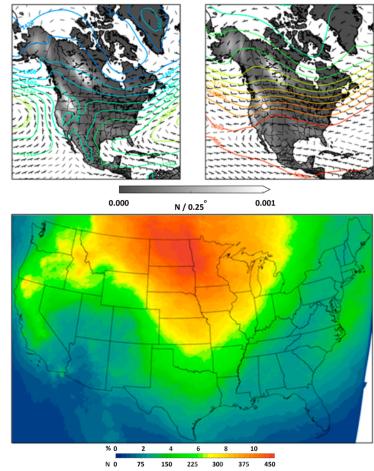
Pixel Level Smoke Detection Model with Deep Neural Network

Muthukumaran Ramasubramanian¹, Aaron Kaulfus¹, Manil Maskey², Rahul Ramachandran², Iksha Gurung¹, Brian Freitag¹, Sundar Christopher¹

1-University of Alabama in Huntsville 2-NASA/Marshall Space Flight Center

Introduction

- Biomass burning smoke has numerous detrimental environmental and ecological impacts
 - Respiratory and cardiovascular illnesses
 - Radiation budget
 - Nutrient availability
- Impacts realized both near source and potentially thousands of kilometers downwind depending on
 - Fire duration
 - Amount and type of biomass burned
 - Meteorological and fuel conditions
 - Vertical distribution in the atmosphere



Spatial distribution of MODIS fire occurrence and NOAA HMS smoke for summer 2006-2015. From Kaulfus et al. 2017 Figure 2.

Introduction

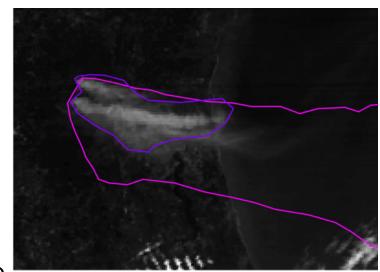
- Current detection methods present challenges for continuous smoke detection and monitoring
 - In-situ monitoring
 - Temporal, spatial, and tracer monitoring limitations
 - Remote sensing
 - Polar orbiting, once-daily overpass
 - Manual or computational intensive multispectral analysis
 - Large data volumes
 - Multiple class multispectral classification

Objectives

- Deploy a smoke detection model using machine learning on satellite remote sensing observations
 - Leverage observations from the new generation of geostationary satellite
 - High spatial and temporal resolutions over large domains
 - Alternative to multispectral analysis
 - · Eliminate time consuming, subjective manual analysis

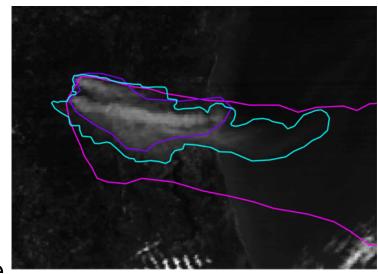
Truth Dataset

- Geostationary Operational Environmental Satellite 16 shortwave reflectance data
 - Bands 1-6 (0.47, 0.64, 0.86, 1.37, 1.6 and 2.2 μm)
 - Access L1B radiance data from AWS
 - Convert to reflectance
 - Spatially resample to 1km
- National Oceanic and Atmospheric Administration (NOAA) Hazard Mapping System (HMS) smoke analysis
 - Satellite based operational daily analysis of smoke extent over the US and surrounding areas
 - Manual quality controlled by subject matter expert to correctly match smoke extent in GOES 16 image



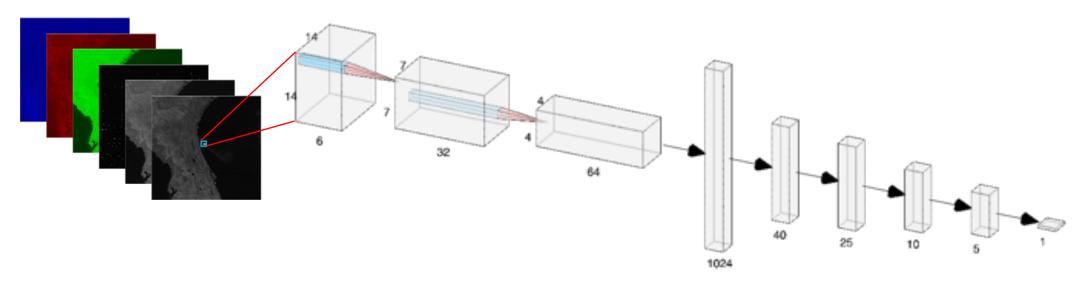
Truth Dataset

- Geostationary Operational Environmental Satellite 16 shortwave reflectance data
 - Bands 1-6 (0.47, 0.64, 0.86, 1.37, 1.6 and 2.2 μm)
 - Access L1B radiance data from AWS
 - Convert to reflectance
 - Spatially resample to 1km
- National Oceanic and Atmospheric Administration (NOAA) Hazard Mapping System (HMS) smoke analysis
 - Satellite based operational daily analysis of smoke extent over the US and surrounding areas
 - Manual quality controlled by subject matter expert to correctly match smoke extent in GOES 16 image

