
collision consequence to C(i, tC). Thus, the risk associated
with a single DGO collision can be written as

R(UAS ∩ DGO) =
∑
i

[PUAS∩DGOi(tC) · C(i, tC) ] (11)

and the risk associated with any DGO collision in the vicinity
can be written as:

R(UAS ∩ Any DGO) =∑
k

[
Ck · P (UAS ∩ DGOk)

k−1∏
m=1

∼P (UAS ∩ DGOm)

]
(12)

where C(k, tC) has been abbreviated to Ck.
Thus, the original risk equation given in equation 1 with

collision dependencies can be written as:

R(UAS ∩ Any DGO) < δ, (13)

We have thus shown how safety can be computed for a
specific UAS trajectory and a set of DGOs with uncertainty
values. A UAS with presumed trajectory estimators can then
plan its path based on its own set of mission costs, so long
as equation 13 can be satisfied. In the event that there are no
possible trajectories whose risk remains below this threshold,
then the UAS should be considered in safety violation, and
should chose the trajectory which minimizes the risk.

VI. DGO TRAJECTORY MODELING

The DGO trajectories will be modeled as dead reckoned
trajectories with velocity uncertainties that depend on the
detected object class probabilities. For example, a small child
running would have relatively high velocity uncertainty, while
an adult cyclist would have considerably less velocity uncer-
tainty. Holonomic constraints which could affect along track
and cross track uncertainties differently will not be considered.
Complex DGO trajectory prediction based on planning and
goal modeling such as [5] is beyond the scope of our study.

DGOs will generally have very little rotational velocities, so
these will not be model-led. For simplicity, DGOs will assume
to be restricted to flat motion along the ground. The DGO state
trajectory can thus be simplified from equation 3 to

x(t) ≡ [x(t) y(t) ẋ(t) ẏ(t) ]
T (14)

The dynamics can be modeled as a discrete linear dynamic
system

xk+1 = Fxk + ξ, (15)

with the initial state given as

x0 ≡ [x0 y0 z0 ẋ0 ẏ0 ż0]
T (16)

and F is the state transition matrix given by

F =


1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (17)

with update period ∆t, and ξ drawn from a normal distribution

ξ ∼ N (0, Q) (18)

with

Q =


0 0 0 0 0
0 0 0 0 0
0 0 q 0 0
0 0 0 q 0
0 0 0 0 0

 (19)

The initial state x0 will have uncertainties that depend on
the UAS sensor capabilities, while the velocity uncertainty q
will vary depending on the object class. Note that even a single
DGO detected by the UAS will have to consider multiple
possible trajectories, weighted by the classification confidences
Pi|DGO, as shown in equation 7. Multiple detected DGOs will
need to use equation 10.

VII. ESTIMATING DGO TRAJECTORY UNCERTAINTY
FROM SENSOR SPECIFICATIONS

The DGO position and speed relative to the UAS is assumed
to be measured with stereo cameras on the UAS, and these
measurements will have inherent uncertainty associated with
the 3D reconstruction. Other sensors such as LIDAR and
SONAR can be quite useful for measuring position and speed,
depending on the size and payload capabilities of the UAS.
However, for the scope of this study we will restrict our
analysis to stereo cameras, and this work should be easily
extendable to other sensors. In this section we will explore
how these inherent stereo uncertainties map into trajectory
uncertainties. It can be shown [8] and [2] that the stereo
range error due to discretization of the image pixels is related
to the pixel disparity error by:

∆z =
−z2∆d

bf + z∆d
, (20)



where ∆z is the range error, b is the camera baseline, f is the
focal length, and ∆d is the pixel disparity error.

