

National Aeronautics and Space Administration

NASA Ames Unitary Plan Wind Tunnel: Infrared Flow Visualization

Air Vehicles Technology Symposium

Presented by: Dr. James Bell NASA Ames Research Center 650.604.4142 James.H.Bell@nasa.gov Prepared by: Ted Garbeff NASA Ames Research Center 650.604.0742 Theodore.J.Garbeff@nasa.gov

- Overview of Infrared Flow Visualization Flow phenomena influence wind tunnel model local surface temperatures:
 - Boundary layer transition
 - Shock impingement
 - Vortex footprint
 - Flow separation
 - Buffet

Requirements

- Sufficiently sensitive IR cameras
- Imaging data systems
- Model surface with proper emissivity and thermal properties

Examples of use

- 1. Transition/Trip-dot Effectiveness
- 2. Shock Structure
- 3. Wing-body Vortex Interaction
- 4. Pylon-wing Vortex Interaction
- 5. Onset of Stall/Buffet
- 6. Vortex-Shock Interaction
- 7. Vortex Generator Effects

Boundary layer transition on tunnel startup:

Shock structure and angle-of-attack:

Vortex impingement and flow separation:

Discovery

Innovations

6

Discovery

Innovations

Solution

Boundary layer transition on launch vehicles

Hardware: Cameras and Windows

IR Cameras

(4x) FLIR SC8200 (1x) FLIR A8300sc

- 1024x1024 pixels
- 3-5 um
- 13mm, 25mm, 50mm, 100 mm lenses

IR Viewing Ports

- (8x) Germanium
- (2x) Sapphire
- Modular inserts
- 3-5µm broadband AR coating

Innovation

coverv

Space Administration

- Simultaneous acquisition of four IR cameras
- Acquisition automated and synchronized with tunnel data system.
- Stream-to-disk image data with tunnel conditions
- In-line image processing with distributed video for customer viewing
- Data product securely delivered to customer through data diode

Model emissivity and thermal conductivity:

The test article must be emissive in 3-5 μm IR band

- Higher emissivity = larger signal
- Steel / aluminum models painted flat black
 - Typical emissivity ~85%

The test article must have high heat capacity

- More time for temperature gradient to establish on surface = higher contrast
- Flat-black polyurethane and acrylic paints have worked well
 - ~0.002" thick, ~25 μin roughness

Varying physical features of the test article (cover plates, plaster, differing materials) result in varying thermal properties across the model, appear as artifacts in the image data.

Contrast Enhancement is Essential

- Test article in NASA Ames UPWT
- Mach = .95, Pt = 2116 psf
- Surface Emissivity ≈ 0.85
- Surface Roughness ≈ 30µin
- 14-bit pixel depth

<u>Linear</u>

- Preserves shape of histogram
- Unable to enhance small / local features

Global Histogram Equalization

- Automatic, "Stretches" histogram
- Increased contrast, features saturated

- Adaptive Histogram Equalization
- Fixed-scale, equalization convolution
- Local features enhanced, but with artifacts

Multi-scale Adaptive Histogram Equalization

- Multi-scale, equalization convolution
- Improved image quality, compute bound

20 40 60 80 100 120 140 160 180 200 220 240 255 Counts

Normalized Laplacian Pyramid

- Decompose image into multi-level spatially filtered band-pass images
- Pixels are typically normally distributed at each band-pass level
- Normalize each level, weight and reconstruct pyramid

National Aeronautics and Space Administration

Contrast Enhancement

Number of Pixels 40000-20000-0-0-0-0 0 100 120 140 160 180 200 220 240 255 20 40 60 80

Counts

Normalized Pyramid Reconstruction

- Multi-scale contrast enhancement
- Fast (based on separable filters)
- Requires some input (two parameters/scale)

<u>Linear</u>

Discovery

Innovations

Normalized Pyramid Reconstruction

19

- Infrared imaging enables real-time flow visualization
- Integrated, multicamera, IR data systems are a powerful tool to investigate flow features on wind tunnel models
- Care must be taken to ensure the model surface is emissive and has comparatively low thermal conductivity
- Image processing is key

The presenter would like to thank the following principal investigators for generous use of wind tunnel model imagery: Greg Gatlin (Truss-Braced Wing), Don Durston (Boeing N+2 Sonic Boom Performance model), and Max Amaya (NASA Ames Check Standard Model)

Capability advancement funded by NASA Aeronautics Evaluation and Test Capabilities (AETC)

Questions?