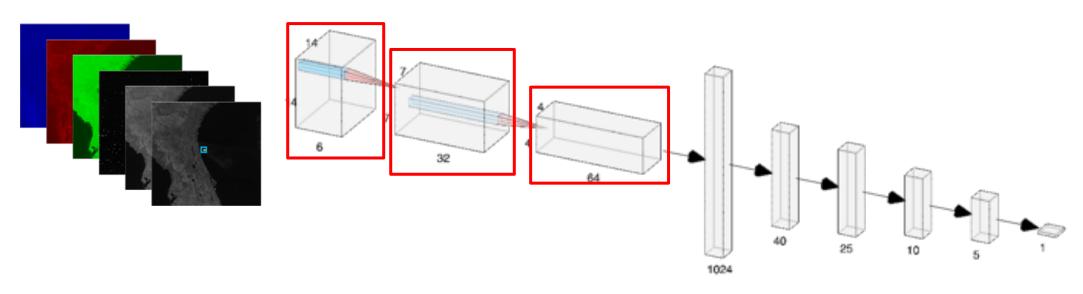


Truth Dataset

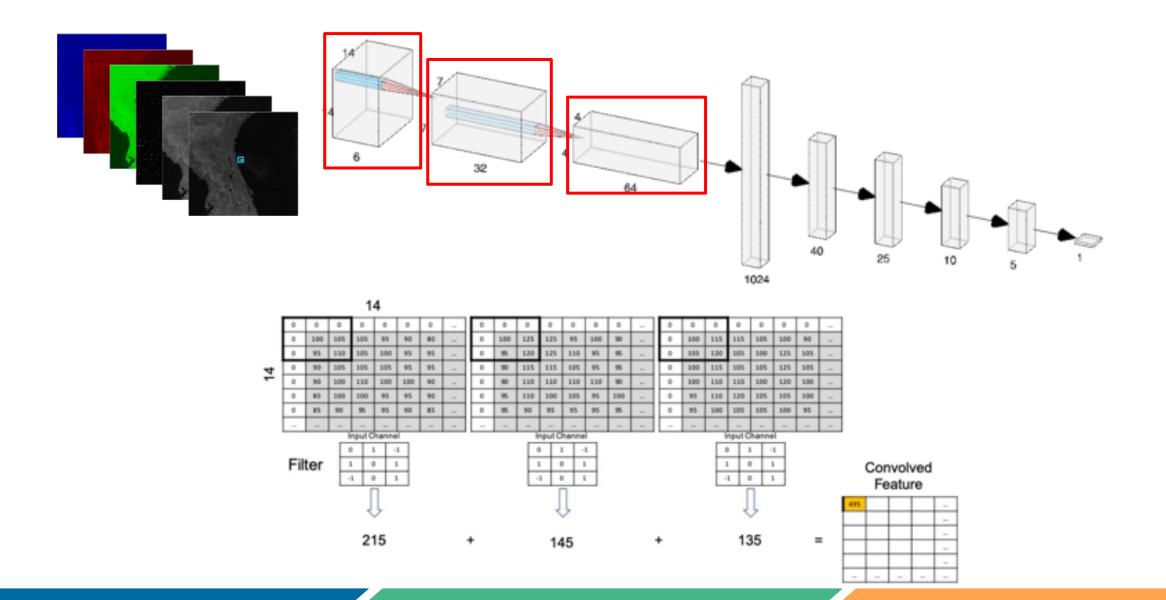
- Analyze 122 scenes containing smoke
 - 962691 smoke pixels
 - Smoke over low and high background reflectances (land and ocean)
 - Contain relevant classes to discriminate smoke from
 - Snow and ice
 - Clouds
 - Dust
 - 60% 20% 20% distribution of smoke pixels between training, validation and testing datasets