The pixel disparity error probability distribution function
depends on the physical properties of the sensor. For example,
if we assume the camera sensor can capture light uniformly
over the entire span of each pixel, then a uniformly distributed
disparity error density function is reasonable for both the left
and right cameras, as used in [8]. Other density function such
as a triangular shaped curve have been explored by [2]. For
this study, we will assume that the pixel disparity error is
uniformly distributed over one pixel. The probability density
functions for the left image pixel disparity error is given by:

f∆XL
(∆xL) =

{
1/δ, for −δ/2 ≤ ∆xL ≤ δ/2
0, otherwise

(21)

where δ is the image pixel size. The probability density
function for the right image pixel disparity error is similarly
given by:

f∆XR
(∆xR) =

{
1/δ, for −δ/2 ≤ ∆xR ≤ δ/2
0, otherwise

(22)

Thus, since the disparity error ∆d is the sum of the left
and right disparity errors, we can calculate the probability
density function for ∆d as the convolution of the left and
right probability density functions:

f∆D(∆d) = f∆XL
(∆xL) ∗ f∆XR

(∆xR), (23)

which integrates to:

f∆D(∆d) =


(δ + ∆d)/δ2, for −δ ≤ ∆d ≤ 0

(δ −∆d)/δ2, for 0 ≤ ∆d ≤ δ
0, otherwise

(24)

Clearly a larger disparity error will result in a larger range
error estimate, and thus ∆z is a monotonic function of z, so
we can write

f∆Z(∆z | z) = f∆D(∆d)

∣∣∣∣ ∂

∂∆z
(∆d)

∣∣∣∣
=

bf

(z + ∆z)2
·


(δ + ∆d)/δ2 for −δ ≤ ∆d ≤ 0

(δ −∆d)/δ2, for 0 ≤ ∆d ≤ δ
0, otherwise

(25)

These equations map stereo camera focal length, pixel size,
and baseline to the probability density functions of the DGO
range errors for stereo cameras. The horizontal and vertical
errors orthogonal to range have been shown by [3] to have
minimal error contribution compared to range, and will thus be
ignored in this paper. Thus, we can calculate the total DGO
trajectory uncertainties by adding range errors to the DGO
trajectories modeled in equation 14. Stereo camera resolution
will affect the DGOs visible in the field of view, while frame
rate will affect motion blur and maximum speeds.

Similar calculations can be performed for LIDAR. Flash
LIDAR is particularly simple because the range errors are

constant up to the maximum range. Note that regardless of the
sensor used, the DGO uncertainties due to intent will quickly
grow over time, and will dominate all uncertainties except for
very short look-ahead times.

VIII. METRICS FOR EVALUATING RISK VALIDITY

Equation 12 demonstrates how risk can be calculated be-
tween a UAS trajectory and a set of DGO trajectories, given
several simplifying assumptions. These assumptions include
stereo cameras as the only sensor for range estimation and
object recognition, and dead reckoned DGO velocity estimates
that assume DGO intent is unaffected by nearby UASs. So far
we have not addressed how to validate that the risk equations
are relevant given these assumptions.

Recall that risk is the product of consequences and like-
lihoods. Validating that the consequences are correct is not
straight forward. In some sense they are correct by definition.
The insurance payouts can be used as a starting point to set
the consequence costs, but it is ultimately up to the FAA
regulators to decide the true consequence costs based on
policy priorities. Thus, we will focus our risk validity to the
likelihood calculations.

Perhaps the equations given in 12 are too simple to
correctly capture the risk or perhaps they are overly complex
given the uncertainty in the system, or more likely they are
some combination of both.

The following are examples where the system could be
overly complex for the risk calculations:
• Object class is not a good predictor of the dead reckon

uncertainties.
• DGO intent is so unpredictable that motion estimation

based on object class are unreliable.
The following are examples where a more complex system

might better capture risk:
• DGO intent could consider short term variations in mo-

tion to better predict future motions.
• Tracking a DGO for a short term would also provide

better robustness for object classification.
• DGO intent could include higher order terms beyond

simple dead reckoning. For example, a person identified
as digging a ditch.

• UAS failure modes may need to be improved to better
capture risk.