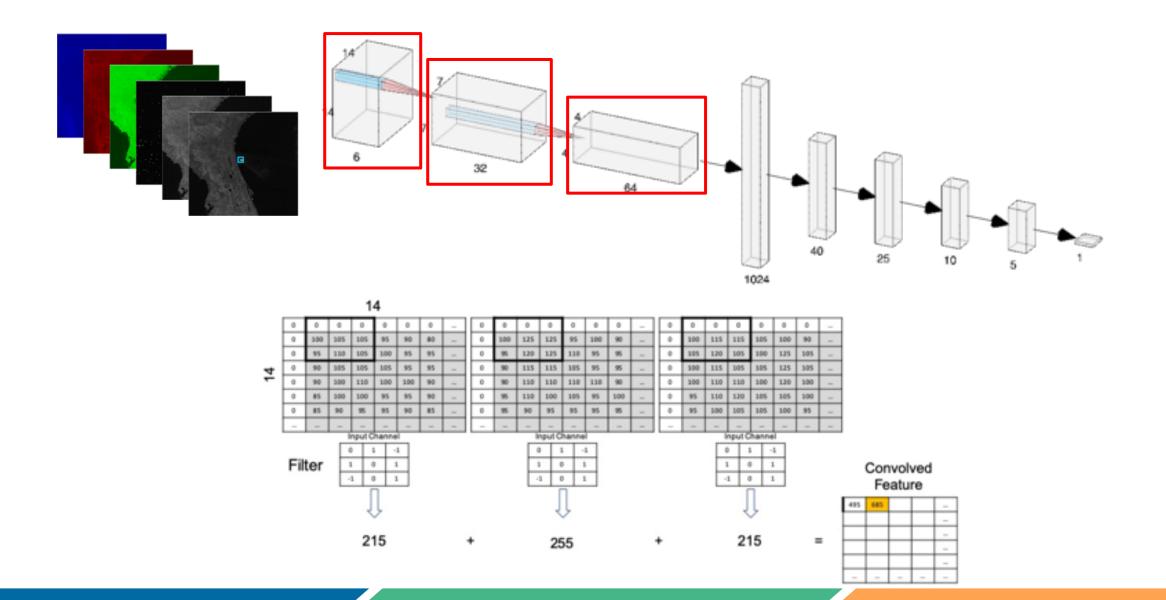


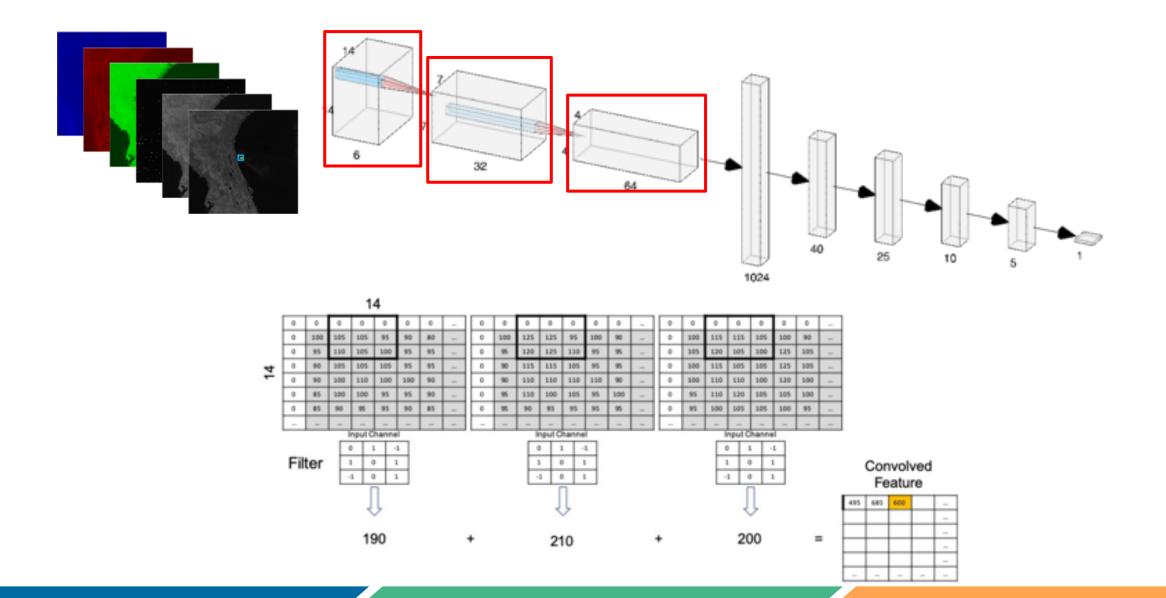
- Apply a pixel based Convolutional Neural Network (CNN)
 - Input (N*2)*(N*2) neighborhood of reflectance values surrounding a center pixel (sample)
 - 3 convolutional layers
 - Each convolutional layer followed by max-pooling layer
 - Convolutional outputs are flattened into vectors

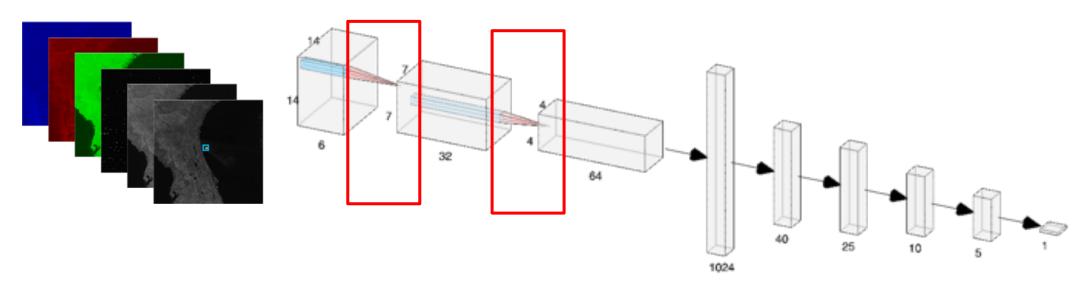


- Apply a pixel based Convolutional Neural Network (CNN)
 - Input (N*2)*(N*2) neighborhood of reflectance values surrounding a center pixel (sample)
 - 3 convolutional layers
 - Each convolutional layer followed by max-pooling layer
 - Convolutional outputs are flattened into vectors

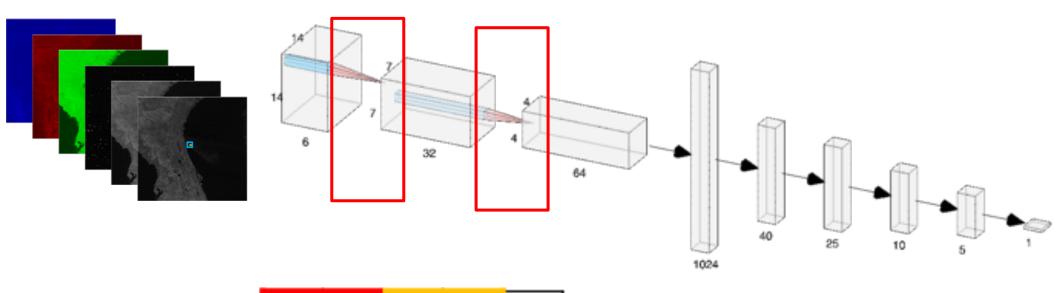






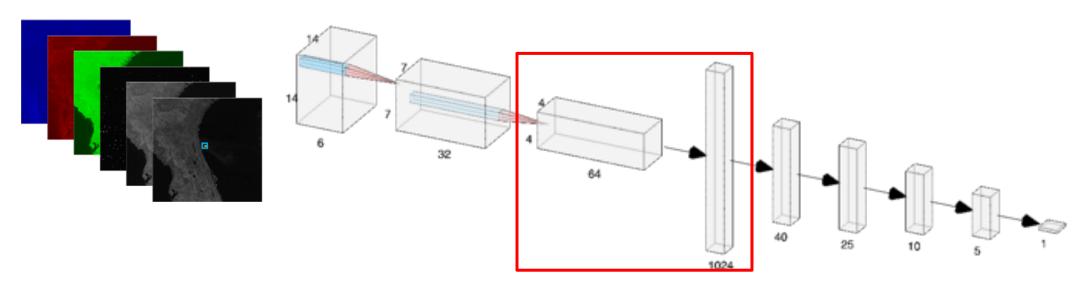


- Apply a pixel based Convolutional Neural Network (CNN)
 - İnput (N*2)*(N*2) neighborhood of reflectance values surrounding a center pixel (sample)
 - 3 convolutional layers
 - Each followed by max-pooling layer
 - Convolutional outputs are flattened into vectors

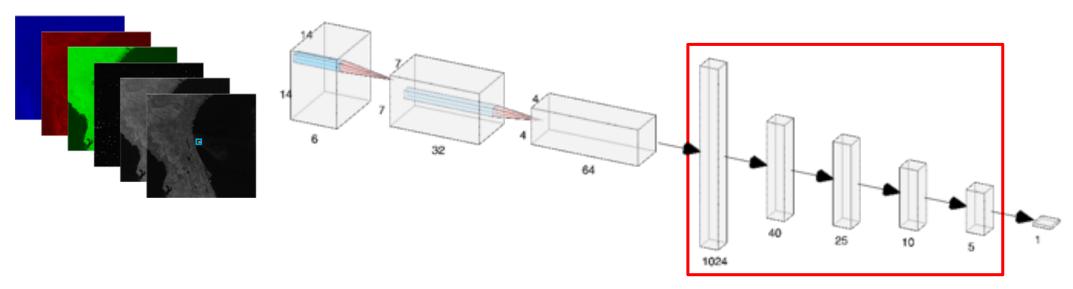


495	685	600	595	
515	665	595	550	
510	650	710	675	
490	705	675	625	
450	555	600	620	

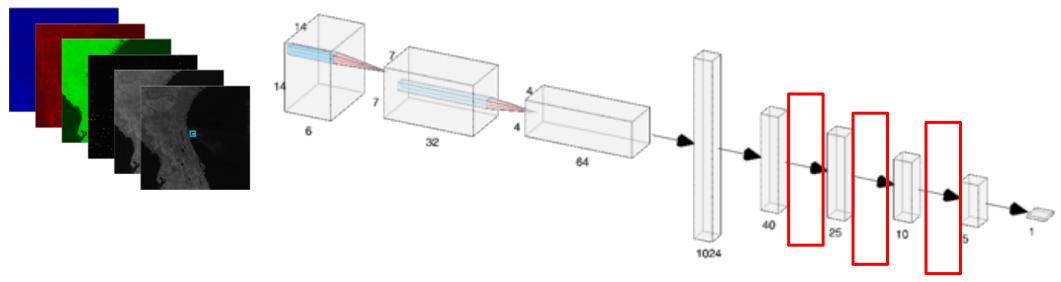
685	600	
705	710	:



- Apply a pixel based Convolutional Neural Network (CNN)
 - Input (N*2)*(N*2) neighborhood of reflectance values surrounding a center pixel (sample)
 - 3 convolutional layers
 - Each followed by max-pooling layer
 - · Convolutional outputs are flattened into vectors