The collision probability given in 10 can be converted to a
binary classifier by considering that a collision is predicted so
long as the probability is above a threshold. A low threshold
will increase the probability of the correct detections while
simultaneously increasing the probability of false positives,
while a high threshold will lower both. This relationship
between the true positive rate and the false positive rate can be
traced in an ROC curve by varying the threshold. However, the
true positives and false positives calculations require real data
of actual UAS and DGO collisions, which can be difficult to
obtain. Assuming we can obtain this data, then the quality
of our classifier can be estimated by calculating the area



under the ROC curve. A value of 1.0 represents a perfect
assignment of collision probabilities, 0.5 representing a pure
random assignment of collision probabilities, 0.0 representing
an inverted classifier with perfect incorrect classification. We
can thus demonstrate the effects of changes to our probability
equations from a variety of factors including the ones proposed
in the itemized list at the beginning of this section. This
method permits us to discard irrelevant elements collision
probability while retaining and expanding those elements
which can improve performance.

IX. SUMMARY AND FUTURE WORK

This paper developed the risk models in equations 12 and 13
for ensuring safety to DGOs, and described how these risks
models could be validated and improved given real-world data.
The greatest source of uncertainty is intent of the dynamic
ground objects, however it is difficult to collect real data
of collisions or near misses because these occurrences are
infrequent and can have privacy sensitivities. For our analysis
we have assumed that the object intent is not affected by
the UAS proximity. This simplifies the risk equations and
permits real data to be collected in future studies, with the
UAS and DGOs completely separated spatially and temporally.
Equation 25 would then be used to scale the results as the UAS
and DGOs are relocated to simulate near misses and collisions.

Our first order approximation where DGOs do not react
to the UASs will not be valid under all scenarios. In many
cases, collisions and near misses happen so quickly that the
DGOs do not have time to react. This is especially true in
busy urban areas where the UAS may not be heard coming. If
the UAS is noticed, then adults are most likely going to try to
avoid a collision. However, pets and children may be far less
predictable, and may attempt to chase the UAS. These highly
complex interactions are important to model because they
can predict when our UAS and DGO interaction simplifying
assumptions are valid. Studying these interactions can also
help generate intent models that can be used to improve risk
prediction. Statistics on these interactions can help identify
when the predicted DGO motion is too unreliable and a simple
worst case motion model must be used. Real-world data of
collisions and near misses is difficult to obtain because they
do not occur often and also because there may be privacy or
other sensitivities associated with these occurrences. Future
work could attempt to collect this hard to collect data of near
misses and collisions.

The risk equations have assumed stereo cameras would
be used for range estimation. This work can be readily
augmented to cover a variety of other sensors such as LIDAR
and SONAR, with only the range estimation noise models
given in equation 25 requiring updating. Object tracking could
significantly improve the classification of DGOs since some
objects are not easily recognizable from certain views.

A simulation environment can be invaluable for testing out
end-to-end workflow for the risk calculations, and isolating the
effects of intent modeling assumptions, and sensor and algo-
rithm selection. A simulation environment was readily setup

using the ROS Gazebo environment as shown in figure 3. This
example simulate the third person view and telemetry from the
stereo cameras and flight control system. For this example, a
3DR Robotics Iris UAS was simulated with a Pixhawk PX4
flight controller, noisy inertial navigation system, and random
wind gusts. The simulation includes buildings, moving cars,

Fig. 3. ROS Gazebo Simulation Environment, combining the Gazebo vehicle
and city simulation environment, and the Pixhawk PX4 Flight controller.

and several dynamic models of people walking, jogging, and
talking with hand gestures. Sun, shadows, and clouds are also
modeled. The simulated UAS is equipped with stereo cameras
which are used to classify DGOs and estimate their position
and velocity relative to the UAS. A GPU based real-time object
classifier [7] is incorporated into this simulation, as shown in
figure 4 to determine the DGO class based on training data

Fig. 4. Example of the “You Only Look Once” real-time object classifier
running on our simulated UAS camera view.

of the expected classes for the UAS region. A real-time 3D
optical flow object motion estimation algorithm such as [12]
can also been incorporated into the simulation to estimate the
velocity of DGO objects.

This paper is primarily targeted at class I UAVs, however
these results are readily applicable to larger aircraft, since the
main changes would be the trajectory modeler and the addition
of more sophisticated sensors. It is hoped that this paper can
provide a structured framework to build upon for evaluating
the risks UAS pose to DGOs.
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