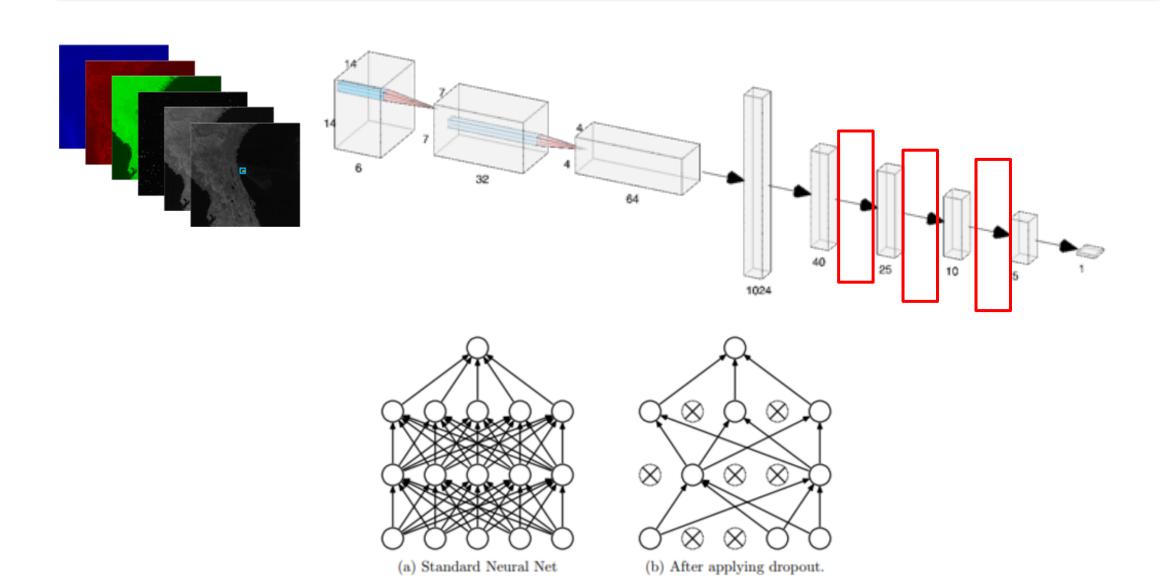


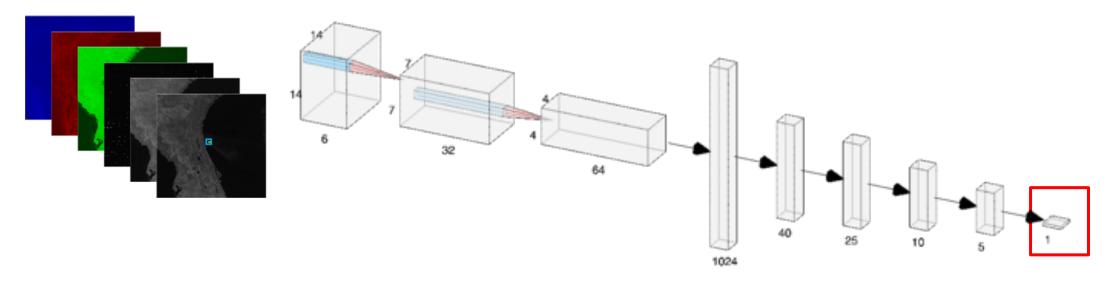
- Apply a pixel based Convolutional Neural Network (CNN)
 - 4 fully connected layers with activation function calculation g(Wx + b)
 - x is the flattened input vector
 - W is the weight matrix
 - b is the bias vector
 - Dropout for each fully connected layer



- Apply a pixel based Convolutional Neural Network (CNN)
 4 fully connected layers

 - Dropout randomly for each fully connected layer





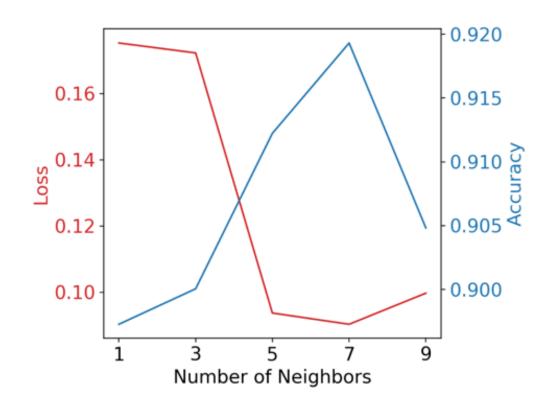
• The model outputs the probability, ranging from 0 to 1, that a pixel is smoke determined by a sigmoid function

$$p(x) = \frac{1}{1 + e^{-x}}$$

• p > 0.5 threshold applied to define smoke

Model Description

- Best neighborhood size (N) determined by iterating model development and testing for increasing N
 - All other parameters including data, learning rate and model hyper-parameters are held constant
- Best model selected when validation loss did not improve for 20 epochs



Development Testing

N	Precision	Recall	F1-Score	Accuracy
1	0.654	0.328	0.437	0.897
3	0.650	0.384	0.483	0.900
5	0.724	0.449	0.554	0.912
7	0.835	0.419	0.558	0.919
9	0.639	0.498	0.560	0.905

$$Precision = rac{TP}{TP + FP}$$
 $Recall = rac{TP}{TP + FN}$
 $Accuracy = rac{TP + TN}{TP + TN + TP + FN}$
 $F1 \, Score = 2 * rac{Precision * Recall}{Precision + Recall}$

- The F1 Scores, balance between Precision and Recall, for N=5,7,9 is comparable
 - · Trade-off between quality and quantity of smoke predictions
- Best model has low false positive detection rate which drives high precision
 - · Prefer conservative identification over incorrect classification
- Accuracy artifact of large number of True Negatives

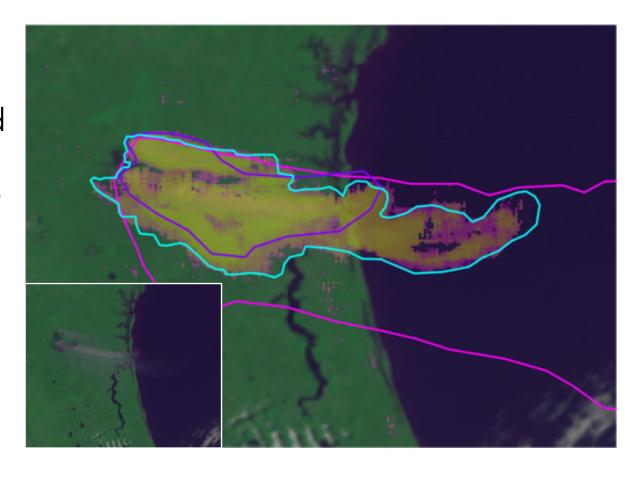
Results

- Model updated to account for variation in solar zenith angle
 - The training and testing datasets for the updated model differ from that used for the initial development
 - · Results are comparable between the initial and updated models
- Better predictive capability of smoke over water
 - Compared to land, the relative decrease in true negatives over water drives a slight decrease in accuracy

N=7	Precision	Recall	F1-Score	Accuracy
All	0.736	0.453	0.561	0.923
Land	0.631	0.383	0.476	0.928
Water	0.923	0.585	0.717	0.900

2 May 2018 - Southern Florida

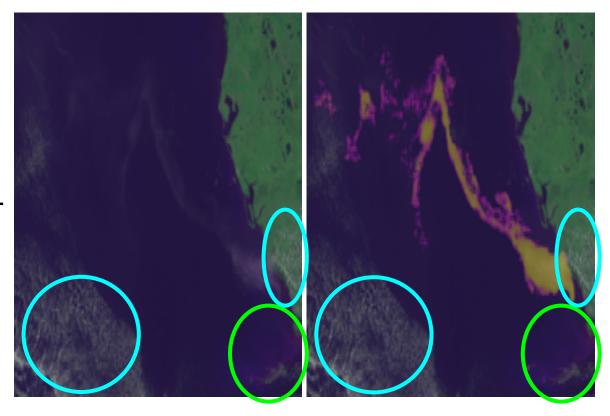
- Smoke identified over both land and ocean
 - Model identifies well defined plumes for scenes with absence of complex features
 - Probabilities resemble visually observed optical thickness
- Predictions closer resemblance to quality controlled shapefiles



24 March 2018 - Southern Florida

- Distinguishable from chlorophyll commonly found in coastal settingsFair weather cumulus cloud discrimination
- Spectral information for other classes not provided to the model

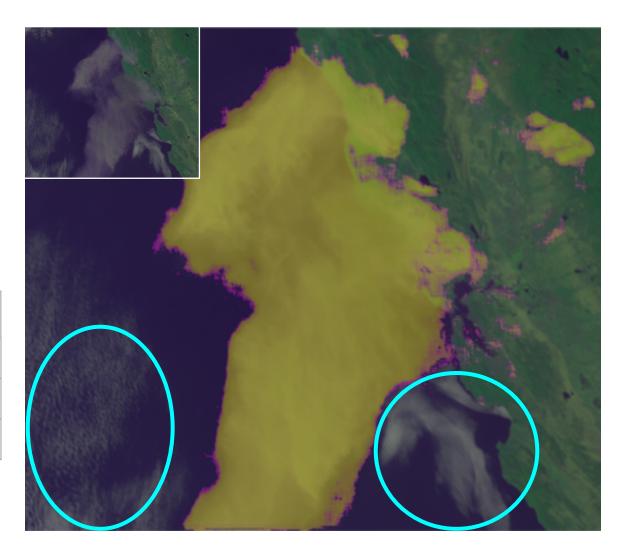
	Precision	Recall	F1-Score	Accuracy
All	0.744	0.604	0.666	0.948
Land	0.847	0.244	0.379	0.976
Water	0.742	0.623	0.677	0.943



9 October 2017 - Central California

- Large and small plumesIdentification over both land and ocean
- Coastal stratus clouds

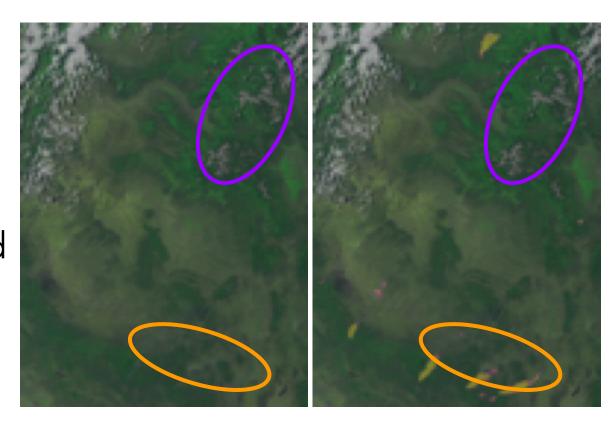
	Precision	Recall	F1-Score	Accuracy
All	0.970	0.919	0.944	0.961
Land	0.904	0.754	0.823	0.920
Water	0.986	0.965	0.975	0.980



11 June 2017 - Southern Rocky Mts. United States

- Successfully discriminates land surface snow/ice from smoke
 - Over snow capped mountains for this case
- Detection challenges for optically thin smoke over arid regions

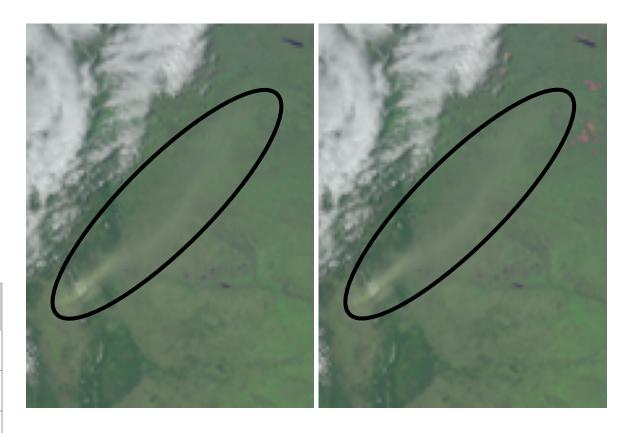
	Precision	Recall	F1-Score	Accuracy
All	0.848	0.318	0.462	0.977
Land	0.848	0.319	0.463	0.977
Water	N/A	N/A	N/A	0.984



17 April 2018 - Southern Rocky Mts. United States

- Other atmospheric aerosols not classified as smoke
- Large dust storm case
 - Represents a major source of aerosols in the atmosphere
 - Expected over region's where smoke is also common

	Precision	Recall	F1-Score	Accuracy
All	N/A	N/A	N/A	0.996
Land	N/A	N/A	N/A	0.996
Water	N/A	N/A	N/A	N/A



20 May 2018 - Southern Arizona

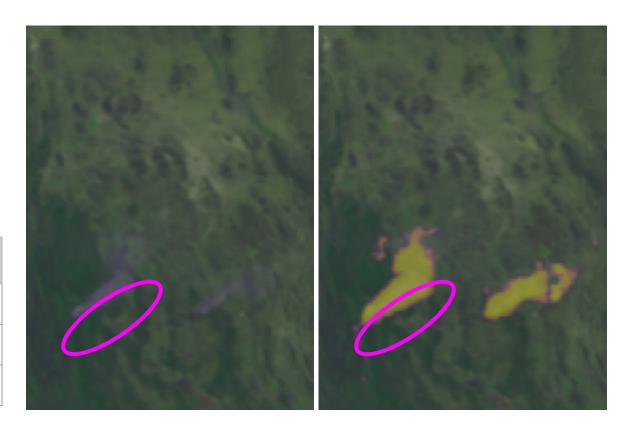
- Smoke not detected at very low sun angles
 - Compounded by low optical thickness over relatively high reflective surface
 - Probability of being smoke is low for few pixels that are identified

	Precision	Recall	F1-Score	Accuracy
All	0.995	0.093	0.171	0.823
Land	0.995	0.093	0.171	0.822
Water	0.923	0.585	0.717	1.000

14 April 2018 - Southern Rocky Mts. United States

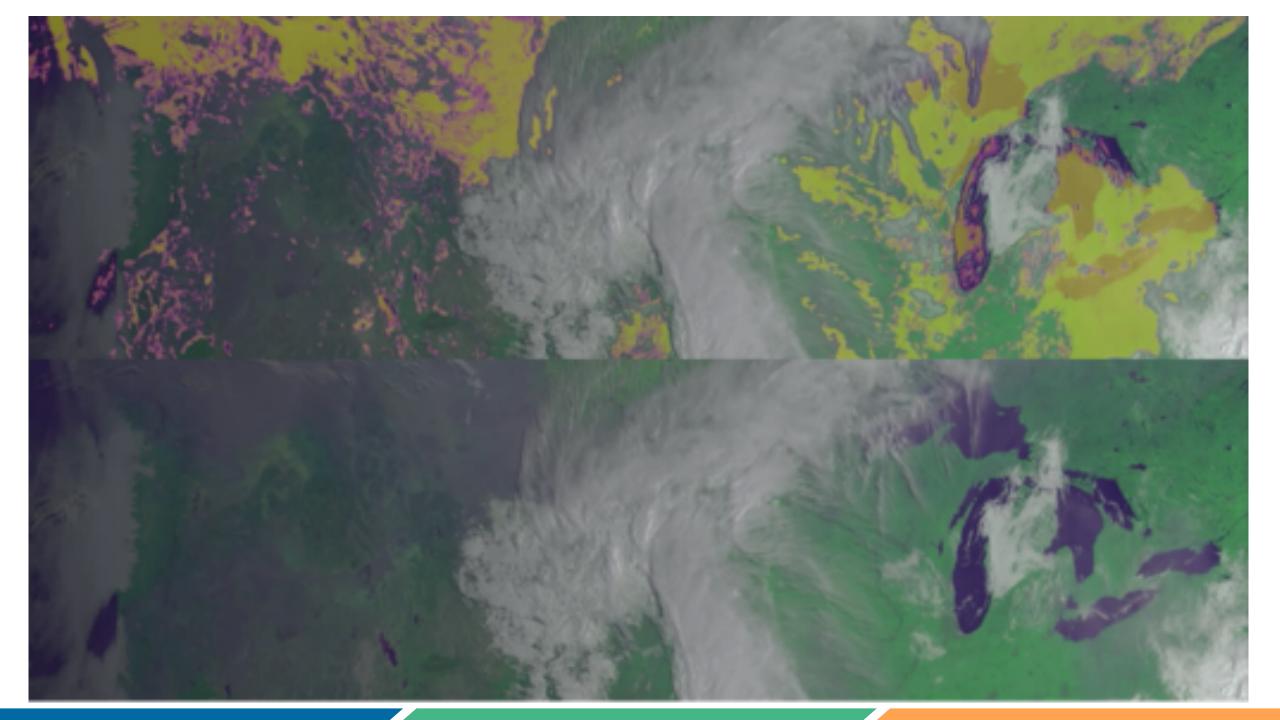
- Overprediction of plume extent
 - Artifact of large (N=7) neighborhood size
 - Non-zero floor to number of false positives

	Precision	Recall	F1-Score	Accuracy
All	0.830	0.738	0.781	0.981
Land	0.830	0.738	0.781	0.981
Water	N/A	N/A	N/A	0.993



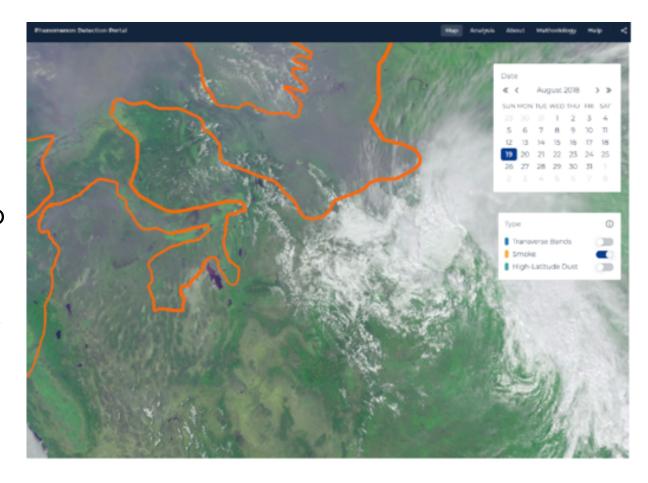
Operational Capabilities

- Currently testing new deployment in operational environment
 - Anticipate operational October 2019
- Fully deployed in cloud using Amazon S3 and Cloud Computing Services
- End-to-end analysis and visualization pipeline
 - Full disk GOES observation available ~10 min intervals
 - Model prediction available ~15 min after data availability
 - Preprocessing ~10 min
 - Prediction and Postprocessing ~5min



Operational Capabilities - Postprocessing

- Spatial grouping of predicted pixels to define plumes
 - Convert predicted pixels to bitmap image
 - Blurring to smoothen edges
 - Contour blurred image to group smoke pixels into plumes
 - Plumes visualized and geojson representation of plume extents available for download in the Phenomena Portal (http://phenomena.surge.sh)



Summary

- Developed end-to-end machine learning smoke detection pipeline for next-generation of geostationary satellites
 - Well curated smoke extent dataset
 - Scalable smoke detection deep learning model, requiring only smoke spectral information, and capable of detecting smoke with:
 - Varying optical thicknesses
 - Over low and high reflectance background surfaces
 - Discriminates from common, spectrally similar, features
 - Fully automated operational deployment of model in development
 - Plume visualization and extent data accessible in online platform

Future work

- Expand training data to account for identified weaknesses
 - Low sun angles
 - Thin smoke over arid regions
 - Thin clouds
- Refinement of the machine learning model
 - Confirmation of N=7 as best performing model
 - Explore trade-off between neighborhood size and prediction capabilities
 - Stepwise band selection considering all 16 GOES bands
 - Robust model validation
 - Band exclusion to identify contribution to feature learning
- Performance assessment for operational improvements

mr0051@uah.edu aaron.kaulfus@nsstc.uah.edu

